Back to Journals » Drug Design, Development and Therapy » Volume 9

Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells

Authors Fani S, Kamalidehghan B, Lo KM, Mohd Hashim N, May Chow K, Ahmadipour F

Received 21 April 2015

Accepted for publication 27 May 2015

Published 23 November 2015 Volume 2015:9 Pages 6191—6201

DOI https://doi.org/10.2147/DDDT.S87064

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Professor Shu-Feng Zhou


Somayeh Fani,1 Behnam Kamalidehghan,1 Kong Mun Lo,2 Najihah Mohd Hashim,1 Kit May Chow,2 Fatemeh Ahmadipour1

1Department of Pharmacy, Faculty of Medicine, 2Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia


Abstract: A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, (compound C1), was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50) value of 2.5±0.50 µg/mL after 48 hours treatment. The IC50 value was >30 µg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the present study obviously reveal potential cytotoxic effects of compound C1 against human breast cancer MCF-7 cells.

Keywords: organotin derivatives, apoptosis, MCF-7 cells

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]