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Abstract: Diabetic kidney disease (DKD), is a common microvascular complication and a major cause of death in patients with 
diabetes. Disorders of immune cells and immune cytokines can accelerate DKD development of in a number of ways. As the kidney is 
composed of complex and highly differentiated cells, the interactions among different cell types and immune cells play important 
regulatory roles in disease development. Here, we summarize the latest research into the molecular mechanisms underlying the 
interactions among various immune and renal cells in DKD. In addition, we discuss the most recent studies related to single cell 
technology and bioinformatics analysis in the field of DKD. The aims of our review were to explore immune cells as potential 
therapeutic targets in DKD and provide some guidance for future clinical treatments. 
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Introduction
The prevalence of diabetes in people aged between 20 and 79 years worldwide was forecast to be 10.5% in 2021 and is 
expected to rise to 12.2% by 2045.1–4 Diabetic kidney disease (DKD), a chronic kidney disease resulting from diabetes, 
is defined by persistent proteinuria and ongoing deterioration in renal function, and affects 20% to 50% of patients with 
diabetes.5 DKD is the main cause of end-stage renal disease (ESRD) and among the most common microvascular 
complications of diabetes.6–9 Glomerular hypertrophy, tubulointerstitial inflammation, fibrosis, and glomerulosclerosis 
are pathological conditions caused by metabolic alterations associated with diabetes.10–15

DKD has a complicated and multifaceted pathogenesis, involving a combination of oxidative stress, the renin-angiotensin- 
aldosterone system (RAAS), the immune system, and inflammation.16 The conventional view is that DKD is a non-immune, 
metabolic, or hemodynamic glomerular disease caused by hyperglycemia, however research, has discovered that proinflam-
matory cytokine release and low-grade inflammation, both systemic and local, which are mainly due to inflammation driven 
by the innate immune system, are linked to DKD onset and progression.17 Abnormal metabolic states such as hyperglycemia 
and hyperinsulinemia lead to damage to the glomerular filtration membrane and apoptosis of renal tubular epithelial cells 
(TECs), and these passive effects elicit a response from the immune system.18–21 Immune cells recognize damage to kidney 
cells and release various cytokines to further promote the inflammatory response, driving kidney structure remodeling and 
interstitial fibrosis.17,22 Macrophages are a major class of innate immune cells, while T cells are important for adaptive 
immunity. Numerous experimental models of DKD and clinical trials have revealed the infiltration and activation of 
T lymphocytes and macrophages in the kidney.23–27

The number of individuals with ESRD resulting from DKD is rising annually, despite notable therapeutic advances,28 

these patients require dialysis and kidney transplantation. The immune system contributes significantly to DKD; 
however, more research is needed to determine the exact mechanism by which immunity mediates the condition.
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Role of the Immune System in DKD
The immune system comprises innate and adaptive arms. There are various classes of pattern recognition receptors 
(PRRs) in the innate immune system, such as nucleotide-binding NOD-like receptors (NLRs) and membrane-bound Toll- 
like receptors (TLRs), which recognize pathogen-associated molecular patterns (PAMPs) and danger-associated mole-
cular patterns (DAMPs) in both extracellular and intracellular contexts.17 Unlike the adaptive immune system, the innate 
immune system recognizes endogenous danger signals by recognizing DAMPs, in addition to microbial byproducts, and 
can identify and eradicate the majority of microorganism-caused damage in a matter of minutes or hours.29 Rapid-acting 
cells of the innate immune response comprise granulocytes, mast cells, macrophages, and dendritic cells (DCs). 
Conversely, specificity, diversity, and memory are critical characteristics of the adaptive immune response, which 
differentiates self from non-self through specialized defense mechanisms involving specific recognition molecules.30 

The primary cellular components of the adaptive immune system are T and B cells.
The innate immune system has a vital role in DKD pathogenesis. Prolonged exposure to high levels of blood glucose 

and advanced glycation end products (AGEs) results in injury or death of renal cells, leading to the release of DAMPs 
into the extracellular space. This danger signal is recognized by PRRs like TLRs (TLR2 and TLR4), NLRs, protease- 
activated receptors in the kinin-kallikrein system, the complement cascade, and other cell surface receptors. Activating 
these receptors triggers an inflammatory response in kidney-associated cells, while kidney injury leads to entry of 
monocytes from the bone marrow into the circulation, which differentiate monocytes into inflammatory macrophages and 
an increase in adhesion molecule expression on vascular endothelial cells. Further, the process of macrophage infiltration 
into damaged kidneys amplifies the inflammatory response. As signaling pathways, including transforming growth 
factor-β (TGF-β), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-B (NF-κB), are activated, chronic 
and unresolved nephritis develops into progressive renal fibrosis31 (Figure 1). The complement system is crucial in innate 
immune defense via interactions with PRRs and drives inflammation. Glycosylation-induced inactivation of CD59 and 
hyperglycemia-induced activation of complement signaling combine to increase membrane attack complex deposition in 
tissues, which, in turn, activates intracellular signaling pathways leading to the release of proinflammatory cytokines and 
growth factors.32 There is growing evidence that the complement system contributes to DKD development. Additionally, 
complement activation can be used to identify patients at risk of this complication and serves as a target for therapy.33

Figure 1 Immune cells are involved in DKD development. 
Abbreviations: AGEs, advanced glycation end products; DAMPs, danger-associated molecular patterns; PRRs, pattern recognition receptors; TLR, Toll-like receptors; NLR, 
NOD-like receptors; NF-κB, nuclear factor kappa-B; TGF-β, transforming growth factor-β; MAPK, mitogen-activated protein kinase; NLRP3, nucleotide-binding domain, 
leucine-rich repeat, and pyrin domain-containing protein 3.
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The adaptive immune system mainly functions through T and B cell activity. The kidneys of patients with type 2 
diabetes mellitus (T2DM) have elevated activated T cell infiltration relative to those of nondiabetic patients, which is 
correlated with the degree of proteinuria in these patients.34 Further, increases in the percentage of Th17 cells and 
decreases in regulatory T cell (Treg) levels have been discovered in the blood of patients with type 1 diabetes; this 
disruption of the Treg/Th17 balance may exacerbate the development of microvascular complications of diabetes.35 

Further, there is evidence implying that synergistic interaction of the adaptive immune system with specific inflammatory 
cytokines may be a fundamental element in the development of diabetic kidney damage.23 Additional research into the 
interactions between T cells and other immune cells in DKD, as well as examination of the differentiation and function of 
different T cell subpopulations in the context of dysregulated immune homeostasis, is necessary. Such research will be 
crucial for improving disease prediction and treatment.

Role of Immune Cells in DKD
Macrophage
Macrophages are major immune cells that infiltrate the kidneys in DKD, and their recruitment and activation promote the 
development of sclerosis and renal injury in individuals with diabetes.36 Further, activation of infiltrating and resident 
macrophages in the diabetic kidney leads to renal fibrosis and inflammation in the glomerular and tubulointerstitial 
compartments.37 Resident macrophages, which act as gatekeepers in the activation or inhibition of immunological 
responses, are rapidly activated by stimulation, and contribute significantly to DKD by producing cytokines and 
chemokines, attracting peripheral monocytes and macrophages, intensifying renal-associated cellular damage, and 
transforming into macrophage-myofibroblasts.38

Macrophages can be broadly categorized into M1 and M2 types according to their function and activation state. In the 
initial phases of renal damage, proinflammatory cytokines, DAMPs, PAMPs, and interferon gamma (IFN-γ) activate 
macrophages, initiating their transformation into a cells with an M1 phenotype, which are proinflammatory and react to 
cell damage.39 M1 macrophages contribute to inflammation by producing inducible nitric oxide synthase, as well as 
enhancing tissue inflammation and injury via the secretion of proinflammatory cytokines. Conversely, M2 macrophages 
reduce inflammation and promote fibrosis and wound repair.40 The M1/M2 macrophage ratio varies dynamically as DKD 
progresses through different phases. Renal biopsies revealed that, in the early stages of DKD (stages I and IIa), M1 
macrophages are recruited to the kidney. The M1/M2 macrophage ratio peaks in the early stage of DKD and drops to 
a minimum later in the disease (stage III), when M2 macrophages become dominant.41 In renal samples from patients 
with DKD, glomerular CD163+ (an M2/anti-inflammatory marker) macrophages are positively correlated with DKD 
grade, interstitial fibrosis, tubular atrophy, and glomerulosclerosis.36

The regulation of macrophage recruitment and activation in DKD is a complex process involving various mechan-
isms. High glucose levels promote M1 macrophage transformation and podocyte apoptosis while reducing Sirt6 
expression. Conversely, the overexpression of Sirt6 enables podocyte protection through M2 macrophage activation.42 

Factors such as hyperglycemia, oxidative stress, and DAMPs promote the activation of the nucleotide-binding domain, 
leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome in macrophages, leading to the 
production and release of inflammatory cytokines, such as Interleukin-1 Beta (IL-1β) and Interleukin-18 (IL-18), which 
exacerbate the inflammatory response. NLRP3 knockout (KO) mice exhibit improved renal function, reduced glomerular 
hypertrophy, glomerulosclerosis, and inflammation under diabetic conditions.43 CAY10603, as a specific inhibitor of 
HDAC6 (histone deacetylase 6), significantly reduces pyroptosis in macrophages by suppressing the activation of the 
NLRP3 inflammasome, thereby demonstrating its therapeutic potential in the treatment of DKD.44 Bruton’s Tyrosine 
Kinase (BTK), an essential factor in immunomodulation, is activated in the kidneys of patients with DKD, and this 
activation correlates with proteinuria, creatinine levels, estimated glomerular filtration rate (eGFR), and progression of 
renal pathological changes.45 BTK KO in a mouse model has been shown to alleviate diabetic kidney damage, 
characterized by reduced urinary protein and decreased kidney inflammation, which is associated with reduced activation 
of the NLRP3 inflammasome in macrophages.45 A BTK inhibitor (PCI-32765) blocks macrophage-generated MAPK and 
NF-κB pathways, countering the pro-inflammatory consequences of high glucose,46 suggesting that it has potential as an 

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S457526                                                                                                                                                                                                                       

DovePress                                                                                                                       
2105

Dovepress                                                                                                                                                             Peng et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


immunosuppressant against DKD-induced inflammation, particularly hyperglycemia-induced responses. Variants of the 
gene encoding tonicity-responsive enhancer-binding protein (TonEBP) are robustly associated with inflammation and 
renal function in healthy populations. Furthermore, TonEBP mediates pro-inflammatory activation and macrophage 
migration induced by hyperglycemia in a DKD mouse model, leading to increased inflammation and renal injury.47

There is significant deposition of ApoC1 in the glomeruli of kidneys from patients with DKD, and ApoC1 over-
expression can increase TNF-α and TGF-β cytokine-induced glomerulosclerosis in macrophages.48 Glycosphingolipid 
expression is also increased in DKD kidneys, which mediates inflammatory responses by enhancing TLR4 in human 
monocytes and mouse bone marrow-derived macrophages.49 Serum mannose-binding lectin (MBL) is a complement- 
activated molecule that recognizes carbohydrates and is associated with DKD. MBL triggers inflammation in macro-
phages by activating the NF-κB pathway and promotes macrophage, conversion to the M1 phenotype, independently of 
the complement lectin pathway.50 P2X7R is among multiple adenosine-5’-triphosphate-activated receptors; is expressed 
in macrophages, mesangial cells, and other cell types; and regulates MCP-1 secretion in cell models. Renal biopsy 
samples from patients with DKD exhibit high P2X7R expression levels, and mesangial P2X7R activation can stimulate 
early glomerular macrophage recruitment and prioritize activation of M1-polarized pro-inflammatory macrophages. 
A selective P2X7R inhibitor has potential to reduce renal macrophage accumulation, provide renal protection, and 
become a therapeutic agent in the future.51

Immune cells, particularly macrophages, and intrinsic renal cells interact closely in DKD to promote disease 
progression (Figure 2). In diabetes, the conditions of high glucose, AGEs, and albumin levels lead to increased 
heparinase expression in glomerular cells, where heparinase stimulates macrophage-mediated inflammation, leading to 
chronic kidney injury.52 Hence, heparinase is associated with macrophage activation, chronic inflammation, and kidney 
injury in diabetes. In DKD kidneys, IL-1β is mainly derived from renal TECs, which promote macrophage polarization 
towards a pro-inflammatory M1 phenotype and secretion of IL-6, leading to sodium retention and salt sensitivity.18 M1 

Figure 2 Interactions of immune and renal cells. 
Abbreviations: Tim-3, T-cell immunoglobulin structural domain and mucin structural domain-3; TNF-α, tumor necrosis factor-alpha; Sirt6, sirtuin 6; Atg9b, autophagy- 
related protein 9B; A20, tumor necrosis factor alpha-induced protein 3; DR5, death receptor 5; IL-6, interleukin-6; HIF-1α, hypoxia-inducible factor 1-alpha; IL-17, 
interleukin-17; IFN-γ, interferon gamma; NETs, neutrophil extracellular traps; TGF-β, transforming growth factor-β.
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macrophages accelerate cellular senescence by inducing elevated reactive oxygen species levels and p38 MAPK 
signaling activation in human renal glomerular endothelial cells.53 Plasma growth hormone (GH) levels are increased 
in individuals with type 1 diabetes, and GH-stimulated podocytes have the potential to cause macrophage accumulation 
by secreting TNF-α and prompting macrophage migration, potentially serving as an independent factor mediating DKD 
progression in patients with type 1 diabetes.54 In diabetic mice, a reduction in angiotensin II type 1 receptor-associated 
protein within the renal tubules results in hyperactivation of the tubular angiotensin II type 1 receptor signaling/RAAS 
system, while CD206 expression, which is considered a marker of M2 macrophages, is decreased in the renal tubular 
interstitium. Tubulo-glomerular crosstalk leads to increased levels of TNF-α and oxidative stress components in the 
glomerulus, as well as exacerbation of tubular hypertrophy and podocyte injury.55 T-cell immunoglobulin structural 
domain and mucin structural domain-3 (Tim-3) are a negative regulator of Th1 immunity and have complex roles in 
regulating macrophage activation. Increased Tim-3 expression in renal macrophages through activation of the NF-κB/ 
TNF-α pathway was found in patients with DKD and diabetic mice, as well as damaged podocytes.56 The knockout of 
angiopoietin-like protein 3 alleviates podocyte epithelial–mesenchymal transition and injury in DKD by promoting the 
transformation of M1 to M2 macrophages, inhibiting NLRP3 inflammasome activation, and suppressing IL-1β release.57

Non-coding RNAs and exosomes contribute to the interactions between kidney cells and macrophages in DKD. 
Elevated concentrations of miR-19b-3p in urine exosomes are correlated with tubulointerstitial inflammation in patients 
with DKD. Furthermore, damaged renal TECs communicate with macrophages through the exosome/miR-19b-3p/ 
SOCS1 axis, leading to M1 macrophages activation and exacerbation of tubulointerstitial inflammation.58 Macrophage 
infiltration around lipotoxic renal TECs has also been detected in patients with DKD, and lipotoxic TEC-derived 
extracellular vesicles (EV) activate the inflammatory phenotype of macrophages and induce production of macrophage- 
derived EV, which can induce TEC apoptosis by a death receptor 5 (DR5)-dependent process.19 Furthermore, miR-21-5p 
in macrophage-derived EV can regulate A20 and cause podocyte injury.59 High levels of proteinuria can stimulate the 
expression of inflammatory and fibrotic genes in DKD, by increasing HIF-1α-induced glycolysis in renal macrophages, 
through enhancement of EV production by renal TECs.60 Macrophage-derived exosomes stimulated by high glucose 
(HG-exo) cause renal mesangial proliferation and extracellular matrix (ECM) accumulation. HG-exo induces dysfunction 
and inflammation in mouse TECs by carrying excess miR-7002-5p and inhibits autophagy by targeting Atg9b.61 

Glomerular mesangial cells (GMCs) are involved in DKD development by promoting NLRP3 inflammasome activation 
and autophagy defects in response to high glucose-treated macrophage-derived exosomes.62 Furthermore, Epsin1 
mediates the activation of exosome sorting induced by Dll4 and Notch1, to regulate tubular macrophage crosstalk in 
DKD.63 In contrast, miR-93-5p and TLR4 expression are upregulated by exosomes released by M2 macrophages, which 
reduces LPS-induced podocyte apoptosis.64 M2 macrophages also ameliorate high-glucose-mediated podocyte injury by 
suppressing DUSP1 expression, secreting exosomes containing miR-25-3p, and activating cellular autophagy.65

T Cells
T lymphocytes are classified into CD4 and CD8 subpopulations, based on cell surface markers, and have vital functions 
in pathogen removal and host defense. Based on their cytokine profiles and functional roles, CD4+ T cells can be further 
subdivided into T helper (Th) cells and Tregs. Antigens in the context of class I major histocompatibility (MHC-I) 
molecules are specifically recognized by CD8+ T cells, which mainly function as cytotoxic T cells. CD8+ and CD4+ 

T cells are defined as conventional T cells; however, unconventional T cells, that respond rapidly upon encountering 
antigen, are also present in the kidney, including mucosa-associated invariant T, natural killer T and γδ T cells.66 

Additionally, a class of T cells known to reside in the kidney has been identified as tissue-resident memory (TRM) 
T cells, which are the most prevalent subpopulation of memory T cells.67 These different T cell subtypes regulate one 
another in various ways and work together to maintain immune homeostasis in the kidney.

T cells, and their activation markers, are actively expressed in the periphery and kidney in DKD. Kidneys from 
diabetic mice have significantly increased levels of CD3+ T cells, which generate TNF-α and IFN-γ. BTBR ob/ob mice 
have a phenotype similar to advanced human DKD, with increased infiltration of T lymphocytes (CD3+, CD 4+, and γδ 
lymphocytes) and increased expression of Th17 drivers, such as IL-6, observed in their kidneys.28 Furthermore, patients 
with type 2 diabetes have significantly higher levels of CD4+, CD8+, and CD20+ cells in the renal interstitium, and their 
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proteinuria levels are correlated with CD4+ and CD20+ cell numbers.34 Furthermore, the numbers of IFN-γ+CD4+ and 
IL-17A+CD4+ T cells in the kidneys increase significantly from the onset of albuminuria, and the common immunosup-
pressant, mycophenolate mofetil, can suppress intrarenal IL-17A + CD4+ T cells from early DKD and ameliorate 
proteinuria.27 KIM-1 and CD8+ T cell infiltrates were detected in renal biopsies from patients with DKD. Glycemic 
changes increase KIM-1 production from CD8+ T cells, thus raising the risk of DKD in patients with diabetes.68 

Increased numbers of peripheral blood CD4+CR5+PD-1+ THF cells were also found in patients with DKD,69 and patients 
with type 2 diabetes and proteinuria express more CD25 and CD69 on their circulating CD8+ T cells.70 Moreover, the 
serum levels of T-lymphocyte activation markers, specifically CD28 and CTLA-4, increase as DKD progresses. Low 
eGFR levels and high urinary TNF-α are positively correlated with CTLA-4, indicating that activation of the TNF-α 
pathway and T-lymphocyte-mediated immune responses are important in the early stages of DKD.71 In patients with 
DKD, there is a relationship between renal CD3+ T cell accumulation and urinary CCL21 levels, which are derived from 
small EV and co-localize with CCL21 in the tubular interstitium. CCL21-mediated T cell infiltration may be an important 
chronic inflammation pathway in DKD.72 Analysis of peripheral blood samples from patients, with early DKD using the 
mass cell counting technique, CyTOF, revealed a significant decrease in B cells, a significant increase in monocytes, and 
a notable increase in Th1 cells and Treg.73

Several studies have reported a correlation between elevations of T cell counts and levels of their activation markers 
with DKD and indicators, such as renal function, suggesting that T cell activation is a significant factor in DKD. Studies 
on renal fibrosis have demonstrated that T cells stimulate renal TECs to produce specific chemokines, such as CCL2 and 
CXCL10, through the release of pro-inflammatory factors, including TNF-α and IL-17, thus recruiting more T cells and 
other immune effectors to the kidney and inducing renal TECs to transform into mesenchymal fibroblast-like cells. 
Further, by releasing fibroblastogenic factors, such as TGF-β, immune effectors activate mesenchymal fibroblasts and 
promote their proliferation and secretion of stromal matrix.74 Among T cells, Th cells primarily promote or inhibit 
inflammatory responses by secreting cytokines, including TNF-α, IFN-γ, IL-17, IL-10, and TGF-β, which impact renal 
inflammation, repair, and fibrosis.75 It is currently thought that, in DKD, T cells are either expanded, differentiated, and 
activated in the kidney, or are recruited from the circulation to renal tissues. These cells can have either harmful or 
beneficial effects through various mechanisms, including modifying insulin resistance, injuring podocytes, encouraging 
fibrosis, and controlling proteinuria. Th1, Th2, Th17, Treg, and cytotoxic T cells have all been implicated in the 
development of DKD.76

Investigation of the roles of T cells in DKD has become the focus of significant attention, and some potential 
mechanisms by which T cells promote DKD and targets for T cell regulation have recently been discovered. Biglycan is 
an ECM proteoglycan that is upregulated at all stages of DKD, and stimulates CXCL10 and CCL20 production by 
macrophages through the biglycan/TLR/TRIF/myd88 signaling pathway, thereby recruiting Th1 and Th17 cells. Further, 
IFN-γ can synergistically stimulate macrophages to enhance CXCL9 expression and attract CXCR+ Th1 and Th17 cells, 
enhancing the infiltration of T cell subsets.77 In addition, IFN-γ can induce GMCs to express antigen-presenting and co- 
stimulatory molecules, such as MHC-II, ICAM-1, CD40, and CD80, which act as non-professional antigen-presenting 
cells, while uptake and presentation of antigenic peptides by activated GMCs induces CD4+ T cell (Th0 cells) 
polarization toward a Th1 phenotype and promotes inflammatory responses.78 Liang Li et al79 found that the percentage 
of CD8+ TRM cells was significantly increased in kidneys from DKD mice and patients. IL-15, which is highly 
expressed in DKD kidneys, significantly promotes the development and activation of CD8+ TRM cells, thereby inducing 
podocyte injury and glomerulosclerosis. Sparsentan can regulate renal CD8+ TRM cells by blocking angiotensin II 
endothelin-1 mediated IL-15 signaling. In kidney biopsy specimens from patients with type 2 diabetes, the number of 
CD4+IL-17+ T cells is positively associated with eGFR deterioration, and IL-6 may be synergistically enhanced by IL-17 
and CD40L. Further, production of MCP-1, TGF-β, and NF-κB mediates the inflammatory response and remodeling 
linked with tissue damage and glomerulosclerosis in DKD.80

Mast Cells
Mast cells are pluripotent cells derived from bone marrow that contain abundant mediators of inflammation and growth 
factors. Mast cell precursors are hematopoietic progenitor cells that migrate to injured tissue from the bone marrow and 
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mature into local mast cells. Resident renal mast cells may contribute to DKD development by releasing various 
pathogenic substances, including chymase, TGF-β, cathepsin G, tryptase, renin, histamine, and proinflammatory 
cytokines.81 Further research is required to validate the potential role of these mast cell-derived mediators in the intricate 
pathophysiology of DKD.

Immunohistochemical staining of renal tissues from patients with DKD of varying clinical stages revealed increases in 
the degree of degranulation and quantity of mast cells as the disease progressed. Mast cells may induce renal inflammation 
and fibrosis by degranulating and releasing bioactive chemicals into the tubular interstitium, including chymase, tryptase, 
TGF-β1, renin, and TNF-α.82 Rats with DKD kidneys also showed an increase in mast cell counts, while application of the 
renin–angiotensin system blocker, aliskiren (AL), mitigated the rise in mast cell numbers, indicating a potential protective 
effect of AL on the kidney,83 however, the exact mechanism involved requires further investigation. Mast cell infiltration 
may cause renal interstitial fibrosis through the SCF/c-kit signaling pathway in a rat model of DKD, while tranilast, an anti- 
allergic medication, can prevent renal interstitial fibrosis by reducing mast cell infiltration in this context.84 SERPINA3, an 
inhibitor of mast cell chymase, is upregulated in the renal tubules of patients with DKD, and may serve as a protective 
immune-associated molecule that can prevent renal interstitial fibrosis by inhibiting mast cell activation and multiplication, 
as well as downregulating chymotrypsin activity, to prevent renal tubular injury.85

B Cells
B lymphocytes are derived from pluripotent stem cells in the bone marrow, which transform into plasma cells in response 
to antigenic stimulation. Plasma cells produce and release antibodies, thereby contributing to humoral immunity.86

B-cell infiltration and immune complex deposition have been observed in kidneys affected by DKD. A study conducted 
on children with type 1 diabetes mellitus demonstrated a relationship between elevated levels of circulating IgG immune 
complex and the development of early DKD.87 In addition, increased deposition of IgG+ B cells was detected in the 
glomeruli of diabetic NOD mice.88 Furthermore, immune complexes containing oxidized low-density lipoprotein choles-
terol are thought to promote mesangial expansion in the glomeruli by stimulating type IV collagen production.89 Among 
B cell subsets, CD38+CD19+ and CD38+CD19+CD40+ B cells were significantly elevated in peripheral blood from both 
patients with DKD and healthy controls, while CD38+CD19+ B cells number was positively correlated with serum IgG 
levels and albumin excretion rate and negatively correlated with eGFR.69 Consequently, B cells are thought to contribute to 
DKD by generating antibodies and building immune complexes that are deposited in the kidney.

Immunological complexes in the glomerulus trigger complement activation and cytokine release, which in turn drive 
macrophage aggregation and inflammation. The release of DAMPs after ECM injury in DKD may activate B cells.90 

Regulatory B cells (Bregs), a unique B cell subpopulation, downregulate immune responses, and their absence is linked 
to increased autoimmune responses. Bregs cells secrete IL-10 to maintain immune tolerance in the body. Numbers of 
circulating CD19+CD24hiCD38hi Bregs are reduced in patients with DKD. Further, the number of circulating 
CD19+CD24hiCD38hi B cells in patients with DKD is positively correlated with eGFR and serum IL-10 levels, but 
negatively correlated with urinary protein levels,91 implying that DKD development also involves Bregs. The potential 
beneficial effects of Bregs represent a novel avenue for exploration in the context of DKD treatment; however, studies on 
B cells in DKD are scarce and further exploration is necessary.

Neutrophils
Neutrophils are a subtype of granulocytes and the most abundant type of white blood cells with important functions in the 
immune system. These phagocytes have short life spans and are quickly mobilized to sites of infection or tissue injury, 
however, their involvement in DKD remains unclear. The neutrophil–lymphocyte ratio (NLR) is higher in patients with 
diabetes and nephropathy, and NLR is positively correlated with C-reactive protein levels and microalbuminuria, but 
negatively correlated with eGFR.92,93 The NLR is also used to evaluate the degree of neutrophil-related chronic 
inflammation (NRCI); however, a randomized, double-blind, controlled clinical trial discovered that, while low-dose 
colchicine therapy (0.5 mg/day) was effective and safe in reducing NRCI, it did not delay the onset of DKD.94

Activation of neutrophils causes DNA decondensation and histone deamination, particularly of peptidylarginine 
deiminase 4 (PAD4), which catalyzes histone citrullination.95 Subsequently, neutrophil extracellular traps (NETs), 
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which are composed of histones, DNA, and neutrophil proteases, such as neutrophil elastase (NE) and myeloperoxidase, 
are released.96 Increased deposition of NETs has been identified in the glomeruli of patients and mice with DKD.97,98 

NETs induce dysregulation of several genes related to cellular membrane function, resulting in pore formation in cell 
membranes and pyroptosis in glomerular endothelial cells.97 Under high glucose conditions, NETs can enhance 
glomerular endothelial dysfunction and NLRP3 inflammasome activation both in vivo and in vitro, whereas inhibition 
of NETs (eg, with PAD4 inhibitors) can alleviate endothelial dysfunction and renal damage in DKD.98 In T2DM, 
inflammation and neutrophil activation promote NE release, which is mediated by regulation of the endogenous 
inhibitors, alpha1-antitrypsin (α1-AT) and alpha2-macroglobulin (α2-MG), under normal physiological conditions. NE 
activity levels are significantly elevated in the plasma of patients with DKD, while α1-AT and α2-MG levels are 
decreased.99 In summary, therapy targeting reduction of NETs secretion and maintenance of NE homeostasis may be 
promising for halting DKD progression.

Group 2 Innate Lymphoid Cells (ILC2s)
ILC2s are innate immune cells that respond rapidly to their surroundings via soluble inflammatory mediators and intercellular 
interaction100 and play a critical role in Th1/Th2 homeostasis.101 ILC2s contribute to tissue healing, allergic inflammation, 
metabolic balance, and tissue fibrosis, including pulmonary fibrosis, intestinal fibrosis, and hepatic fibrosis.102,103

Although less studied, ILC2s may also impact the course of DKD. In patients with DKD, mRNA levels of factors 
encoding the ILC2 associated molecules, ROR, T1/ST2, and IL-5/IL-13, are increased. Further, IL-13 and T1/ST2 
mRNA expression levels are associated with fasting glucose, lipids, and body weight,104 indicating that ILC2s may 
contribute to DKD by regulating blood pressure, lipid metabolism, and other factors that contribute to metabolic 
syndrome. Cuiping Liu et al105 discovered that the proportions of ILC2 and Th2-associated cytokines, IL-4, IL-5 and 
IL-13, are higher in peripheral blood from patients with DKD, and positively associated with DKD severity. Furthermore, 
when HK-2 cells were stimulated with IL-4 or IL-13, TGF-1 and fibronectin (FN) production increased, indicating that 
ILC2s may have a role in renal fibrosis in DKD via the TGF-1 signaling pathway.

Single-Cell Analysis of Immune Cells in DKD
The development of single-cell RNA sequencing (scRNA-seq) techniques in recent years has increased the recognition of 
the roles of immune cells in renal disease.106 Unlike bulk RNA sequencing, scRNA-seq can identify transcription status 
and signaling pathways in many cell types while quantifying gene expression in a single cell. A research project using 
both scRNA-seq and bulk RNA-seq revealed that the recruitment and activation of M1 macrophages and cytotoxic 
T cells initiates inflammation, which is a major contributor to permanent kidney damage.107 Recent developments in 
library preparation and separation techniques, such as single nucleus RNA sequencing (snRNA-seq), have facilitated 
discovery of unusual cell types in cryopreserved samples.108 Relative to the control group, snRNA-seq of renal biopsy 
specimens from individuals with type 2 diabetes and early-stage DKD showed a 7- to 8-fold increase in leukocytes. 
Additionally, increased expression levels of TNFRSF21 in infiltrating CD14+ monocyte subpopulations, IL-R1 in CD16+ 

monocytes and antigen-presenting cells, and IL-18R1 in CD4+ and CD8+ T cells were detected.109 ScRNA-seq of 
glomeruli in diabetic mice identified a higher number of immune cells, where macrophages were predominant, with more 
cells expressing M1 than M2 phenotypic markers.110 Fu et al111 conducted scRNA-seq on CD45-enriched kidney 
immune cells from DKD mice and focused on analysis of mononuclear phagocytes. They found that, as DKD progressed, 
resident and infiltrating macrophage subpopulations in the kidneys increased, accompanied by subpopulation-specific 
increases in pro- or anti-inflammatory gene expression and gene expression tending towards an undifferentiated 
phenotype, while M1-like inflammatory phenotypes increased over time. Furthermore, based on scRNA-seq data from 
db/db mice kidneys, it has been predicted that M1 macrophages can target renal stromal cells via SPP1 and activate 
T cells via the MHC-II pathway, which then recognize other renal cells via the MHC-I pathway;112 however, this study 
by Fu et al raises several unanswered questions.113 Renal inflammation is a result of intricate cell–cell communication 
among various cell types. The interaction between the identified subpopulation of activated macrophages and the renal 
parenchyma remains unclear, due to loss of spatial information during cell dissociation. The evolving field of transcrip-
tomics, which has spatial resolution capabilities, may provide answers to these questions. Second, the regulation of 
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macrophage activation and polarization at the genomic level in DKD remains largely unexplored. Understanding of gene 
regulatory networks necessitates thorough analysis of multi-group single-cell datasets comprising transcriptomes and 
chromatin accessibility within the same cell. Furthermore, a comprehensive investigation into immune cell heterogeneity 
in human DKD is imperative, to augment findings garnered from preclinical mouse models.

Regulation of gene expression involves a dynamic interplay between control of chromatin structure and accessibility, 
and recruitment of transcription factors to promoter regions, enhancers, and activator sequences.114 Accessible chromatin 
regions can be identified using DNase-seq or assay for transposase accessible chromatin with high-throughput sequen-
cing (ATAC-seq).115 Single-cell ATAC-seq studies of epigenomic landscapes promise to reveal heterogeneity among 
cells in gene regulatory programs;116 nevertheless, there has been a lack of ATAC-seq studies in the context of DKD.

ScRNA-seq and ATAC-seq datasets are generated post-tissue isolation, leading to loss of spatial and morphological details 
about cells in the tissue environment. This knowledge is vital to understand the role of various cells in tissue function, 
particularly for organs with intricate spatial structures, such as the kidney. The progressive development of spatial transcrip-
tomics may address these issues, but no high-throughput spatial transcriptomics studies on the kidney have yet been published. 
In the future, new insights into renal homeostasis and disease are expected to be provided by spatial transcriptomics.

Additionally, the field of single-cell proteomics is developing rapidly. Single-cell proteomics technologies, including 
CITE-Seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing), have recently emerged, and can be 
combined with sequencing-based methods to simultaneously measure proteins and transcripts at single-cell 
resolution.117 It is anticipated that these technologies will gain wider use in kidney research in the near future, to provide 
information complementary to other single-cell datasets.

Bioinformatics Analysis of Immune Cells in DKD
Thanks to advances in bioinformatics, efficient algorithms have accelerated the transformation of all types of omics big 
data into novel therapeutic targets. CIBERSORT is a robust method for assessing immune cell infiltration and is 
increasingly used in conjunction with bioinformatics approaches to develop novel diagnostic markers and research 
immune cell infiltration patterns in tissues. By using CIBERSORT to identify immune cells, infiltration of M1 and M2 
macrophages, memory B cells, γδ T cells, and resting mast cells in DKD glomeruli were found to be increased in DKD 
glomeruli, while neutrophil and activated mast cell infiltration were relatively reduced,118–121 however, the infiltration 
and state of immune cells, such as NK cells, Tregs and DCs appears to be unstable in DKD glomerular tissues. Yan Jia 
et al122 found an up-regulation of M1 macrophages, CD4+ T cells, CD8+ T cells, Th2 cells, conventional DCs, and 
activated DCs, but a down-regulation of Tregs in DKD renal tubulointerstitial tissue. Furthermore, increased expression 
of VCAM1 in renal tubules and interstitial immune cell infiltration contribute to DKD development. Zheng Ye et al123 

analyzed high-throughput RNA-SEQ data (GSE142025) from early and late-stage DKD and discovered that immune 
spectrum diversity and abundance were significantly increased in patients with late-stage DKD, while immune function 
in patients with early-stage DKD was not significantly changed. In contrast, immune-related signaling pathways, 
primarily concentrated in immune cells are significantly activated in early-stage DKD. B cell-mediated antibody 
responses may play an essential part in DKD pathogenesis.

Through analysis of online single-cell RNA profiles of patients with DKD (GSE131882), B cells, T cells, and plasma cells 
were identified as involved in DKD progression and may be contribute to crosstalk with TECs.124 Cell crosstalk analysis using 
CellPhoneDB based on GSE131882 suggested that CD20 expression was significantly increased in the DKD group.125 Drugs 
that target antibodies against CD20 or B cells hold promise as potential DKD therapeutic options. As previously reported, the 
mTOR pathway contributes to DKD pathogenesis.126 By analyzing GSE131882, Xi Lu et al also found that the differentially 
expressed immune cell marker genes (RICTOR, PRKCB, and EIF4B) were significantly enriched in the mTOR pathway and 
confirmed these results using RT-qPCR and Western blot experiments in DKD rat models.127

Bioinformatics analysis has also provided more clues to the interactions between immune cells and DKD. Skewed 
gene patterns in both particular immune cells in the bloodstream and equivalent immune cells infiltrated in DKD kidneys 
indicated significant enrichment of Fc epsilon receptor (FcER1) and T-cell receptor-mediated signaling. Elevated FcER1 
gene and protein levels were observed in the kidneys of patients with DKD and were co-localized with infiltrating mast 
cells.128 FcER1 activation may lead to release of inflammation mediators from mast cells, thereby exacerbating DKD. 
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Indoleamine 2,3-dioxygenase 1 (IDO1) was identified as a core immune gene with increased expression in mice with 
DKD. M1 macrophage and monocyte numbers were positively correlated while resting memory CD4+ T cell number was 
negatively correlated, with IDO1 upregulation. In vitro experiments verified that high glucose stimulation resulted in 
upregulation of IDO1 expression in peritoneal macrophages and that inhibition of IDO1 reversed the production of 
inflammatory factors.129 Qiannan Xu et al130 identified VCAN as a hub gene related to immune injury in DKD 
tubulointerstitial injury, levels of its translated protein, versican, in patient renal tissues are associated with immune 
cell accumulation in the kidneys. CCL19 levels were increased in DKD kidneys and HK-2 cells treated with high 
glucose, where CCL19 is considered a core molecule in DKD, able to regulate lymphocyte circulation, as well as B- and 
T-cell migration in the thymus and secondary lymphoid organs, through binding to the CCR7 receptor.131 Xiaohui Li 
et al132 identified CASP1, MS4A4A, CD53, and GBP2 as hub genes implicated in macrophage-mediated inflammation in 
DKD. Further experiments showed that GBP2 can promote DKD progression by activating pro-inflammatory M1 
macrophages via the notch1 signaling pathway.

Meng Zhou et al133 discovered that various signaling pathways, such as those involving VISTANT, SPP1, and IGF, as 
well as receptor-ligand pairs, including NRG1-ERBB4, SPP1-CD44, Igf1-Igf1r, and NAMPT-INSR, may play significant 
roles in DKD by inducing crosstalk between renal and immune cells. Hypoxia-related immune molecules, including 
PSMB8, PSMB9, RHOA, VCAM1, and CDKN1B, may regulate T cells after tubular lesions, whereas APOID1, 
TGFBR3, KDR, and CPEB1 may influence T cells after glomerular injury.134 LCK and HCK were identified as two core 
genes, levels of which were increased in DKD. Correlation analysis revealed that both were associated with active DC, 
CD8+ T cells, CD4+ T effector memory, CD8+ T effector memory, and mast cells.135 Xueqin Zhang et al136 identified SLIT3, 
PDE1A, and CFH as hub genes closely associated with DKD, which are significantly positively correlated with γδ T cell, 
M2 macrophage, and resting mast cell levels. Mingming Xu et al137 identified three immunological and oxidative stress- 
related hub genes (CD36, SLC1A3, and ITGB2) by merging weighted gene co-expression network analysis (WGCNA), 
protein–protein interaction (PPI) networks, and machine learning data; however, because their results were based solely on 
bioinformatics analysis, with no basic experiments to validate them, it is unclear whether the conclusions are truly valid.

Biomarkers linked to immune infiltration provide a fresh perspective to inform future investigations of DKD 
diagnosis and therapy options. Jing Chen et al138 identified six pro-inflammatory and pro-fibrotic candidate targets 
(including CCR2, MOXD1, COL6A3, COL1A2, PYCARD, and C7) as potential DKD susceptibility genes and validated 
them by RT-qPCR in kidney samples from DKD mice. Iron concentration changes are intimately related to the variety 
and complexity of the immunological milieu in patients with DKD, and The Iron Death Scoring System can establish 
links between iron content and immune cell infiltration. To this end, JingYuan Ma et al139 identified the iron death core 
genes (PRDX6, DUSP1, PEBP1, GABARAPL1, ZFP36, RGS4, and TSC22D3) as key factors in iron concentration and 
immune inflammation, and these genes reliably distinguished DKD from control samples. Wang Yuejun et al140 used 
VEGFC, FN1, and complement component 3 as immunological biomarkers of DKD, and found that they were positively 
correlated with M2 macrophage levels. Clinical database verification demonstrated that, VEGFC is a significantly 
correlated with eGFR in patients with DKD. Juan Jin et al73 identified biomarkers, including CTLA-4, CXCR3, 
CCR4, CD39, PD-1, and HLA-DR, via mass cytometry (CyTOF) analysis, which are associated with significantly 
altered monocyte, T cell, and B cell subpopulations in early-stage DKD; however, further validation in other cohorts is 
necessary. Shaojie Fu et al121 used three different algorithms, including least absolute shrinkage and selection operator 
(LASSO), support vector machine-recursive feature elimination (SVM-RFE), and random forest (RF), to identify DUSP1 
and PRKAR2B as possible biomarkers. Further, immunohistochemical staining indicated that DUSP1 and PRKAR2B 
expression levels were significantly decreased in patients with DKD. Moreover, expression of these two genes was 
negatively correlated with M2 macrophage infiltration and positively correlated with neutrophil infiltration. By applying 
the Venn diagram and machine learning algorithms (LASSO, RF, and SVM-RFE), Han et al141 found that PRKAR2B and 
TGFBI are potential diagnostic biomarkers for glomerular injury related to immune cell infiltration. These algorithms 
were also used to demonstrate that ADI1, PTGS2, DGKH, and POLR2B, which are associated with immune infiltration, 
have potential to serve as diagnostic biomarkers for DKD.142 Decreased expression levels of ADI1 and PTGS2 in 
patients with DKD are associated with enhanced immune system activation. The significance of DGKH and POLR2B in 
DKD requires further validation. Handi Zhou et al143 identified CCR2, CX3CR1, and SELP as potential diagnostic 
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biomarkers for DKD, which were associated with checkpoints, cytolytic activity, macrophages, MHC class I molecules, 
and paraneoplastic inflammation.

Although bioinformatics analyses have yielded various results, small sample sizes and database limitations mean that 
the findings often require validation using basic experimental methods.

Conclusion
In summary, immune cell imbalance can cause disorders of the immune-inflammatory microenvironment through 
multiple signaling pathways, resulting in permanent kidney damage and the development of DKD. Therefore, further 
understanding of the molecular mechanisms underlying immune cell function in the context DKD is of great importance 
for improving renal disease. In recent years, the development of single-cell sequencing and bioinformatics technologies, 
to assess gene expression patterns in individual cells in populations of different origins, have facilitated better under-
standing of the dynamic evolution of immune cells in the kidney and analysis of the complex underlying DKD at the 
cellular level, providing new approaches to clinical diagnosis and treatment.
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