Back to Journals » Drug Design, Development and Therapy » Volume 9

Paracellular permeation-enhancing effect of AT1002 C-terminal amidation in nasal delivery

Authors Song K, Kim S, Shim C, Chung S, Kim D, Rhee S, Choi GJ, Kim C, Kim K

Received 16 December 2014

Accepted for publication 17 February 2015

Published 27 March 2015 Volume 2015:9 Pages 1815—1823

DOI https://doi.org/10.2147/DDDT.S79383

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Professor Shu-Feng Zhou


Keon-Hyoung Song,1 Sang-Bum Kim,2 Chang-Koo Shim,2 Suk-Jae Chung,2 Dae-Duk Kim,2 Sang-Ki Rhee,1 Guang J Choi,1 Chul-Hyun Kim,3 Kiyoung Kim4

1Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, Republic of Korea; 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; 3Department of Sports Medicine, 4Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea


Background: The identification of permeation enhancers has gained interest in the development of drug delivery systems. A six-mer peptide, H-FCIGRL-OH (AT1002), is a tight junction modulator with promising permeation-enhancing activity. AT1002 enhances the transport of molecular weight markers or agents with low bioavailability with no cytotoxicity. However, AT1002 is not stable in neutral pH or after incubation under physiological conditions, which is necessary to fully uncover its permeation-enhancing effect. Thus, we increased the stability or mitigated the instability of AT1002 by modifying its terminal amino acids and evaluated its subsequent biological activity.
Methods: C-terminal-amidated (FCIGRL-NH2, Pep1) and N-terminal-acetylated (Ac-FCIGRL, Pep2) peptides were analyzed by liquid chromatography–mass spectrometry. We further assessed cytotoxicity on cell monolayers, as well as the permeation-enhancing activity following nasal administration of the paracellular marker mannitol.
Results: Pep1 was nontoxic to cell monolayers and showed a relatively low decrease in peak area compared to AT1002. In addition, administration of mannitol with Pep1 resulted in significant increases in the area under the plasma concentration–time curve and peak plasma concentration at 3.63-fold and 2.68-fold, respectively, compared to mannitol alone. In contrast, no increase in mannitol concentration was shown with mannitol/AT1002 or mannitol/Pep2 compared to the control. Thus, Pep1 increased the stability or possibly reduced the instability of AT1002, which resulted in an increased permeation-enhancing effect of AT1002.
Conclusion: These results suggest the potential usefulness of C-terminal-amidated AT1002 in enhancing nasal drug delivery, which may lead to the development of a practical drug delivery technology for drugs with low bioavailability.

Keywords: N-terminal acetylation, stability, permeation enhancer

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]