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Background: The combination of genistein 27 mg, cholecalciferol 200 IU, citrated zinc 

bisglycinate (4 mg elemental zinc) 20 mg per capsule in Fosteum, a prescription medical food 

regulated by the FDA and indicated for the dietary management of osteopenia and osteoporosis, 

was tested for drug interactions and to determine the pharmacokinetic profile for genistein, the 

principal bone-modulating ingredient in the product.

Methods: In vitro human liver microsome cytochrome P450 (CYP450) assays were used to test 

the product for potential drug interactions with the isoforms 1A2, 2C8, 2C9, 2C19, 2D6, and 3A4. 

Due to specific 2C8 and 2C9 inhibition, a steady-state pharmacokinetic study was performed to 

assess serum genistein concentrations by high-pressure liquid chromatography-coupled mass 

spectroscopy in healthy fasting (n = 10) and fed (n = 10) postmenopausal women.

Results: The product showed minimal inhibition of 1A2, 2C19, 2D6, and 3A4, exhibit-

ing IC
50

  .  10  µM, but 2C8 and 2C9 yielded IC
50

 of 2.5  µM and 2.8  µM, respectively, 

concentrations which are theroretically achievable when dosing the product twice daily. 

After seven days of administration in a steady-state pharmacokinetic study, significant 

differences were found for unconjugated genistein (including free and protein-bound), 

regarding time to peak concentration (1.88 ± 1.36 hours), maximum concentration reached 

(0.052 ± 0.055 µM), elimination half-life (2.3 ± 1.6 hours), and area under the concentration-

time curve (53.75 ± 17.59 ng . hour/mL) compared with results for total genistein (including 

glucuronidated and sulfonated conjugates) time to peak concentration (2.22  ±  1.09  hours), 

maximum concentration reached (2.95 ± 1.64 µM), elimination half-life (10.4 ± 4.1 hours), 

and area under the concentration-time curve (10424 ± 6290 ng . hour/mL) in fasting subjects. 

Coadministration of food tended to extend the time and extent of absorption as well as slow 

elimination of genistein, but not in a statistically significant manner.

Conclusion: Because the serum genistein concentrations achieved during pharmacokinetic 

testing at therapeutic doses were well below those required for enzyme inhibition in the in vitro 

liver microsome assays, these results indicate a low potential for drug interactions.

Keywords: genistein, metabolism, pharmacokinetics, drug interactions, medical food

Introduction
Renewed interest in botanically derived therapies has resulted in the recent marketing 

of products containing high concentrations of isoflavones for bone loss, both as food 

supplements and as prescription medical foods. Many epidemiological studies sup-

port an inverse relationship between isoflavone intake and bone loss and fracture rate. 

A large prospective study of 24,403 postmenopausal Chinese women, for example, 

In
te

rn
at

io
na

l J
ou

rn
al

 o
f W

om
en

's
 H

ea
lth

 d
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

www.dovepress.com
www.dovepress.com
www.dovepress.com
mailto:bburnett@primusrx.com


International Journal of Women’s Health 2011:3submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

140

Burnett et al

related soy protein and isoflavone consumption to subsequent 

fracture incidence over a 4.5-year period.1 After age, body 

mass index, and lifestyle risk factors were controlled, a 

significant linear negative association was found for both 

soy protein and isoflavone consumption ($21  mg daily) 

and fracture risk.

Genistein is an isoflavone found in small quantities in 

certain legumes throughout the plant kingdom (Figure 1). 

Unfermented soybeans are a particularly rich source of 

genistin, the glucoside precursor of genistein, although the 

concentration varies with the strain, location, and envi-

ronmental conditions of cultivation of the plant. Another 

widely utilized source of genistin is Sophora japonica L.2 

Asian populations, for whom fermented soy food and other 

isoflavone containing plants are dietary staples, are estimated 

to consume 25–100 mg of isoflavone daily.3 The majority 

of isoflavone consumption is in the form of aglycone rather 

than as glucosides. In contrast, intake of isoflavones in the 

US is estimated at only 0.15–3 mg per day, with much of it 

being in glucoside forms.4,5 Therefore, non-Asian popula-

tions may not reap the benefits of high intake of isoflavone, 

in particular, genistein aglycone.

Mixed isoflavone studies demonstrate positive effects 

on bone markers and lipid profiles,6 vasomotor symptoms,7 

and mood8 in humans, as well as memory in an experimental 

animal model.9 In ovariectomized osteoporotic rats, Bitto et al 

showed that genistein restored better quality bone than 

alendronate, raloxifene, and estradiol as measured by bone 

mineral density, metabolic bone markers, fracture resistance, 

and bone histology.10 Additional studies showed that genistein 

prevented and restored bone in animal models of secondary 

osteoporosis induced by steroids.11,12 In well-controlled clini-

cal trials, purified genistein (54 mg/day) was shown to improve 

bone markers and increase bone mineral density over three 

years at a rate comparable with other standard therapies for 

osteoporosis.13–16 Other studies have demonstrated the ability 

of genistein to successfully manage vasomotor symptoms 

in postmenopausal women.17,18 Genistein, in experimental 

animal models, has anxiolytic and antidepressant effects.19–21 

Genistein has an excellent cardiovascular safety profile in well 

controlled clinical trials.22 Finally, genistein has a positive 

cancer risk profile in humans.15,23,24

Despite the widespread consumption of soya, soy products, 

and their major isoflavones, little has been published regarding 

the metabolic fate of these molecules. Major metabolites are 

known to be glucuronides and sulfonates of isoflavones,25 but 

are poorly characterized, often because no reference standards 

are available26 and their influence on drug metabolic pathways 

is unknown. The extent to which genistein and its metabolites 

bind serum proteins in the body is not known, but is thought 

to be through an ionic interaction. Due to the introduction of 

purified and high-dose therapeutic genistein products onto the 

market, knowledge of the metabolism and pharmacokinetic 

profile of genistein is imperative if unanticipated interactions 

with other drugs are to be avoided.

A specially formulated medical food which contains 

genistein 27 mg, cholecalciferol 200 IU, and citrated zinc 

bisglycinate (4  mg elemental zinc) 20  mg per capsule 

(Fosteum) is taken twice daily under physician supervi-

sion for the clinical dietary management of osteopenia and 

osteoporosis.27 In this study, the interaction of genistein from 

the formulation was assessed by cytochrome P450 (CYP450) 

enzyme inhibition assays in human liver microsomes. In addi-

tion, a steady-state pharmacokinetic study was performed 

in healthy fasting and fed postmenopausal female subjects 

to determine if serum genistein levels become sufficiently 

high to make drug interactions a possibility. Results for 

both in vitro drug metabolic studies for the product and 

the pharmacokinetic profile in postmenopausal women are 

presented for genistein.

Methods
All chemicals, except where noted, were purchased from 

Sigma-Aldrich, St Louis, MO. To screen for the potential 

of genistein drug interactions, the formulation was initially 

diluted from a 10 mM dimethylsulfoxide stock standardized 

for genistein and incubated in duplicate at final concentra-

tions of 10 µM and 25 µM (genistein) with pooled probe 

substrates for CYP450 enzyme isoforms 1A2 (0.25 mg/mL), 

2C8 (0.05 mg/mL), 2C9 (0.025 mg/mL), 2C19 (0.5 mg/mL), 

and 2D6 (0.1 mg/mL) in a 200 µL well volume in 96-well 

plates (Nunc A/S, Roskilde, Denmark) containing human 

liver microsomes (from Xenotech LLC, Lenexa, KS) 

(MDS Pharma Services, King of Prussia, PA).28 Substrate 

concentrations for each CYP450 isoform were set close to 

the K
m
 (Table 1).
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Figure 1 Genistein aglycone.
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Table 1 Standard probe substrates and metabolites (modified Greenford–Ware cocktail) for initial cytochrome P450 enzyme inhibition 
screens from the literature. Inhibitory activity using human liver microsomes found at 10 µM and 25 µM concentrations of genistein in 
Fosteum®. IC50 values found for genistein in Fosteum for inhibition of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6

CYP450  
isoform

Probe substrate Probe metabolite Liver microsome  
inhibition  
genistein (10 µM)

Liver microsome  
inhibition  
genistein (25 µM)

IC50† (µM)

Name Assay  
concentration  
(µM)

*Km (µM)

CYP1A2 Phenacetin 18.8 12.5 Paracetamol 20% 46% .50
CYP2C8 Paclitaxel 1 5 6α-hydroxypaclitaxel 53% 80% 2.5
CYP2C9 Tolbutamide 120 166 4-hydroxytolbutamide 59% 87% 2.8
CYP2C19 S-mephenytoin 100 40 4-hydroxymephenytoin 22% 56% 19
CYP2D6 Bufuralol 10 5 to 10 1-hydroxybufuralol 13% 34% .50
CYP3A4 Midazolam 5 10 1-hydroxymidazolam −1% 19% Not  

tested

Notes: *Km = the substrate concentration at which the velocity of an enzyme-catalyzed reaction is half maximal; †IC50 = half maximal inhibitory concentration.

Positive control inhibitors and the concentration at 

which each inhibited CYP450 isoforms to 100% were: 

furafylline (10 µM) for 1A2, montelukast (10 µM) for 2C8, 

sulfaphenazole (10  µM) for 2C9, benzylnirvanol (2  µM) 

for 2C19,29 quinidine (10 µM) for 2D6, and ketoconazole 

(1 µM) for 3A4. Each inhibitor was diluted from 10 mM 

dimethylsulfoxide stocks and assayed alongside the prod-

uct formulation containing genistein diluted from a 2 mM 

stock dissolved in dimethylsulfoxide. After incubation for 

30 minutes in a humidified incubator at 37°C, the reactions 

were terminated by adding 100 µL of acetonitrile. The assay 

utilized phosphate buffer (75 mM, pH 7.4) and the NADPH 

regenerating system (MgCl
2
, 3.3 mM; glucose-6-phosphate, 

3.3  mM; glucose-6-phosphate dehydrogenase, 1  U/mL; 

NADP+, 1.3 mM) which was added at the beginning of each 

reaction incubation.

Specific inhibition of CYP450 enzymes was measured 

in duplicate standardized to the 10 µM of genistein con-

tained in the formulation. The decrease in production of 

the specific probe metabolites (Table 1) was analyzed using 

liquid chromatography-mass spectroscopy/mass spectros-

copy (LC-MS/MS, Applied Biosystems, Life Technologies 

Corp, Carlsbad, CA) along with selected reaction monitoring 

transitions.30 The signal for each probe metabolite was integrated, 

and the metabolite to internal standard area ratio was generated. 

Percent inhibition was calculated by comparing the area ratios 

of the probe metabolite in the presence and absence of the test 

article. If genistein in the formulation inhibited an isoform 

to .50% at 10 µM, an analysis was then performed to establish 

an IC
50

 for each enzyme. CYP2C8 was also examined in IC
50

 

experiments due to its homology with the 2C9 isoform31 to 

assess its potential for drug interaction.

The formulation was diluted from a 2 mM stock stan-

dardized for genistein in dimethylsulfoxide and incubated in 

triplicate at eight final concentrations from 0.016 to 50 µM in 

half-log steps to determine an IC
50

 for the CYP450 isoforms 

A2, 2C8, 2C9, 2C19, and 2D6 using the same assay system 

described above. The signals for each probe metabolite were 

integrated and probe metabolite to internal standard peak area 

ratios were generated. Percent control was calculated by com-

paring the area ratios of the probe metabolite in the presence 

and absence of genistein using the following formula:

	 % control = [(raw - min)/(max - min)] × 100

where raw = peak area ratios of test article, min = peak area 

ratios of estimated lower limits of detection and max = peak 

area ratios of solvent control. IC
50

 s were fitted to the percent 

control data using XLFit (version 2.0 build 39, ID-BS Ltd). 

Although in vitro in nature and not tissue-specific, this analy-

sis helps determine whether a human pharmacokinetic study 

is needed to assess the serum concentration and potential 

drug interactions with a medical food.

The pharmacokinetic study was conducted according 

to the guidelines of the Declaration of Helsinki, and all 

procedures involving human subjects were approved by the 

Institutional Review Board (Quorum IRB, Seattle, WA). 

Written informed consent was obtained from all subjects. 

Subjects were free to withdraw from the study at any time, 

for any reason. Twenty women (aged 50–66, mean 57), at 

least one year postmenopausal and in good general health 

were enrolled into the trial. To avoid dietary contamination 

of the study results, subjects were excluded if they had used 

supplements containing phytoestrogen/isoflavone for 60 days 

or consumed products containing soy or isoflavone for at least 

two weeks prior to the screening visit. Due to preliminary 

results suggesting the possibility of CYP2C8 or 2C9 inhibi-

tion by genistein, use of 2C8/2C9 substrates, ie, warfarin, 
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amitryptyline, fluoxetine, diclofenac, ibuprofen, naproxen, 

celecoxib, phenytoin, losartan, irbesartan, glipizide, gly-

buride, and tolbutamide were proscribed for 60 days prior 

to screening and throughout the study period. No subject 

discontinued participation in the trial.

This was an open-label, multidose, steady-state pharma-

cokinetic study. Originally 26 subjects were screened with 

a physical examination and fasting hematology, chemistry 

safety laboratory panels, and by interview 1–2 weeks prior 

to the baseline visit. At the baseline visit, 20 subjects were 

randomized to take one capsule of the medical food formula-

tion twice daily either with food (breakfast and supper) or on 

an empty stomach (one hour prior to breakfast and supper). 

The first dose was taken on the evening of the baseline visit. 

All subjects were instructed to report eight days later to begin 

pharmacokinetic sampling.

On the morning of the eighth day, subjects reported to 

the clinical research site, and trough serum samples were 

obtained, following which subjects took the study product 

either on an empty stomach (fasting) or with a light breakfast 

(fed). Subjects under the fasting condition consumed the 

breakfast after the one-hour sample draw. Blood samples 

(about 8 mL per sample) were obtained by venipuncture into 

vacutainer tubes and allowed to clot at room temperature. 

Serum samples were taken at hours 1, 2, 4, 6, 8, 10, 12, 24, 

36, 48, 72, and 96 after dosing. Samples were then centrifuged 

for 15 minutes at 1500 rpm and the serum was aliquoted into 

cryovials and stored at −70°C. Subjects left the clinical site 

following the 12-hour sampling interval and returned for the 

24-, 36-, 48-, 72- and 96-hour blood draws. The study was 

constructed to record any and all adverse events. All samples 

remained frozen until analysis by liquid chromatography and 

mass spectroscopy.

Isolation and high-performance liquid chromatogra-

phy analysis was done according to Thomas et  al, with 

modifications.32 To determine unconjugated genistein 

(defined as free plus protein-bound), aliquots of 0.05 mL for 

each time point, as well as blank plasma obtained prior to 

consumption of the formulation and a deuterated genistein 

(genistein-d4) internal standard (0.1 mL of 50 ng/mL in 20% 

methanol in distilled water, Cambridge Isotopes Laboratories, 

Andover, MA) were added together to individual polypropyl-

ene culture tubes for extraction of unconjugated genistein. 

Then 0.2 mL of 0.25 M sodium acetate, pH 5.0, was added 

to each sample. The determination of total genistein (defined 

as the sum of unconjugated, glucuronidated, and sulfonated 

genistein) was performed by the addition of 0.1  mL of 

900 U/mL β-glucuronidase and sulfatase in sodium acetate 

buffer followed by a 1.5-hour incubation at 40°C. Both 

unconjugated and total genistein samples were vortexed for 

one minute, then 2.5 mL of 1:1:1 hexane to methyl tert-butyl 

ether to methylene chloride extraction solvent was added to 

each tube. The samples were then vortexed gently for 15 min-

utes followed by a 10-minute centrifugation at 3000 rpm to 

separate the aqueous and organic layers. The aqueous layer 

of each sample and controls were then frozen at -80ºC, and 

the organic layer poured into 10 mL conical glass screw-cap 

tubes where they were dried with nitrogen gas at 40°C.

The dried extracts were reconstituted with 0.2  mL of 

1:1 mobile phase buffer A (0.05% formic acid and 5 mM 

ammonium formate in distilled water) to mobile phase buffer 

B (0.05% formic acid and 5 mM ammonium formate in an 

80:10:10 ratio, acetonitrile to methanol to distilled water). 

Samples were vigorously vortexed for five minutes and 

then centrifuged for two minutes at 1500 rpm to remove 

any insoluble material. The supernatants were removed and 

transferred to 0.25 mL polypropylene injection vials with 

caps for each chromatography run.

A standard curve using .98.5% pure genistein (Primus 

Pharmaceuticals Inc, Scottsdale, AZ) in a 1:1  mixture 

of mobile phase buffer A to mobile phase buffer B was 

established by injecting 20  µL samples of 0.25  ng/mL 

to 10,000  ng/mL in two-fold increases. A 20  µL volume 

was first injected onto the loading column (MetaChem 

SafetyGuard ODS 10 × 4.6 mm, Agilent Technologies, Santa 

Clara, CA) and then onto the analytical C18 50 × 4.6 mm 

5 µm column (Waters Atlantis, Waters Corp, Milford, MA). 

The LC program for the loading column was: injection of 

the sample followed by a one-minute isocratic wash with 

20% buffer B, then a linear gradient in 0.5 minutes to 80% 

buffer B, followed by an isocratic wash with 80% buffer B 

and, finally, a wash step of 100% buffer B. The LC program 

after the sample traversed the loading column and then trav-

eled through a switch valve (VICI Valco Instruments Co Inc, 

Houston, TX) onto the analytical column was: a one-minute 

isocratic wash with 50% buffer B, a linear gradient from 

50%–80% buffer B in 0.5 minutes, followed by an isocratic 

wash with 80% buffer B. Genistein standards show a reten-

tion time of 2.78 minutes on the analytical column.

LC/MS/MS was used to determine the plasma concentra-

tion of genistein so that a comparison could be done with the 

IC
50

 values established for CYP2C8 and 2C9. The analysis 

of extracted samples was performed using a Sciex API4000 

QTrap MS/MS (AB SCIEX Research and Development, 

Concord, ON, Canada) equipped with an ESP(+) interface, 

and was used with an ion source temperature of 450°C. For 
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MS/MS measurements, a collision energy of 30 eV was used 

for the (M + H)+ transitions used to monitor unlabeled and 

genistein-d4 (m/z 271.0→215.1 and 275.1→219.1, respec-

tively) with a dwell time of 0.15 seconds and a sampling 

cone-skimmer potential of 50 V. Isotope dilution for analysis 

of genistein and characterization of the genistein-d4 was done 

according to Holder et al for comparison with the samples 

obtained from both fasting and fed subjects.33

Total genistein concentrations were obtained at each 

time point in duplicate for each subject and pharmacoki-

netic analysis performed. The primary variables of interest 

were C
max

 (the maximum observed concentration of total 

genistein), T
max

 (the elapsed time at which C
max

 was observed), 

T
1/2

 (the elapsed time at which genistein concentration was 

half of C
max

), and the imputed area under the curve (AUC) 

estimating the total body exposure to genistein over time. 

The AUC was computed by interpolating the concentrations 

of total genistein in the intervals between recordings using 

trapezoid calculations. Imputation was performed by cubic 

spline estimation. Each of these variables was computed for 

each participant, and mean values and standard deviations 

were computed for the sample. Any value exhibiting a .3 

standard deviations (n  =  3) from the mean was removed 

from the analysis. A Student’s t-test was conducted for 

each measure to see if the observed difference in means was 

significant. Descriptive statistics were presented for each of 

the primary outcome variables.

Results
Data from a preliminary in vitro screen of CYP450 inhibi-

tory activity using human liver microsomes at 10 µM and 

25  µM concentrations of genistein from the formulation 

are shown in Table 1. Genistein from the medical food for-

mulation inhibited CYP2C8 and CYP2C9  metabolism of 

6α-hydroxypaclitaxel and 4-hydroxytolbutamide by 53% 

and 59%, respectively, at a 10  µM concentration, which 

suggests a significant inhibitory effect on both isozymes. 

Although below the cutoff threshold, genistein also displayed 

moderate (.20%) inhibition of CYP1A2 and CYP2C19, thus 

replicating the inhibition of CYP1A2 reported by Hu et al.34 

Genistein showed a mild 13% inhibition of CYP2D6 at 10 

µM. Based on these data, an additional concentration-ranging 

experiment was conducted to determine IC
50

 values for 

CYP1A2, CYP2C9, CYP2C8, CYP2C19, and CYP2D6.

Figures 2A–E shows the inhibition titration curves for 

CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6 

to establish IC
50

 values. Table 1 also shows a summary of 

these IC
50

 titration values found in human liver microsomes. 

Genistein did not inhibit CYP1A2, CYP2C19, or CYP2D6 at 

concentrations that would suggest a drug interaction potential 

by this analysis (IC
50

s . 50, 19, and .50 µM, respectively, 

Table 1). The CYP3A4 isoform was not tested by IC
50

 analysis 

due to a low initial inhibition in vitro. These data raise the 

possibility that the genistein-containing formulation might 

inhibit the metabolism of CYP2C8 (IC
50

  =  2.5  µM) and 

CYP2C9 (IC
50

 = 2.8 µM) to a clinically significant degree. 

A human pharmacokinetic study was performed to evaluate 

this potential further.

To validate the LC methodology, serum was extracted and 

run under standard conditions. The added internal standard, ie, 

genistein-d4, was found among background peaks in serum 

not exposed to the formulation. Unconjugated genistein from 

subjects produced a distinct peak which aligned with the 

control genistein-d4 run in serum and with the deuterated 

standard run without exposure to serum (data not shown). 

The calibration peak of .98.5% for pure genistein used for 

determination of genistein concentration in each sample also 

corresponded directly to those concentrations determined by 

spiking serum with genistein-d4. Mass spectroscopy analysis 

of the serum containing unconjugated genistein showed the 

concentration to be low (30–500-fold less) compared with 

the total genistein which contained glucuronidated and sul-

fonated forms in either fasting or fed subjects. Descriptive 

statistics summarizing the 96-hour pharmacokinetic data 

are presented for both unconjugated (Table  2A) and total 

genistein (Table 2B).

For unconjugated genistein among all fasting subjects, 

an average C
max

 of 14.1 ± 14.8 ng/mL (0.0528 ± 0.077 µM) 

was reached at an average of 1.88  hours following the 

final dose of genistein, whereas the average C
max

 for fed 

subjects, 3.01  ±  1.50  ng/mL (0.011  ±  0.006  µM), was 

reached at an average of 2.1 hours, suggesting that the food 

matrix decreased and delayed the absorption of genistein 

(Table 2A). There was no way to determine unconjugated 

genistein levels from serum after about 24 hours, no matter 

the fed state, due to limits of detection using the LC/MS 

method. Although the average mean C
max

 for unconjugated 

genistein was lower among individuals who took the medical 

food formulation with food compared with fasting subjects, 

this difference was not statistically significant (P = 0.21). 

This may be a spurious result, however, due to inaccura-

cies in detection at low levels of genistein. Two subjects 

were removed from the unconjugated genistein analysis 

of the fasting pharmacokinetic data group and one subject 

from total genistein analysis of the fed group due to more 

than three standard deviation differences in T
max

 values. In 
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Figure 2 Genistein aglycone inhibition titration curves for CYP1A2 (A), CYP2C8 (B), CYP2C9 (C), CYP2C19 (D), and CYP2D6 (E).
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Table 2 Free compared with total genistein aglycone from the medical food formulation under fasting and fed prandial states in 
postmenopausal women

A. Unconjugated genistein

Subjects n Unconjugated genistein Mean ± SD

Fasting 8* Cmax (ng/mL, μM) 14.1 ± 14.8, 0.052 ± 0.055
Tmax (hours) 1.88 ± 1.36
T1/2 (hours) 2.3 ± 1.6
AUC (ng . hr/mL) 53.75 ± 17.59
Age (yrs) 56.8 ± 3.9

Fed 10 Cmax (ng/mL, μM) 3.01 ± 1.50, 0.011 ± 0.006
Tmax (hours) 2.10 ± 1.10
T1/2 (hours) 3.4 ± 2.1
AUC (ng . hr/mL) 11.3 ± 7.62
Age (yrs) 56.5 ± 5.7

B. Total genistein
Subjects n Total genistein Mean ± SD

Fasting 9* Cmax (ng/mL, μM) 798.0 ± 441.9, 2.95 ± 1.64
Tmax (hours) 2.22 ± 1.09
T1/2 (hours) 10.4 ± 4.1
AUC (ng . hr/mL) 10424 ± 6290
Age (yrs) 56.8 ± 3.9

Fed 10 Cmax (ng/mL, μM) 701.6 ± 310.7, 2.60 ± 1.15
Tmax (hours) 3.10 ± 1.73
T1/2 (hours) 11.8 ± 3.7
AUC (ng . hr/mL) 9775 ± 6157
Age (yrs) 56.5 ± 5.7

Note: *Two subjects were removed from the unconjugated genistein analysis of the fasting PK data group and one subject from total genistein analysis of the fed group due 
to .3 standard deviation differences in Tmax values.

fasting subjects, total genistein reached an average C
max

 of 

798.0  ±  441.9  ng/mL (2.95  ±  1.64  µM) at an average of 

2.22  hours following the final dose of genistein, whereas 

the average C
max

 for fed subjects was 701.6 ± 310.7 ng/mL 

(2.60 ± 1.15 µM), reached at an average of 3.1 hours after the 

final dose, again suggesting that the food matrix delayed the 

time course of absorption (Table 2B). The difference in C
max

 

of total genistein between fasting and fed subjects was only 

about 14%. This difference was not statistically significant 

(P = 0.148). The T
1/2

 of unconjugated genistein for the fasting 

group was approximately 2.3 hours compared with 3.4 hours 

for the fed group, suggesting a delay in absorption due to the 

food matrix (Table 2A). These half-lives were much shorter 

compared with those found for total genistein, ie, 10.4 hours 

and 11.8 hours, respectively, for fasting and fed groups. This 

may be due to second-pass metabolism of the conjugated 

forms of genistein (Table 2B). Determination of an accurate 

AUC for unconjugated genistein was difficult due to low 

detection levels after 24 hours, so approximate AUCs are 

shown in Table 2A. Area under the curve of total genistein 

for the fasting group was 10423.7 ± 6290.0 ng . hr/mL and 

9775.1 ± 6157.4 ng . hr/mL for the fed group, showing no 

significant difference (P  =  0.79, Table  2B). The pharma-

cokinetic profile for both fasting and fed subjects is shown 

in Figure 3AB.

The overall serum clearance of unconjugated genistein 

was very similar in both fasting and fed subjects, although 

the fasting group had a more rapid and greater uptake fol-

lowed by a biphasic excretion (Figure 3A). Total genistein 

serum clearance, which includes both unconjugated genistein 

and its metabolites, shows initial equal uptake, but the fed 

group levels off before exhibiting a similar excretion profile 

(Figure 3B). This may also represent interference from the 

food matrix. No adverse events were reported during the 

study in either the fasting or fed group.

Discussion
The health benefits of isoflavones are directly related to their 

bioavailability. Bioavailability, in general, is dependent upon 

an individual’s state of health, bacterial flora in the gut, gender, 

age, the food matrix in which the compounds are consumed, 

the mix of isoflavones in the products, and host genetics.35 

Genistein is freely absorbed from the intestine, and a large 

fraction is converted to the 7β-O-glucuronide as it crosses 
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Figure 3 Pharmacokinetic profile of unconjugated A) and total B) genistein from the medical food in fasting and fed prandial states.

the brush border and ultimately enters the portal vein,36 a 

process that is influenced by intestinal bacteria.37,38 Recent 

ex vivo data using isolated human gastrointestinal tract tissue 

suggest that genistein may also undergo sulfonation in the 

small intestine, although the extent to which these sulfonates 

are absorbed following dietary intake is unknown.39 The exact 

percentages of glucuronidated and sulfonated metabolites 

after crossing the lumen are also unknown, although it is clear 

that only a small percentage of the parent molecule remains 

as unconjugated genistein once it reaches the liver. In the 
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liver, genistein undergoes additional biotransformation via 

CYP450-mediated hydroxylation,34 followed by glucuroni-

dation and sulfonation by UDP-glucuronosyltransferase and 

sulfotransferases, respectively.36 Genistein 7β-O-glucuronide 

can be recovered from bile after infusion of genistein into the 

small bowel of rats.40 As much as 70% of the genistein recov-

ered from bile is in the form of glucuronidated conjugates, 

with smaller amounts reappearing in the distal duodenum 

and jejunum.36 The vast majority of circulating genistein in 

serum has been found to be in the form of glucuronidated 

and sulfonated conjugates, which represent excretion forms 

of the molecule.37 Little is known about the bioactivity of 

conjugated isoflavones. This represents an area of research 

that should be explored in the future.

in vitro screening for drug metabolism is an initial and 

common pharmaceutical industry practice, and required to 

assure safety of new prescription therapeutics.41 The use of 

one sample concentration (10 µM) at the apparent K
m
 of the 

substrate provides a preliminary assessment of the K
i
, as 

described by the Cheng-Prusoff equation.42 At the apparent 

K
m
 of the substrate, the IC

50
 value is equal to or double the 

value of the K
i,
 for a noncompetitive or competitive inhibitor, 

respectively. Because most clinically important drug inhibi-

tors have K
i
s , 10 µM, it is recommended that a sample 

showing inhibition of $50% be further characterized by 

determination of an IC
50

 or a K
i
.

Genistein has not been shown to activate CYP450 metab-

olizing enzymes,43 although various inhibitory interactions 

with human CYP450 enzymes have been noted. Genistein 

has been found to inhibit minor CYP450 enzymes, such as 

CYP2A6 (34), CYP1A1*2, −1E and −2A1,44 and CYP1A1.45 

Two concentrations, 10 µM and 25 µM, standardized to 

genistein in the medical food formulation were used in this 

current analysis. A 25 µM genistein concentration was also 

included in the analysis because previously published data 

showed moderate CYP450 inhibition for the 1A2 and 2C19 

isoforms.34 The genistein in the formulation was tested for 

inhibition of six major drug metabolizing CYP450 enzymes 

as per industry standard drug interaction protocols, rather 

than focusing on the minor isozymes.46 No interactions of 

genistein with CYP2D6 were known, but this isozyme was 

also tested due to the large number of medications with 

which it interacts.

Genistein did not inhibit CYP2D6 to the extent that it 

would present a drug interaction potential. Hu et al found 

that genistein inhibited the CYP1A2 isozyme in vitro, with 

an IC
50

 of 16 µM.34 In our study, genistein inhibited CYP1A2 

moderately (20%) in a comparable human liver microsome 

system at 10 µM, but, in contrast with the results of Hu et al, 

exhibited an IC
50

 . 50 µM (Table 1). Our results are more 

similar to those reported by Roberts-Kirchoff et al, who also 

found moderate inhibition of CYP1A2.45 Unlike data reported 

on inhibition of CYP3A4,45,47 genistein showed no inhibition 

at a 10 µM concentration (Table 1). Differences in CYP3A4 

results may be due to the different probe substrates used in 

the analyses. Genistein showed only moderate inhibition of 

CYP2C19 (22%), but did not present the possibility for a drug 

interaction with an IC
50

 value of 19 µM (Table 1). Tolleson 

et al showed that CYP2C9 catalyzed genistein conversion.48 

In our study, genistein inhibited CYP2C8 and CYP2C9 at a 

sufficient level (53% and 59%, respectively) to potentially 

cause drug interaction (Table 1). CYP2C8 and 2C9, with 

extensive gene sequence homology,31 showed similar inhi-

bition, with genistein having IC
50

 s of 2.5 µM and 2.8 µM, 

respectively. CYP2C8 and 2C9 detoxify major drug classes, 

such as nonsteroidal anti-inflammatory drugs, antiepileptic 

and antidiabetic agents, statins, angiotensin II receptor 

antagonists, diuretics, and warfarin. Given the possibility that 

serum genistein levels at 54 mg per day could reach similar 

concentrations as the IC
50

 s for these two CYP450 isozymes, 

a pharmacokinetic study in postmenopausal women was 

initiated to determine the serum concentration achievable 

with the recommended therapeutic dose.

Results from isoflavone pharmacokinetic studies have 

been shown to vary with gender, concomitant food intake, 

and individual idiosyncrasy.49–51 Several single bolus 

mixed aglycone isoflavone studies have been performed 

from a food or supplement matrix. Setchell et  al found 

that administering a single bolus of genistein at 50  mg 

(n = 6) gave a T
max

 for total genistein of 5.2 hours, a C
max

 of 

341 ± 74 ng/mL (1.26 ± 0.27 µM), T
1/2

 of 6.78 ± 0.84 hours, 

and AUC of 4540 ± 1410 ng . h/mL, as determined by gas 

chromatography and mass spectroscopy analysis.52 Uncon-

jugated genistein was very low and reached a peak at about 

12.6 ng/mL ( approximately 0.047 µM). Similar results were 

obtained by Bloedon et al.53 The T
max

, C
max

, and AUC values 

from our study were probably greater than those found in 

previous studies due to the steady-state dosing regimen used 

in our protocol. Administration of approximately 35 mg of 

mixed genistein/daidzein over two and four weeks (n = 8) 

produced steady-state concentrations of 2 µM and 1.7 µM, 

respectively.54 Unconjugated genistein was not determined 

in this steady-state administration protocol. The total 

steady-state concentration is somewhat lower than what 

was observed in our study, but the difference may be due 

to the administration of a mixture of isoflavones rather than 
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pure genistein and the lower daily dose. Similar to what 

was observed in the present study, large standard deviations 

for T
max

 and C
max

 were found, suggesting the variability of 

bacterial flora in the gut or differences in enzyme content 

and/or in luminal cells in individual subjects, which can 

modify genistein.

Ullman et  al reported in a 14-day steady-state 

pharmacokinetic study using 60  mg of synthetic 

genistein (.98.5%, n  =  10) a total genistein C
max

 of 

929.2  ±  327.1  ng/mL (approximately 3.4  µM).55 The 

AUC was 13544.8 ± 7222.3 ng . hr/mL. T
max

 and T
1/2

 were 

6.0 ± 4.0 and 9.7 ± 6.9 hours. The observed T
max

, C
max

, and 

AUC for the Ullman study,55 using synthetic genistein of 

similar purity, was similar to our findings, but T
1/2

 values 

were more than double what we observed for total genistein. 

Differences in isoflavone absorption and secretion have 

been noted between men and women.51 There was a higher 

proportion of males (n = 8) to females (n = 2) in the Ull-

man et al study.55 This is in contrast with our study, which 

was performed in postmenopausal women. A head-to-

head study in equivalent populations is needed for proper 

comparison of naturally derived genistein and synthetic 

genistein to answer this question. Another study, in which 

30 mg of synthetic genistein (98.5%) was given daily for 

seven days to 12 subjects, showed a total genistein C
max

 

of approximately 500 ng/mL, with a steady-state AUC of 

about 5940 ng . hr/mL, a T
max

 of 5.3 hours, and a T
1/2

 of 

about 8.2 hours for the conjugated and about four hours 

for unconjugated genistein.56 More than likely, the C
max

 and 

AUC are reduced compared with the Ullman et al study of 

the same product,55 based on half the dose (30 mg versus 

60 mg) being administered.56 Differences in T
max

 and T
1/2

 

may be different due to the study containing all females56 

compared with the Ullman et al study.55

Although the maximal amount of circulating total 

genistein found in our pharmacokinetic study is close 

to the IC
50

 values for CYP2C8 and 2C9 determined by 

in vitro studies, over 95% of circulating genistein exists in 

conjugated forms which are excreted.37 The extent to which 

genistein metabolites inhibit various CYP450 isozymes is 

currently unknown, and purified standards are not currently 

available for this analysis. Little is known about the tissue 

distribution of unconjugated and conjugated forms to assess 

tissue-specific interactions.

Using a mouse uterine cytosolic estrogen competi-

tive binding analysis, Zhang et  al found that genistein 

had a 48-fold higher affinity for estrogen receptors than 

its glucuronides.57 Normally, tissue studies are performed 

if the serum concentration is high enough to cause a drug 

interaction to determine tissue-specific accumulation or 

effects. However, in this case, the unconjugated level of 

genistein did not reach a level to necessitate tissue studies. 

Further work is needed on the conjugated forms of genistein 

to determine if they truly have the potential for drug 

interactions. Finally, major drug interactions in populations 

which consume high levels of aglycone isoflavones from 

fermented foods do not exist.

Deficiencies in this study include the inability to guar-

antee absolutely the absence of all isoflavone-containing 

oral intake and the lack of suitable analyses for genistein 

conjugates, the availability of which would have allowed for 

a slightly more comprehensive evaluation of total potential 

genistein bioavailability.

Conclusion
Although this medical food formulation shows a potential 

for drug interactions in vitro, a steady-state pharmacokinetic 

study demonstrates that the serum concentration of genistein 

attained by daily dosing of 54 mg in postmenopausal women 

does not reach a level which poses a hazard. The intake of 

food with the formulation, although not statistically sig-

nificant, does seem to affect the uptake of genistein mini-

mally. Therefore, care must be taken not to consume large 

amounts of nutrients which compete for intestinal receptors 

binding genistein, in order to assure proper uptake and 

bioavailability.
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