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Background: Diabetes mellitus predisposes individuals to respiratory infections. The airway epithelial barrier provides defense 
against inhaled antigens and pathogens. Ezrin, is a component of the membrane-cytoskeleton that maintains the cellular morphology, 
intercellular adhesion, and barrier function of epithelial cells. This study aimed to explore the role of ezrin in airway epithelial barrier 
damage and correlate its expression and activation with diabetes mellitus.
Methods: This study was performed in a murine model of diabetes mellitus and with human bronchial epithelial BEAS-2B cells using 
real-time PCR, Western blotting, immunohistochemical and immunofluorescence staining. Ezrin was knocked down in BEAS-2B cells 
using siRNA. Ezrin phosphorylation levels were measured to determine activation status. The integrity of the airway epithelial barrier 
was assessed in vivo by characterizing morphological structure, and in vitro in BEAS-2B cells by measuring tight junction protein 
expression, transepithelial electrical resistance (TER) and permeability.
Results: We demonstrated that ezrin expression levels were lower in the lung tissue and airway epithelium of diabetic mice than those 
in control mice. The morphological structure of the airway epithelium was altered in diabetic mice. High glucose levels downregulated 
the expression and distribution of ezrin and connexin 43, reduced the expression of tight junction proteins, and altered the epithelial 
barrier characteristics of BEAS-2B cells. Ezrin knockdown had effects similar to those of high glucose levels. Moreover, a specific 
inhibitor of ezrin Thr567 phosphorylation (NSC305787) inhibited epithelial barrier formation.
Conclusion: These results demonstrate that ezrin expression and activation are associated with airway epithelial damage in diabetes 
mellitus. These findings provide new insights into the molecular pathogenesis of pulmonary infections in diabetes mellitus and may 
lead to novel therapeutic interventions for airway epithelial barrier damage.
Keywords: morphological structure, bronchial epithelial cells, high glucose, tight junction, gap junction

Introduction
Diabetes mellitus has become a global health problem due to associated complications over the past several decades.1,2 

The International Diabetes Federation estimates that the number of diabetic patients worldwide will increase to 
592 million by 2035. Diabetes mellitus predisposes the individual to respiratory infections. Hyperglycemia is an 
important risk factor for respiratory infections including COVID-193 and is associated with increased morbidity and 
mortality in patients with inflammatory respiratory disease.4–7 Therefore, understanding the mechanisms underlying 
respiratory infections caused by hyperglycemia is crucial in patients with diabetes mellitus. The airway epithelial barrier 
provides resistance to inhaled antigens and pathogens.8 Disruption of epithelial integrity is an important pathological 
characteristic of chronic airway inflammatory diseases.9 Our previous study reported that hyperglycemia induces 
dysfunction of the airway epithelial barrier in human airway epithelial cells.10 However, the mechanism by which 
high glucose concentration induces airway epithelial barrier dysfunction and contributes to respiratory infection is poorly 
understood.
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The epithelial integrity that protects multicellular organisms from the external environment is maintained by inter-
cellular junctional complexes and the orderly arrangement of the cytoskeleton.11,12 The ezrin–radixin–moesin (ERM) 
family can act as A-kinase anchoring proteins (AKAPs),13–15 building and maintaining the epithelial barrier by connecting 
transmembrane proteins to the actin cytoskeleton.16 Ezrin (AKAP78), a constituent of microvilli in regions containing 
densely packed actin filaments, regulates tissue architecture by influencing actin assembly.17 Ezrin has been implicated in 
microvillus formation, epithelial cell structure, and polarity.18 Moreover, ezrin plays a critical role in tubulogenesis and the 
migration of kidney epithelial cells during diabetes.19 In addition, ezrin expression is decreased in diabetic kidney glomeruli 
and controls actin reorganization and glucose uptake via the transporter GLUT1 in cultured podocytes.20

To better understand the pathogenesis of respiratory infections in diabetes mellitus, we hypothesized that alterations 
in ezrin are associated with breaches in the airway epithelium and that ezrin could be a potential biomarker for patients 
with respiratory infections and diabetes mellitus.

Materials and Methods
Animals
Briefly, db/db (C57BL/6J-Leprdb/Leprdb) (diabetic group) and age-matched non-diabetic db/+ (C57BL/6J-Leprdb/+) 
(control group) mice were purchased from the Model Animal Research Center of Nanjing University. All mice were 
housed in a specific pathogen-free facility with free access to food and water. Body weight and blood glucose levels were 
monitored weekly using an electronic scale and a glucometer, respectively. Mice were sacrificed at 18 weeks of age and 
the lungs were recovered. All experimental procedures were performed under the guidelines of the institutional Animal 
Care and Use Committee at Chongqing Medical University. All animal procedures were also approved by the Research 
Ethics Committee of Chongqing Medical University.

Lung Tissue Pathology
Right lungs were stored at –80 °C and used for the extraction of RNA and protein, while the left lungs were placed in 
10% formalin and used for hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and immunohisto-
chemistry. Paraformaldehyde was carefully rinsed from the left lung with phosphate buffer saline (PBS). Specimens were 
subjected to gradient dehydration and embedded in paraffin. Wax block embedding, HE and PAS staining were 
performed using standard methods.

Cell Culture
Immortalized human bronchial epithelial cells, BEAS-2B (ATCC [CRL-9609]), were maintained in bronchial epithelial 
cell growth medium (BEGM) with SingleQuot kit additives (Product # CC-3170, Lonza, Walkersville, MD, USA). Cells 
were cultured in serum-free BEGM, as previously described21 and treated with glucose (5 mM normal glucose [NG], ie 
physiological concentration,22 or 30 mM high glucose [HG]), or an osmotic control (5 mM glucose with 30 mM final 
concentration mannitol). Cells were treated with 3 μM NSC305787 (specific inhibitor of ezrin Thr567 phosphorylation, 
dissolved in dimethyl sulfoxide [DMSO]) or vehicle control (DMSO) for 6 h at 37 °C.23 BEAS-2B cells were cultured 
under normal or high glucose conditions for 72 h.

Immunohistochemistry
Formalin-fixed and paraffin-embedded lung sections were deparaffinized and endogenous peroxidases were inactivated 
with 3% H2O2. Then, sections were blocked with 3% BSA for 1 h and incubated with anti-ezrin primary antibody (Cell 
Signaling, 3145) at 4 °C overnight. The next day, the sections were washed thrice with PBS for 5 min each, incubated 
with secondary antibody for 1 h at room temperature, and developed using a DAB kit (Abcam). For quantitative analysis, 
the areas of ezrin staining was quantified using ImageJ software. Immunohistochemical staining was semi-quantitatively 
analyzed using the immunoreactive scoring system. The percentage of positive cells was graded on a scale of 0–4: (0: 
negative, 1:0–25%, 2:26–50%, 3:51–75%, 4:76–100%). The signal intensity was scored on a scale of 0–3: 0=negative; 
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1=weak; 2=moderate; and 3=strong. Thus, the final immunoreactive score = (score of staining intensity) × (score of 
percentage of positive cells).

Small Interfering RNA Preparation and Transfection
One day before transfection, BEAS-2B cells were plated in growth medium without antibiotics so that they were 50–80% 
confluent at the time of transfection. The cells were transfected with 0.5 μg/mL siRNA duplexes (either scrambled or 
ezrin) using FuGENE 6 according to the manufacturer’s instructions. The siRNA concentrations were chosen based on 
dose-response studies (data not shown).

Real-Time Polymerase Chain Reaction Analysis
Total RNA was extracted from BEAS-2B cells or lungs from each experimental group using TRIzol reagent. cDNA was 
generated using an iScript Complementary DNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). TaqMan qPCR assay reagents 
for ezrin, ZO-1, and occludin were obtained from Applied Biosystems. To determine relative mRNA expression levels, the 
comparative cycle of threshold (ΔΔCT) method was performed using the housekeeping gene GAPDH as an internal control.

Western Blotting
Western blotting analysis was performed on samples containing equal amounts of protein (20 µg) using 6% or 10% SDS- 
PAGE gels. The separated proteins were transferred onto polyvinylidene fluoride (PVDF) membranes. Nonspecific 
binding sites were blocked with 5% non-fat dry milk in Tris-buffered saline containing 0.1% Tween-20 (TTBS). 
Membranes were incubated overnight at 4 °C with ezrin (Cell Signaling, 3145), p-ezrin (Santa Cruz Biotechnology, 
sc-166858), ZO-1 (Cell Signaling, 13663), or occludin (Cell Signaling, 91131) antibodies. After washing with TTBS 
three times each for 10 min, membranes were incubated with an anti-rabbit secondary antibody conjugated with alkaline 
phosphatase. Blots were developed using an enhanced chemiluminescence reagent kit (Keygen, Nanjing, China) 
according to the manufacturer’s instructions.

Immunofluorescence and Confocal Laser Scanning Microscopy
BEAS-2B cells were seeded onto sterile coverslips and plated in 24-well plates. The cells from each group were fixed 
with 4% paraformaldehyde at 37 °C for 20 min, washed thrice with PBS, and permeabilized with 0.1% Triton X-100 for 
15 min. After washing thice with PBS, slides were blocked in 5% BSA for 1 h at room temperature and incubated with 
anti-ezrin (Cell Signaling, 3145) and anti-Cx43 antibodies (Santa Cruz Biotechnology, sc-271837) overnight at 4 °C. 
After washing thrice with PBS, the slides were treated with Alexa Fluor 488-labeled goat anti-rabbit IgG and Alexa Fluor 
647-labeled goat anti-mouse IgG for 1 h in the dark. The slides were rinsed thrice with PBS, mounted with 50% glycerol, 
and stored in the dark. Immunofluorescence was examined using a Leica Sp2 confocal microscope.

Transepithelial Electrical Resistance (TER) Measurement
Cells were seeded in the upper chamber of transwell tissue culture plates (12-mm diameter, 0.4-µm pore size, Costar) and 
allowed to reach confluence. The TER of the cells grown on the filters was measured using an epithelial voltmeter coupled 
to an A/N converter, monitored using PowerLab software (Chart for Windows, v4.0 AD Instruments) with one acquisition 
every 0.5 s. The background electrical resistance attributed to the fluid and blank transwell filter was subtracted from the 
measured TER. The TER measurements were normalized to the area of the monolayer and are expressed in Ω · cm2.

Permeability Assay
Permeability measurements were performed as described previously.24 BEAS-2B cells were seeded at a density of 5×105 

cells/cm2 on the apical surface of 12-transwell culture plates, with 0.4 µm polyester filters. Rhodamine B isothiocyanate 
(RITC)-labeled dextran 70S (Sigma) was added to the cells (50 µL at 100 mM). Over the next 3 h, 50 µL media was 
sampled from the lower compartments at 30 min intervals and analyzed on a SpectraMax Gemini EM fluorescent plate 
reader with an excitation wavelength of 530 nm and an emission wavelength of 590 nm. Epithelial permeability was 
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calculated as the percentage of RITC-dextran 70S detected in the bottom chamber over that in the top chamber per unit 
filter surface area (cm2) per unit time (s).

Statistical Analyses
All statistical analyses were performed using GraphPad Prism 6.0 Software. Values are reported as mean ± SD. Statistical 
analysis was performed using the Mann–Whitney U-test, one-way analysis of variance, or Student’s t-test. Statistical 
significance was set at p < 0.05.

Results
Ezrin Expression in Lungs and Airway Epithelium Was Decreased in a Murine Model of 
Diabetes Mellitus
The lungs of diabetic mice and non-diabetic controls were collected to investigate the effect of diabetes mellitus on ezrin 
expression. Mice deficient in the leptin receptor (db/db) exhibited significantly higher blood glucose concentrations 
(Figure 1A) and were heavier (Figure 1B) than mice in the control group. Ezrin mRNA expression in the lungs of the 
diabetic mice, detected by real-time PCR, was lower than that in the control mice (Figure 1C). Similarly, Western blotting 
revealed that ezrin protein levels were lower in the diabetic mouse lungs (Figure 1D). Immunohistochemical staining 
showed decreased ezrin protein in the airway epithelium of diabetic compared with non-diabetic mice (Figure 1E and F).

The Morphological Structure of Airway Epithelium Was Altered in the db/db Murine 
Model of Diabetes Mellitus
To examine the effects of hyperglycemia on the morphological structure of the airway epithelium, we used HE and PAS 
staining. Hyperglycemia clearly caused thickening of the tracheal wall (Figure 2A). Compared with the control group, 
goblet cell metaplasia was significantly increased in the airways of the diabetic mice (Figure 2B). These results indicate 
that hyperglycemia does alter the morphological structure of the airway epithelium.

Down-Regulation of Ezrin by High Glucose Concentration Decreased the Expression 
of Tight Junction Proteins in Human Bronchial Epithelial Cells
To determine the relationship between high glucose and ezrin expression, cells were treated with 30 mM glucose 
compared with physiological glucose (5 mM). The expression of ezrin mRNA and protein was detected by Western 
blotting (Figure 3A) and real-time PCR (Figure 3B), respectively. Treatment with high glucose decreased both ezrin 
mRNA and protein expression in human bronchial epithelial cells. Ezrin siRNA had inhibitory effects on ezrin 
expression similar to those observed with high glucose.

To investigate whether tight junction proteins were regulated by high glucose concentrations, ZO-1 and occludin 
protein and mRNA levels were detected by Western blotting (Figure 3C) and real-time PCR (Figure 3D) respectively. 
High glucose levels led to a significant decrease in the expression of ZO-1 and occludin compared to the normal glucose 
group. To determine whether ezrin downregulation affects ZO-1 and occludin expression, BEAS-2B cells were trans-
fected with ezrin siRNA or scrambled siRNA. Cells transfected with ezrin siRNA showed a significant decrease in ezrin 
gene expression and protein production, whereas transfection with scrambled siRNA did not affect ezrin levels. As in the 
high glucose-treated cells where ezrin was decreased, the expression of ZO-1 and occludin decreased in cells transfected 
with ezrin siRNA. Transfection with scrambled siRNA had no inhibitory effect on ZO-1 or occludin expression in 
BEAS-2B cells.

Ezrin Regulated the Distribution of Cx43 Under High Glucose in BEAS-2B Cells
To examine the presence and localization of ezrin and Cx43 in airway epithelial cells, BEAS-2B bronchial epithelial cells 
were stained for ezrin and Cx43 and immunofluorescence was examined by confocal microscopy (Figure 4). 
Immunostaining showed that ezrin was abundantly expressed and colocalized with Cx43 in this cell line. A high glucose 
concentration or ezrin silencing decrease Cx43 expression and colocalization in these bronchial epithelial cells.
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A High Glucose Concentration Inhibited Ezrin Phosphorylation in Human Bronchial 
Epithelial Cells
To explore the effects of high glucose levels on ezrin phosphorylation, a specific inhibitor of ezrin Thr567 phosphoryla-
tion (NSC305787) was used. The protein levels of p-ezrin (Figure 5A) and ezrin (Figure 5B) were measured by Western 
blotting. High glucose significantly decreased levels of p-ezrin and ezrin levels. The amount of p-ezrin was decreased by 
treatment of the cells with NSC305787, similar to high glucose treatment, indicating that phosphorylation of ezrin at 
Thr567 was decreased. The overall level of ezrin was not affected by NSC305787 or DMSO.

Figure 1 Ezrin expression is decreased in db/db mouse model of diabetes mellitus. (A) Blood glucose concentration and (B) weight of mice in the control and diabetes 
groups (n=6 each). Ezrin mRNA and ezrin protein expression in the lungs were detected by (C) real-time PCR and (D) Western blot analysis, respectively (n=6). Ezrin 
protein expression in airway epithelium of diabetic and control mice was examined by (E and F) immunohistochemical staining (n=6) and Representative images (black 
arrows indicate ezrin expression in airway epithelium). Staining was analyzed by ImageJ software (scale bar = 50 μm, original magnification, ×200) and results are expressed 
as fold-change diabetic versus control group. **P<0.01.
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Airway Epithelial Transepithelial Electrical Resistance and Permeability Were 
Modulated by Down-Regulation of Ezrin Induced by High Glucose in Human Bronchial 
Epithelial Cells
To determine whether high glucose and ezrin downregulation alter cell barrier characteristics, functional integrity, and 
permeability were evaluated using TER (Figure 6A) and permeability assays (Figure 6B), respectively. BEAS-2B cells 
grown in high glucose showed decreased cell monolayer TER and increased cell permeability compared to cells grown in 
physiological concentrations of glucose. Cells transfected with ezrin siRNA showed reduced ezrin expression, signifi-
cantly decreased cell monolayer TER, and increased cell permeability compared with those transfected with scrambled 
siRNA. Transfection with scrambled siRNA had no inhibitory effect on cell monolayer TER or permeability of BEAS-2B 
cells.

Discussion
We demonstrated that ezrin expression was reduced in the lung tissue and airway epithelia of diabetic mice and the 
morphological structure of the airway epithelium was altered compared to that in control mice. These results indicate that 
hyperglycemia may be responsible for these changes and that ezrin, a crosslinker protein between membrane proteins and 

Figure 2 The morphological structure of airway epithelium is altered in the db/db murine model of diabetes mellitus. Airway epithelia in lungs of control and diabetic mice 
were stained with (A) HE (black arrows indicate the tracheal wall, original magnification, ×400) and (B) PAS (black arrows indicate goblet cell metaplasia in the airway 
epithelium, original magnification, ×400).

https://doi.org/10.2147/JIR.S449487                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 2614

Yu et al                                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


actin filaments, may play a critical role in this process. To explore the role of ezrin in hyperglycemia-induced airway 
epithelial damage we used human bronchial epithelial BEAS-2B cells. We demonstrated that high glucose downregulated 
ezrin levels in these cells. High glucose treatment, or knockdown of ezrin using siRNA had similar effects on these cells 
that could account for epithelial damage: These conditions decreased the expression of tight junction proteins (ZO-1 and 
occludin) and altered cell barrier characteristics (TER and permeability), suggesting that ezrin plays an important role in 
hyperglycemia-induced airway epithelial damage. Moreover, we discovered that a specific inhibitor of ezrin Thr567 
phosphorylation (NSC305787) showed detrimental effects on cell barrier functions (TER and permeability), similar to 
those of high glucose concentrations in human bronchial epithelial cells. These results demonstrate that decreased ezrin 
levels and the inhibition of ezrin phosphorylation due to hyperglycemia may cause airway epithelial damage in diabetes 
mellitus.

The respiratory epithelium is the major boundary between the environment and the host. Sophisticated barrier 
functions, sensing, immune regulatory, and antimicrobial mechanisms are involved in maintaining homeostasis and 
defending the lungs against extraneous substances and pathogens.25 The essential components that contribute to the 
function of the airway epithelial barrier include mucociliary escalators,26 intercellular tight and adherens junctions that 

Figure 3 Downregulation of ezrin by high glucose levels decreases tight junction proteins in human bronchial epithelial cells. (A and B) Ezrin mRNA and protein expression 
was examined by Western blotting and real-time PCR, respectively. (C and D) The expression of ZO-1 and occludin was detected by Western blotting and real-time PCR. 
BEAS-2B cells were pretreated with 100 mM ezrin siRNA or scrambled siRNA and/or stimulated with normal glucose (NG, 5 mM) or high glucose (HG, 30 mM). The HG 
results were expressed as fold-change over the NG group. **P<0.01. Figure is representative of n=3.
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Figure 4 Distribution of ezrin and Cx43 under high glucose conditions in BEAS-2B cells. (A–C) The distribution of ezrin and Cx43 in cells was observed by 
immunofluorescence (original magnification, ×600). BEAS-2B cells were pretreated with 100 mM ezrin siRNA or scrambled siRNA and/or stimulated with normal glucose 
([NG], 5 mM) or high glucose (HG, 30 mM). The results are expressed as fold-change versus the NG group. **P<0.01. This figure is representative of n=3.
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regulate epithelial paracellular permeability,27 and secreted antimicrobial products that kill inhaled pathogens.28 

Therefore, impairment of epithelial paracellular permeability leads to barrier dysfunction in the airway epithelium. 
Diabetes has often been identified as an independent risk factor for respiratory infection. Previous studies have reported 
that high glucose levels induce endothelial barrier dysfunction in diabetic retinopathy and in brain.29–31 In the present 
study, we examined airway epithelial paracellular permeability to explore the effects of hyperglycemia on the barrier 
function of the airway epithelium. Hyperglycemia damages the integrity and permeability of airway epithelium both 
in vivo and in vitro. These results indicate that hyperglycemia may damage the airway epithelial barrier, leading to 
epithelial barrier dysfunction.

Ezrin is considered a key regulator of airway cells that modulates membrane-cortex interactions.32 It was initially 
identified as a crosslinker between the plasma membrane and cortical cytoskeleton.33 Based on its localization and 
protein-binding activity, ezrin is involved in regulating a variety of cellular processes, including cell polarity,34 epithelial 

Figure 5 High glucose levels inhibit ezrin phosphorylation in human bronchial epithelial cells. The expression levels of p-ezrin and ezrin were detected using (A and B) 
Western blot analysis. BEAS-2B cells were treated with 3 μM of NSC305787 or vehicle control (DMSO) for 6 h at 37 °C and/or stimulated with normal glucose (NG, 5 mM), 
or high glucose (HG, 30 mM). The results were expressed as fold-change versus the NG group. **P<0.01, #P>0.05. Figure is representative of n=3.

Figure 6 TER and permeability are regulated by decreased ezrin levels in human bronchial epithelial cells. Functional integrity and permeability of a BEAS-2B cell layer was 
evaluated by measuring (A) TER and (B) permeability. BEAS-2B cells were treated with 3 μM NSC305787 or vehicle control (DMSO) for 6 h at 37 °C and/or stimulated with 
normal glucose (NG, 5 mM), or high glucose (HG, 30 mM). The results were expressed as fold-change versus the NG group (5 mM). **P<0.01, #P<0.01. Figure is 
representative of n=3.
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morphology,17 and cell-cell and cell-substrate adhesion,35,36 all of which are essential for maintaining epithelial barrier 
integrity. Ezrin may participate in bronchial epithelium repair during the early stages of asthma.32 Ezrin knockdown in 
mice leads to the suppression of ciliary beating activated by procaterol, without changes in ciliary morphology and basal 
body orientation in the airway epithelium.37 Previous studies reported that ezrin may play a role in the development of 
renal complications in diabetes.19,20 The present study showed that high glucose concentrations decrease ezrin expression 
in diabetic mice (in vivo) and human bronchial epithelial cells (in vitro). These results demonstrate that ezrin, 
a crosslinker of the plasma membrane and cortical cytoskeleton, may participate in hyperglycemia-induced damage to 
the airway epithelial barrier.

Ezrin acts as a crosslinker between membrane proteins and actin filaments via scaffold proteins.38 The epithelium is 
a highly regulated and impermeable barrier maintained exclusively by tight junctions.39 Tight junctions are composed of 
integral membrane proteins such as claudins, occludin, and junctional adhesion molecules, as well as peripheral 
membrane proteins, including zonula occludens (ZO), scaffold proteins that contain 3 PDZ domains.11 Ezrin acts as 
a marker of epithelial damage in asthma, and ZO-1 is decreased in the lungs of mice with allergic asthma.40 Human ZO-1 
is used clinically to monitor morphological changes and permeability of the bronchial epithelium in respiratory 
diseases.41 Tight junctions interact with the cytoskeleton via numerous adaptor proteins and form impermeable mechan-
ical barriers. Loosening of tight junctions between airway epithelial cells increases the transepithelial glucose gradient, 
hyperglycemia increases the glucose concentration of the airway surface liquid, and the airway defense against infection 
may be dampened, resulting in lung bacterial overgrowth in diabetes mellitus.42 In the present study, high glucose 
concentrations decreased ZO-1 and occludin expression in human bronchial epithelial cells. Ezrin knockdown had similar 
effects on the expression of these tight junction proteins, suggesting that ezrin plays an important role in high glucose- 
induced epithelial injury.

Gap junctions ensure direct cell-to-cell transfer of short peptides, ions, nucleotides, sugars, and second messengers.43 

Controlling gap junction coupling is a necessary for cellular function and the response to internal and external stimuli. 
Cx43 is the major connexin and the most widely distributed connexin in airway epithelial cells44–46 Cx43-mediated gap 
junction intercellular communication coordinates a signaling network that modulates airway surface liquid volume in 
human bronchial epithelial cells.45 Regulation of Cx43 expression has been associated with a wide variety of patholo-
gical conditions and diseases, including dysfunction of the diabetic retinal vasculature, diabetic nephropathy, and diabetic 
skin conditions.46,47 Ezrin is the only ezrin-radixin-moesin (ERM) family member involved in the control of gap junction 
gating. Ezrin regulates gap junction opening and forms a supramolecular complex with Cx43 which, in an epithelial liver 
cell line, facilitated the regulation of intercellular communication.48,49 Although previous studies have suggested that 
ezrin and Cx43 play important roles in the process of diabetic dysfunction, little is known about the regulation of Cx43 
by ezrin in the airway epithelium under high-glucose conditions, or how perturbed ezrin-Cx43 interactions lead to 
dysfunction of the airway epithelial barrier which contributes to respiratory infections. In the present study, ezrin was 
found to be co-distributed with Cx43 in BEAS-2B cells. We demonstrated a central role of ezrin in Cx43 localization 
under high glucose conditions in human airway epithelial cells.

The effects of ezrin are mediated by interactions between its N- and C-terminal domains that maintain ezrin in 
a dormant, inactive state: Binding sites for membrane proteins located in the FERM domain and the binding site for actin 
filaments located in the C-terminal domain are masked in this closed conformation.50,51 Ezrin is activated by phosphor-
ylation, which disrupts the intramolecular interactions between the N- and C-terminal domains and allows the N-terminal 
domain to interact with membrane receptor complexes and the C-terminal domain to interact with F-actin.16 Thus, the 
interaction between ezrin and other proteins is facilitated by the phosphorylation of multiple domains by various 
kinases.52 Phosphorylated ezrin plays a crucial role in the development of diabetic complications,53 regulation of cystic 
fibrosis transmembrane regulator (CFTR) in airway epithelial cells,54 and maintenance of tight junction organization and 
barrier function in cystic fibrosis airway epithelial cells.55 In the present study, the culture of airway epithelial cells in 
high glucose inhibited ezrin phosphorylation and disrupted cell barrier characteristics (TER and permeability). A specific 
inhibitor of ezrin Thr567 phosphorylation (NSC305787) showed similar inhibitory effects on ezrin phosphorylation and 
cell barrier characteristics (TER and permeability). Thus, high glucose levels may damage the airway epithelium by 
decreasing ezrin expression and inhibiting its activation.
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The present study had some limitations. First, the signaling mechanisms involved in airway epithelial barrier damage 
in diabetes mellitus required further exploration. Second, ideal cell culture conditions should include an air-liquid 
interface, since this type of culture system is more representative of the airway epithelial barrier that exists in vivo. 
An air-liquid interface will be used in future research on the airway epithelial barrier.

Conclusion
We have shown that high levels of glucose decrease ezrin expression and inhibit ezrin phosphorylation, resulting in 
changes in tight junction proteins and damage to the airway epithelial barrier in vivo and in vitro. These findings are 
especially important because hyperglycemia is closely linked to chronic inflammatory airway diseases. Therefore, the 
regulation of ezrin expression is an ideal goal for reducing pathological effects associated with chronic inflammatory 
airway diseases related to diabetes mellitus. Our findings expand the current knowledge of the molecular mechanisms 
underlying the relationship between chronic inflammatory airway disease and diabetes mellitus. This novel recognition of 
the central role of ezrin regulation is a potential new therapeutic approach for chronic inflammatory airway disease 
associated with diabetes mellitus.
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