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Abstract: Liposuction is the most popular aesthetic surgery performed in Brazil and worldwide. 

Evidence showing that adipose tissue is a metabolically active tissue has led to the suggestion 

that liposuction could be a viable method for improving metabolic profile through the immediate 

loss of adipose tissue. However, the immediate liposuction-induced increase in the proportion 

of visceral to subcutaneous adipose tissue could be detrimental to metabolism, because a high 

proportion of visceral to subcutaneous adipose tissue is associated with risk factors for cardio-

vascular disease. The results of studies investigating the effects of liposuction on the metabolic 

profile are inconsistent, however, with most studies reporting either no change or improvements 

in one or more cardiovascular risk factors. In addition, animal studies have demonstrated a com-

pensatory growth of intact adipose tissue in response to lipectomy, although studies with humans 

have reported inconsistent results. Exercise training improves insulin sensitivity, inflammatory 

balance, lipid oxidation, and adipose tissue distribution; increases or preserves the fat-free mass; 

and increases total energy expenditure. Thus, liposuction and exercise appear to directly affect 

metabolism in similar ways, which suggests a possible interaction between these two strategies. 

To our knowledge, no studies have reported the associated effects of liposuction and exercise in 

humans. Nonetheless, one could suggest that exercise training associated with liposuction could 

attenuate or even block the possible compensatory fat deposition in intact depots or regrowth 

of the fat mass and exert an additive or even a synergistic effect to liposuction on improving 

insulin sensitivity and the inflammatory balance, resulting in an improvement of cardiovascular 

risk factors. Consequently, one could suggest that liposuction and exercise appear to be safe and 

effective strategies for either the treatment of metabolic disorders or aesthetic purposes.
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Introduction
The idea of the surgical removal of body fat mass from specific regions of the body is 

not recent. The first attempt was performed in France in 1921, when Charles Dujarrier 

removed the subcutaneous fat of the calves and knees of a female dancer using a 

uterine curette. The disastrous outcome was the amputation of the dancer’s leg. During 

subsequent years, other physicists and scientists developed different techniques to 

remove subcutaneous body fat. However, all of these techniques resulted in undesir-

able hematomas and/or scars.1

The field of modern liposuction was initiated in 1974 by Arpad and Giuliano Fischer 

in Italy. It was only in 1987, however, that Jeffrey Klein innovated the field by develop-

ing the tumescent technique, which eliminated the high risk of excessive bleeding that 

is usually observed during liposuction surgeries, making it a much safer procedure.2 
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The development of the tumescent technique allowed 

the removal of greater amounts of fat in a much safer 

environment. This innovation, together with the knowledge 

that adipose tissue is a very metabolically active organ,3 led 

scientists to believe that liposuction could be a viable method 

for improving metabolic profile through the immediate loss 

of body fat mass, thus functioning as a possible coadjuvant 

in the treatment of obesity and comorbidities.4

The beneficial effects of exercise are well known. 

Evidence from epidemiologic and experimental studies has 

shown that regular exercise protects against the development 

and progression of numerous diseases such as heart diseases, 

diabetes, and obesity.5,6 In addition, exercise training directly 

affects the body composition, preserving or increasing fat-free 

mass7 and stimulating fat mass loss,6 in addition to improving 

inflammatory balance8,9 and insulin sensitivity.10

The combination of both strategies could therefore 

enhance the loss and/or maintenance of body fat mass for 

health or aesthetic purposes, in addition to potentially lead-

ing to greater beneficial effects in the treatment of metabolic 

disorders through improving metabolic profile (insulin sen-

sitivity and lipid profile) and inflammatory balance.

The aim of this paper is to briefly characterize adipose 

tissue, review the distinct effects of exercise and liposuction, 

and suggest possible combined effects of both fat-loss strate-

gies in adiposity and metabolism.

Adipose tissue
Adipose tissue is a remarkable and very efficient energy storage 

organ that is composed of adipocytes. The adipocyte is a unique 

cell. It stores triglycerides (TAGs) in a single lipid droplet 

that accounts for approximately 90% of the cell mass.3 When 

energy intake is abundant, excess TAGs are stored in adipose 

tissue to be mobilized during periods of energy deficit. TAGs 

can be incorporated into adipocytes through the uptake of fatty 

acids (FAs) from circulating lipoprotein (chylomicrons or very 

low-density lipoprotein [VLDL]) or can be synthesized during a 

process called lipogenesis.11 In periods of energy deficit, stored 

TAGs are mobilized in a process called lipolysis that results 

in the release of free fatty acids (FFAs) into the circulation. 

These FFAs can be captured by other tissues for oxidation in 

the mitochondria through the process of b-oxidation and used 

as substrate for energy production.3,11

The expansion of adipose tissue in response to weight 

gain seems to depend first on adipocyte hypertrophy.12 In 

fact, the adipocyte has a remarkable storage capacity and is 

capable of large changes in its TAG volume, with cell sizes 

ranging from 25 µm to 200 µm in diameter.5 However, as the 

need for lipid storage increases, preadipocytes are recruited 

and differentiate into adipocytes in a process called adipo-

genesis, which consists of adipocyte hyperplasia.11

Adipogenesis is the process by which undifferenti-

ated fibroblast-like preadipocytes differentiate into mature 

adipocytes.12,13 It occurs in several stages and can be 

described as a cascade of gene expression that is regulated 

by a small set of transcription factors.14,15 Two transcription 

factor families appear to be the key determinants of terminal 

adipocyte differentiation: peroxisome proliferator-activated 

receptor gamma (PPARγ) and CCAATT/enhancer-binding 

proteins (C/EBPs).13,14

As cells undergo the differentiation process in response 

to stimulating signals, the initial stage is the induction of 

C/EBPb and C/EBPδ expression.14,15 These transcription fac-

tors activate the following stage, which includes the increase 

in the major adipogenic transcription factors C/EBPα and 

PPARγ. C/EBPα and PPARγ then induce their own expres-

sion in addition to each other’s expression,15 acting syner-

gistically to generate fully differentiated insulin-responsive 

adipocytes.14 During the terminal stage of differentiation, 

there is an increase in the protein and mRNA levels of 

enzymes, receptors, and transporters involved in lipogen-

esis, lipolysis, and insulin-mediated glucose uptake and of 

adipokines.12 It is important to highlight that although PPARγ 

is essential and sufficient for induction of the expression of 

many adipocyte genes, C/EBPα is required to confer insulin 

sensitivity to the adipocyte.13–15 Emerging additional factors 

also play regulatory roles in the process of adipogenesis, such 

as ADD1/SREBP1, STAT proteins, Kruppel-like factors, 

wingless INT-1 proteins, cell-cycle proteins, and GATA-

binding protein-2 and -3.12,13,16 Whether these factors target 

similar sets of genes as C/EBPs and PPARγ or enhance or 

antagonize their effects still remains to be determined.13

The processes of adipogenesis, lipogenesis, and lipolysis 

are tightly regulated by nutrients and neurohumoral signal-

ing in response to the energy needs of the individual,3 thus 

maintaining energy homeostasis. Insulin is the major hor-

mone stimulating lipogenesis and adipogenesis, in addition 

to inhibiting lipolysis. On the other hand, catecholamines are 

the most potent regulators of lipolysis in humans,17 although 

glucagon, growth hormone, and thyroid hormones also 

stimulate lypolysis.3

Adipokines and insulin sensitivity
The remaining 10% of the adipocyte cell mass has a remark-

able secretory ability, synthesizing and releasing many auto-

crine, paracrine, and endocrine factors called adipokines.18 
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A few of these adipokines might not be produced by the 

adipose tissue itself but by macrophages that have infil-

trated the adipose tissues.5 Adipocytes also express several 

receptors that enable them to respond to neurohumoral and 

hormonal signals. Therefore, adipose tissue constantly com-

municates with several organs, including the central nervous 

system (CNS).18 Through this dynamic signaling network, 

adipose tissue and adipokines participate in important bio-

logic processes such as energy intake and energy balance, 

nutrient metabolism, and the immune system.8,18,19

Adipokines such as leptin, adiponectin, tumor necrosis 

factor (TNF)-α, interleukin (IL)-6, and IL-10 play a funda-

mental role in energy metabolism, insulin sensitivity, and 

the inflammatory balance20 and will be briefly discussed in 

this review.

Leptin is an ob gene product and is known as the “satiety 

hormone”. Its levels and expression are highly correlated 

to the amount of body fat mass.17,21,22 The central role of 

leptin is to signal the fat mass status to the CNS. It acts on 

hypothalamic neurons to inhibit food intake and enhance 

energy expenditure and sympathetic nervous system (SNS) 

activity.23 Evidence also suggests an important peripheral role 

of leptin. In addition to stimulating the SNS, leptin impairs 

the effects of insulin on adipose tissue and increases TNF-α 

secretion, both of which lead to increased lipolysis.22,24 

Moreover, it enhances the function and sensitivity of insulin 

in skeletal muscle by increasing FFAs and glucose oxida-

tion via activation of 5′-adenosine monophosphate-activated 

protein kinase.22,24,25

Leptin mRNA is elevated in subcutaneous adipose tissue 

(SAT) compared with visceral adipose tissue (VAT), probably 

because subcutaneous adipocytes are larger than omental 

adipocytes, and as adipocytes increase in size, leptin mRNA 

is upregulated.26 Other factors also regulate leptin expression, 

synthesis, and secretion. Insulin, glucose, glucocorticoids, 

and TNF-α appear to stimulate leptin secretion, whereas 

sympathetic and adrenergic stimulation, growth hormone, 

thyroid hormones, androgens, and melatonin appear to reduce 

leptin levels.3,21 Subtle disturbances in the energy balance also 

affect the expression and synthesis of leptin. An increase or 

a decrease in energy intake without changes in body weight 

results in a keen decrease and increase, respectively, in leptin 

levels within 12 hours.27 Thus, leptin can be considered as a 

sensor of the energy balance.28

Adiponectin is synthesized and secreted mostly by 

the adipose tissue. Its levels are inversely correlated to 

the amount of body fat mass11 and risk of insulin resistance 

and cardiovascular diseases.3 In fact, adiponectin levels are 

reduced in obese, insulin-resistant, and diabetic individuals 

and appear to increase after weight and fat loss in obese 

people.28 Its metabolic effects include a reduction of hepatic 

lipid and glucose synthesis, leading to reduced levels of cir-

culating glucose and FFAs, in addition to increasing glucose 

uptake and glucose and FA oxidation in the skeletal muscle 

and adipose tissue. All of these actions will ultimately lead to 

improved insulin sensitivity.3,19,28 Additionally, adiponectin 

has an anti-inflammatory and an antiatherogenic effect. It 

reduces the synthesis of proinflammatory cytokines such 

as TNF-α and C-reactive protein (CRP), enhances vasodi-

latation, inhibits the adhesion of monocytes to the vascular 

endothelium, and suppresses the transformation of mac-

rophages into foam cells (the latter are essential steps in the 

development of vascular diseases).3,19

TNF-α is an immunomodulatory and proinflammatory 

cytokine3 that is produced by a variety of cell types. It is 

produced mainly by cells of the immune system (monocytes, 

macrophages, and lymphocytes) but also by tumor cells, 

smooth muscle cells, fibroblasts, and, to a lesser extent, 

adipocytes.29,30 The correlation between plasma TNF-α and 

adiposity is relatively weak, which suggests that TNF-α 

produced in adipose tissue acts primarily in a paracrine and 

autocrine manner.17,31 Nevertheless, its levels are higher 

in obesity and decrease after weight and fat loss,3,17,29 and 

its expression and secretion in adipose tissue appear to be 

elevated in obese subjects.3,17 More importantly, TNF-α is an 

important inducer of insulin resistance in the liver, adipose 

tissue, and skeletal muscle.3,29 It is likely that TNF-α impairs 

the activity of insulin via the suppression of insulin signal-

ing and the translocation of glucose transporter 4 (GLUT-4) 

to the membrane.11,31 In addition, it decreases the levels of 

adiponectin and increases those of cytokines such as IL-6, 

IL-1, and leptin.31,32 In adipose tissue, TNF-α also inhibits 

lipogenesis and adipogenesis and enhances lipolysis, which 

increases the amount of FFAs in the circulation. This could 

also impair the activity of insulin.3,30 It has been demonstrated 

in vitro that TNF-α is a major factor in the regulation of 

adipocyte number. It inhibits the differentiation of new adipo-

cytes and promotes dedifferentiation or induces apoptosis of 

existing adipocytes or preadipocytes.31 It has been suggested 

that the production of TNF-α by adipose tissue could be a 

local regulator of fat cell size and that the overproduction of 

TNF-α in adipocytes of obese individuals could be a homeo-

static mechanism that is designed to limit further increases 

in adipocyte size.17 Altogether, the net effect of TNF-α is to 

induce insulin resistance, increase lipid mobilization, and 

facilitate a proinflammatory state.32

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2011:4submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

144

Benatti et al

IL-6 is also produced by many cell types, such as 

monocytes, fibroblasts, and endothelial cells.29 However, 

in contrast to TNF-α, IL-6 plasma levels are proportional 

to the fat mass and increase in obesity, suggesting that 

adipose tissue may be an important source of circulating 

IL-6 levels in the absence of acute inflammation.17,29 In fact, 

adipocytes contribute to approximately 35% of the circu-

lating IL-6 levels.8 IL-6 synthesis is stimulated by TNF-α, 

and these cytokines have many similar effects. They are 

both immunomodulatory and proinflammatory cytokines 

that stimulate lipid mobilization and insulin resistance.29,31 

In addition, IL-6 may further decrease insulin sensitivity 

by reducing the secretion of adiponectin.8 IL-6 appears to 

play a more systemic role than TNF-α; it induces hepatic 

CRP release and has anorectic effects on the hypothalamus, 

similarly to leptin.31 In fact, elevated IL-6 and CRP plasma 

levels are predictive of the development of diabetes and 

cardiovascular disease.29,33

IL-10 is a potent anti-inflammatory cytokine that is also 

produced by many cell types, including monocytes, mac-

rophages, and lymphocytes.30 IL-10 is a potent inhibitor of 

the production of proinflammatory cytokines and chemokines 

implicated and involved in the onset of inflammation. Its anti-

inflammatory activities rely mostly on the inhibition of IL-1 

and TNF-α synthesis from a variety of cell types and on the 

stimulation of expression of their natural antagonists (IL-1RA 

and soluble TNF receptor), thus enhancing the synthesis 

of anti-inflammatory molecules.34 IL-10 is also expressed 

and secreted by adipose tissue, and its circulating levels are 

elevated in obese subjects30 and during acute inflammation,31,35 

which suggests that IL-10 may act as a feedback mechanism 

in response to the excess secretion of proinflammatory cytok-

ines such as TNF-α,36,37 possibly in an attempt to attenuate its 

deleterious proinflammatory effects.30

Adipose tissue distribution
There are two main depots of adipose tissue in the body, 

SAT and VAT, and they differ in anatomic location and 

metabolic function.

The expression and secretion of adipokines in adipose 

tissue vary according to the adipocyte size and number and 

to the adipose tissue depot.3,17,22,29–31 IL-6 secretion is higher 

in VAT than in SAT,17,29,30,38 which could partly explain the 

relationship between abdominal obesity and cardiovascular 

risk in humans.29 On the other hand, adiponectin expression 

and secretion, as well as leptin expression,17,22,29 are higher 

in SAT than in VAT adipocytes,17,29,30 probably due to differ-

ences in the fat cell size. The larger the adipocyte, the greater 

the expression of leptin.22 TNF-α appears to be expressed 

and secreted equally in both depots.17

Lipid mobilization and subsequent FFA and glycerol 

release are modulated by the SNS17 and differ greatly in SAT 

and VAT. Catecholamines are the most potent regulators 

of lipid mobilization in adipose tissue via the stimulation 

of adrenoreceptors (β
1
-, β

2
-, and β

3
-adrenoreceptors) and 

the inhibition of α2-adrenoreceptors.3,39 b-adrenoreceptors 

stimulate hormone-sensitive lipase (HSL) and inhibit lipo-

protein lipase, which leads to increased lipolysis, whereas 

α2-adrenoreceptors have the opposite effect.17 Insulin, on the 

other hand, has a lipogenic effect that favors TAG deposition 

in adipose tissue via the stimulation of adipogenesis, glucose 

and FFA uptake, and TAG synthesis within adipocytes. In 

addition, insulin stimulates α2-adrenoreceptors.40

Femoral and gluteal subcutaneous adipocytes display a 

lower lipolytic response to catecholamine than abdominal 

subcutaneous adipocytes and an even lower response than 

visceral adipocytes. These differences can be explained by 

a variation in adrenoreceptor density and sensitivity among 

these adipocytes. Abdominal SAT shows increased β
1
- and 

β
2
-adrenoreceptors and decreased α2-adrenoreceptors when 

compared with femoral and gluteal SAT.39 VAT adipocytes are 

even more sensitive than abdominal SAT to catecholamine-

induced lipolysis and are less sensitive to insulin activity, pre-

senting a greater number of β
1
-, β

2
-, and β

3
-adrenoreceptors 

with enhanced sensitivity.17 Thus, VAT is considered to be 

more metabolically active, and it presents lipolysis rates that 

are up to 50% higher than those of SAT.38

The enhanced lipolytic activity in VAT may lead to 

increased FFA levels in the systemic circulation. Because 

VAT is drained by the portal venal system, increased amounts 

of VAT may lead to an increased delivery of FFAs to the liver. 

This could lead to increased VLDL production and secretion, 

in addition to the induction of changes in insulin signaling 

that may culminate in increased glucose production due to 

a decreased inhibition of hepatic glucose output. This cre-

ates a favorable environment for the onset of dyslipidemia, 

glucose intolerance, and hyperinsulinemia.17,41 In addition 

to the effects on the liver, increased FFA levels impair 

insulin signaling in the skeletal muscle, thus decreasing 

insulin-mediated glucose uptake and consequently leading 

to hyperglycemia.38 This, in turn, could potentiate glucose-

stimulated insulin production and therefore contribute to a 

state of hyperinsulinemia and insulin resistance.41

It has been suggested that the distribution of body 

fat is more important for cardiovascular risk than total 

adiposity. Upper-body fat, especially fat in the visceral area, 
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is independently associated with several risk factors for 

metabolic and cardiovascular complications (coronary artery 

disease, hyperinsulinemia, insulin resistance, hypertension, 

and dyslipidemia).17,41–45 According to Kral,46 SAT, especially 

gluteofemoral SAT, may function as a “metabolic sink” that 

accommodates excess energy intake through the uptake of 

excess FFAs, which could impair glucose uptake and insulin 

sensitivity. However, according to Kelley et  al,38 not only 

VAT but also deep abdominal SAT may have a significant 

metabolic role. The authors show that, similarly to VAT, 

abdominal deep SAT displays a robust relation to insulin 

resistance and other cardiovascular risk factors, such as 

blood pressure, fasting insulin, and lipids. The authors note, 

however, that abdominal superficial SAT shows a weak 

association with insulin resistance, following the pattern of 

gluteofemoral SAT.38 It has also been suggested that upper-

body SAT may be the predominant source of circulating 

FFAs, because SAT is reasonably larger than VAT and is 

therefore able to release more FFAs into the circulation.17,41 

However, excess visceral fat is still considered an indepen-

dent risk factor that links central fat and insulin resistance. 

This association is partly due to the molecules that are 

released, such as IL-6, which play a significant role in insulin 

sensitivity.17 Therefore, one could affirm that increased VAT 

is a very powerful risk factor for the development of cardio-

vascular diseases, with an even greater risk encountered in 

the presence of increased deep abdominal SAT.

Liposuction
Liposuction is the most popular aesthetic surgery performed 

worldwide.47 The Brazilian Society of Plastic Surgery esti-

mates that approximately 92,000 liposuction surgeries are 

performed every year in Brazil, which represents 20% of all 

aesthetic plastic surgeries. In the US, liposuction is also the 

most frequent aesthetic surgery performed each year.48

The American Academy of Cosmetic Surgery49 recom-

mends that liposuction should only be indicated for the 

removal of localized deposits of adipose tissue that do not 

respond to diet and exercise and should not be indicated for 

weight loss purposes. Thus, ideal candidates for surgery 

would be healthy individuals who are in good physical con-

dition (within 30% of ideal weight).48 Prior to liposuction, 

the physician infuses the body with a determined volume of 

buffered saline solution. Depending on the volume of this 

infusion, the surgery is considered a small-volume liposuc-

tion (,5 L) or a large-volume liposuction (.5 L).50 Small-

volume liposuction is the most safe and commonly performed 

procedure in normal to overweight individuals.51

Nevertheless, in light of the possible benefits of this 

surgery on the metabolic profile, large-volume liposuction 

has frequently been performed in obese people, especially 

for scientific purposes.

Effects of liposuction on the metabolic 
profile
Because adipose tissue is clearly a complex, metabolically 

active organ, its instant removal by liposuction could directly 

affect metabolism in obese and nonobese individuals.51 In 

general, studies concerning the metabolic effects of liposuc-

tion are controversial.

VAT remains intact during liposuction, in contrast to SAT. 

Because of the possible beneficial effects of SAT described 

previously, a few authors have questioned the metabolic 

safety of liposuction and suggested that the removal of SAT 

might be detrimental52 because it leads to an immediate 

increase in the proportion of total fat, which is VAT, and this 

phenomenon may worsen insulin resistance, lipid profile, 

and other cardiovascular risk factors.53 Corroborating this 

hypothesis, Weber et  al54 reported increased insulinemia, 

triglyceridemia, and hepatic fat content in rats that were fed 

a hyperlipidic diet 3 months after lipectomy of SAT.

However, most studies in humans have failed to demon-

strate detrimental effects of liposuction on metabolism,4,51,53–63 

thus refuting the aforementioned hypothesis. Martínez-

Abundis et al56 demonstrated decreased leptin levels but no 

changes in insulin sensitivity in six obese, healthy women 

50 days after abdominal liposuction plus abdominoplasty. 

Mohammed et al57 evaluated seven obese women at 10, 27, 

and 208 weeks following a large-volume liposuction. As 

expected, the authors observed a 25% decrease in SAT but 

no changes in VAT, lipid profile, and insulin sensitivity at 

any time point. Busetto et al55 observed lower levels of leptin 

but no changes in resistin, IL-6, TNF-α, and FFA levels at 

28 days and 6 months after surgery in eight morbidly obese 

diabetic or glucose-intolerant subjects. An improvement in 

insulin sensitivity was observed 28 days after surgery, but it 

was no longer significant after 6 months. Klein et al58 studied  

15 women with central obesity (waist circumference .100 cm), 

of which eight demonstrated normal glucose tolerance and 

seven had type 2 diabetes. Three months after a large-volume 

abdominal liposuction, despite the reduction in body weight, 

abdominal and body fat mass, and leptin levels, there was 

no change in insulin sensitivity. In addition, there were no 

changes in fasting glycemia; in TNF-α, IL-6, adiponectin,  

and CRP levels; or in cardiovascular risk factors such as blood 

pressure and lipid profile. The authors stated that liposuction 
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should not be considered as a clinical treatment for obesity, 

because it does not appear to have beneficial effects on the 

metabolic profile due to the decreases in body weight and 

body fat induced by diet and exercise. It must be noted that 

exercise- or diet-induced loss of body weight and body fat leads 

to a decrease in both SAT and VAT,38 which is associated with 

cardiovascular risk factors. In fact, experimental studies have 

shown that the surgical removal of VAT is associated with an 

immediate improvement of insulin resistance,64 thus validating 

the benefits of reducing fat stored in this depot.

As described previously, and similarly to VAT, deep 

abdominal SAT is also strongly related to insulin resistance 

and other cardiovascular risk factors.38 Up to 50% of SAT is 

located in the deep layer and, during abdominal liposuction, 

this is the predominant removed tissue.50,51 Corroborating 

this hypothesis, the aforementioned studies reported no 

changes,55–58 and many other studies have reported improve-

ments in one or more cardiovascular risk factors 3 weeks to 

6 months after liposuction.4,51,53,59–63

Davis et al51 evaluated the effects of small-volume abdom-

inal liposuction in 15 normal to overweight healthy women. 

One month after surgery, no changes in leptin, adiponectin, 

IL-6, and TNF-α levels were detected in either group. 

However, there was a significant decrease in fast insulinemia 

in both groups, but only the obese group showed a signifi-

cant improvement in insulin sensitivity. Six months after a 

small-volume abdominal liposuction in 30 healthy obese 

women, Giugliano et al60 observed improved insulin sensi-

tivity; diminished levels of IL-6, IL-18, TNF-α, and CRP; 

and increased levels of adiponectin and HDL-cholesterol in 

the absence of weight loss. Robles-Cervantes et al59 dem-

onstrated no changes in body weight, fasting insulinemia, 

and insulin sensitivity measured by homeostasis model 

assessment-insulin resistance (HOMA-IR) at 21 days after 

a small-volume abdominal liposuction in 15 healthy normal-

weight women. However, a decrease in fasting glycemia, total 

cholesterol levels, and estimated insulin secretion measured 

by HOMA% was observed. Fasting glycemia was reduced 

and insulin sensitivity was improved 1 month after a large-

volume liposuction in 12 healthy obese women.61 D´Andrea 

et al4 reported improved insulin sensitivity; reduced levels 

of fasting insulin, glucose, TAGs, total cholesterol, leptin, 

TNF-α, resistin, and IL-6; reduced blood pressure; and 

increased adiponectin levels in 123 healthy obese women at 

90 days after a large-volume liposuction. Insulin sensitiv-

ity was improved, but no changes in the lipid profile were 

detected at 4 months after a large-volume liposuction in 14 

healthy overweight to obese women.53 On the other hand, 

Ybarra et  al62 demonstrated an improved lipid profile but 

no changes in insulin sensitivity or CRP and adiponectin 

levels in 18 healthy normal to slightly overweight women at 

4 months after a large-volume abdominal liposuction. Rizzo 

et al63 observed improved insulin sensitivity; decreased levels 

of IL-6, TNF-α, leptin, and resistin; and increased levels of 

IL-10 and adiponectin in 20 healthy obese women at 40 days 

after abdominal dermolipectomy. Finally, Hong et  al65 

reported a significant improvement in the lipid profile but no 

changes in cytokine levels or insulin sensitivity at 2 months 

after surgery in 11 normal-weight healthy subjects.

Taken together, these studies have reported diverse yet 

mostly beneficial effects of liposuction on one or more 

cardiovascular risk factors (insulin sensitivity, lipid profile, 

and pro- and anti-inflammatory cytokines). Explanations 

for the diversity of these results may include differences 

in the follow-up time after surgery, in the methods used to 

test for insulin sensitivity, and mainly in the characteristics 

of the subjects. Most of the studies that evaluated morbidly 

obese people (BMI . 35 kg/m2) did not show significant 

improvements in the metabolic profile regardless of the 

follow-up time after surgery (50 days to 208 weeks).55,57,58 

One hypothesis is that the decrease in abdominal SAT, 

although substantial, may have been insufficient enough to 

overcome the negative effects of the excess visceral fat on 

insulin sensitivity, cytokine production, and lipid profile in 

these subjects. Consistent with this hypothesis, most studies 

evaluating overweight to slightly obese individuals observed 

significant improvements in insulin sensitivity4,51,53,59–61,63 and 

cytokine production,4,60,63 although they failed to observe 

improvements in the lipid profile,53,59,61 which indicated that 

the reduction of abdominal SAT in these subjects was effec-

tive in surpassing the effects of excess VAT on the metabolic 

profile. Finally, the few studies that evaluated normal-weight 

individuals did not demonstrate significant effects on the 

metabolic profile. In summary, these studies do not support a 

significant role for liposuction as a treatment for obesity and 

its comorbidities in morbidly obese subjects. Nevertheless, 

the results support the metabolic safety of liposuction for 

aesthetic purposes in normal to overweight or even slightly 

obese people, who represent the majority of people interested 

in this type of plastic surgery for cosmetic purposes.50

Effects of liposuction on adiposity  
and body fat distribution
According to the “liposthatic theory” proposed by Kennedy,66 

a long-term energy balance is achieved via accurate feedback 

systems that regulate adipose tissue depots. Thus, if total 
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body fat is constantly monitored, an instant decrease in body 

fat through liposuction could trigger feedback systems that 

might favor the recovery of body fat through a decrease in 

energy expenditure and/or an increase in energy intake.67

In many species, when body fat is surgically removed, 

it is recovered within a period of weeks to months,54,67–71 

usually due to a compensatory adipose tissue expansion at 

intact depots54,68,69 rather than regrowth of the fat mass in 

aspirated depots.67 Many studies54,68–70 reported no visible 

regrowth of fat in the lipectomized depot but reported similar 

levels of total body fat in lipectomized and sham-operated 

wild-type or genetically obese animals as early as 30 days68 to 

1254 weeks to 16 weeks after lipectomy,69,70 which indicated 

that the lipectomized animals compensated for the removal 

of fat. In animal models, the ability of fat pads to exhibit 

compensation is not uniform and depends on the fat pad that 

is excised.54,69 In addition, the type of compensation may 

occur in a fat pad-specific manner.67,69,72 Internal fat depots 

appear to compensate via an increase in the size of fat cells 

(hypertrophy) and subcutaneous fat pads by an increase in the 

number of fat cells (hyperplasia). Giese et al53 emphasized 

the importance of evaluating a possible fat mass redistribu-

tion toward the visceral cavity after liposuction, which could 

enhance cardiovascular risk.

Most human studies have not assessed patients for 

regrowth or compensation of body fat after liposuction.67 

Nonetheless, the few studies that have made this attempt 

show controversial results. Rinomhota et  al73 observed a 

substantial increase in body weight (+5%−6% of the pre-

surgery weight) and total body fat (+16% of the presurgery 

fat mass) in overweight to obese women 18 months after a 

large-volume liposuction plus abdominoplasty surgery. In 

contrast, 2 months after abdominal liposuction or abdomi-

noplasty in seven nonobese women, Lambert et al74 reported 

no changes in the regional fat distribution in nonoperated 

areas or in the fat cell size in femoral (nonoperated area) and 

abdominal regions (operated area). In addition, no changes 

were observed in food intake or resting energy expenditure 

(RER). Busetto et al55 also showed no evidence for adipose 

tissue regain or redistribution in obese women at 6 months 

after surgery, despite a decrease in RER and in leptin levels. 

Fat regain may have been detected in a longer-term follow-up. 

A period longer than 6 months may be necessary to induce 

substantial compensatory responses in humans, which differs 

from the findings reported for experimental studies, probably 

due to metabolic differences among species.

Leptin may be a major inducer of the possible com-

pensatory responses of adipose tissue at intact depots or 

regrowth of the fat mass at aspirated depots. Many studies 

have reported significant decreases in leptin levels as early 

as 1 day and up to 3 months after liposuction.4,55,58,63,75 This 

response is expected because SAT adipocytes, the primary 

source of leptin in humans,22,26 are removed during liposuc-

tion. As described earlier, leptin acts on hypothalamic neurons 

to inhibit food intake and to enhance energy expenditure 

and SNS activity.23 It also has peripheral effects, such as 

increased lipolysis and elevated glucose and FFA oxidation 

in skeletal muscle.22,24,25 Thus, the instant decrease in leptin 

levels after liposuction could trigger compensatory responses 

that enhance food intake and decrease energy expenditure, 

which would facilitate weight and fat regain. However, it is 

important to emphasize that leptin is not likely to be the only 

substance that affects the regulation of body fat, as serum fac-

tors other than leptin also appear to stimulate adipogenesis,69 

and compensatory responses of fat have been reported in rats 

carrying a leptin receptor deficiency.70

Nevertheless, it is logical to expect a positive energy 

balance if there is any compensatory growth of adipose 

tissue following liposuction. Decreases in body weight and 

fat through caloric restriction lead to a decrease in the RER 

and an enhancement in appetite and metabolic efficiency that 

might help reverse weight and fat loss in humans74,76 and in 

experimental studies.77–79 Thus, it would be expected that the 

observed recovery of body fat after lipectomy in experimental 

studies could be facilitated by the same mechanisms. Animal 

experiments show that lipectomy does not lead to increases 

in food intake.54,67,69,79 Thus, it is likely that decreases in 

energy expenditure and/or increases in metabolic efficiency 

may provide the extra energy needed for compensatory fat 

deposition in animals after lipectomy.67,77 Previous studies 

in nonobese women who underwent either large- or small-

volume liposuction53,74 support an absence of RER or changes 

in metabolic efficiency after liposuction in this population, 

in contrast to the results reported for obese subjects.55 There 

is evidence that the fat-free mass is the major determinant 

of the resting metabolic rate, whereas the fat mass is a sig-

nificant factor only in obese subjects.80 Thus, obese subjects 

may present stronger adaptive responses that favor body fat 

regain after liposuction through the decrease of RER.

It has been affirmed that presurgery body fat is an impor-

tant factor in determining weight and fat gain following 

surgery and that overweight and obese individuals are more 

prone to the recovery of body fat than eutrophic people,68,73 

although to our knowledge no studies have directly addressed 

this issue. Nevertheless, Rinomhota et al73 reported greater 

weight and body fat regain in subjects with a higher presurgery 
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weight at 18 months after a large-volume liposuction plus 

abdominoplasty surgery. Experimental studies seem to sup-

port this hypothesis. Harris et al70 reported that all intact fat 

pads tended to increase at 16 weeks after lipectomy in wild-

type and ob/ob obese mice, which might have accounted for 

the recovery of total body fat in both genotypes; however, 

this difference only reached significance for the visceral fat 

pads in the obese mice. Bueno et al68 reported a significant 

increase in the carcass lipogenesis rate and in the percentage 

of small-area adipocytes at the site of fat removal at 30 days 

after lipectomy of retroperitoneal and epididymal fat pads 

in monosodium-glutamate obese animals but not in control 

animals. The authors suggested that the increased metabolic 

efficiency observed in these animals stimulated the differ-

entiation of adipocytes, thus favoring reposition of the lost 

adipocytes and restoration of the fat pad removed.

Exercise
Effects of exercise on the metabolic 
profile
Physiologic changes occur to increase lipid utilization dur-

ing exercise. Enhanced sympathetic activity increases cat-

echolamine levels, which activate HSL via b-adrenoreceptor 

stimulation and suppress insulin, reducing its inhibitory 

effects on HSL.5 These changes stimulate lipolysis and 

consequently lead to increased glycerol and circulating 

levels of FFAs, which may be used as substrates for energy 

production.81 In addition, an increase in the catecholamine-

stimulated lipolytic responsiveness of adipocytes seems to 

occur, which further increases lipid mobilization during 

exercise.82,83

During low- to moderate-intensity exercise (40%–65% 

VO2max), lipids are the predominant source of energy.82 

Nevertheless, during high-intensity exercise, lactate accumu-

lation inhibits HSL activity and thus reduces the mobilization 

of adipocyte lipids and favors the use of glucose and glycogen 

as sources of energy production in muscle.84

Chronic exercise training also results in the follow-

ing physiologic adaptations that enhance lipid utilization 

during exercise: i) higher intramuscular TAG hydrolysis,85 

ii) a higher lipolytic capacity of adipocytes in response to 

increased levels of catecholamine due to a greater effi-

ciency or stimulation of the b-adrenergic pathway and a 

diminished inhibition of lipolysis by α-adrenoreceptors,5 

and iii) an increased proportion of energy derived from FA 

oxidation during exercise82 due to an enhanced muscle lipid 

oxidation capacity.83 The latter adaptation is facilitated 

by increased capacities for FA uptake by muscle cells, 

which is likely due to the higher contents of membrane 

FA transport proteins such as FA-binding protein and 

FA translocase (CD36) and subsequent mitochondrial 

transport and β-oxidation, probably caused by a higher 

content of the mitochondrial transporter carnitine palmi-

toyltransferase I.86

It has been established that exercise acutely improves glu-

cose uptake via increased insulin sensitivity and via muscle 

contraction in an insulin-independent manner. Both mecha-

nisms have additive effects and stimulate glucose uptake 

via separate pathways.87,88 Muscle contraction stimulates 

glucose uptake through the following proposed mechanisms: 

increased release of Ca2+ from the sarcoplasmic reticulum, 

which results in the activation of Ca2+/calmodulin-dependent 

protein kinase II (CaMKII); activation of the adenosine 

monophosphate (AMP)-activated protein kinase pathway 

(AMPK) due to a decrease in adenosine triphosphate and 

an increase in AMP; activation of mitogen-activated protein 

kinase 38;87,89 and phosphorylation of Akt/protein kinase B.90 

These mechanisms will ultimately increase the transloca-

tion of GLUT-4 from intrasarcolemmal pools/vesicles to 

the cell surface91 via a mechanism(s) that is not completely 

understood. Therefore, the immediate effects of exercise on 

glucose uptake appear to rely primarily on increased GLUT-4 

trafficking.90 In addition, it has been suggested that insulin 

sensitivity remains elevated immediately after exercise, thus 

improving glucose uptake in an insulin-dependent manner for 

up to 48 hours after exercise cessation.90 This phenomenon is 

probably due to a higher and more responsive translocation 

of GLUT-4 to the cell surface87,91 and to endurance exercise-

induced glycogen depletion.87

Exercise training also improves glucose uptake via 

insulin-mediated mechanisms, thus enhancing insulin sen-

sitivity and activity.87,90 The enhanced activity of insulin 

after exercise training may be associated with the following: 

i) increased expression of GLUT-4 mRNA and protein in 

skeletal muscle;87 ii) enhanced postreceptor insulin signal-

ing at the level of phosphatidylinositol-3-kinase activity, 

which may lead to enhanced GLUT-4 translocation;91 

iii) upregulation of AMPK activity, which enhances glucose 

uptake and stimulates FA oxidation;90 and iv) increased 

oxidative capacity of skeletal muscle via upregulation of 

the proteins involved in mitochondrial biogenesis, such as 

PPARγ coactivator.92 It has been suggested that enhanced 

whole-body lipid oxidation is a strong predictor of insulin 

sensitivity.93 Thus, if exercise training increases the propor-

tion of lipids targeted for oxidation,82 it will ultimately lead 

to improved insulin sensitivity.33
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Exercise may also affect insulin indirectly through its 

effects on adipokines and inflammatory cytokines. However, 

in general, studies investigating the effects of exercise train-

ing on adipokine and cytokine levels and expression are quite 

controversial.

The majority of studies have reported either no change31,94–96 

or a reduction in leptin levels97–102 after chronic exercise train-

ing, and these results have been attributed primarily to the 

capacity of exercise to induce a loss of fat mass.97,98,100,102 

Conversely, a few studies have demonstrated a reduction in 

leptin levels and/or expression regardless of any changes in 

adiposity.99,101 These results suggest that there may be factors 

beyond adiposity that regulate leptin levels and expression 

after endurance training, among which adipokines are strong 

candidates. In addition, it has been proposed that regular 

exercise may lead to a “resetting” of leptin levels, such that a 

lower concentration of leptin can be maintained with a certain 

body fat content due to possible improvements of the activity 

and sensitivity of leptin in the hypothalamus.103

Studies on the effect of aerobic training on plasma adi-

ponectin have also showed conflicting results. Most studies 

have reported no changes in adiponectin levels,102,104–108 despite 

improved insulin sensitivity102,104,105,108 and changes in body 

weight,102,105–108 whereas other studies have demonstrated 

increased adiponectin levels and insulin sensitivity either with 

no changes in body weight109,110 or with weight loss.110–112 These 

heterogeneous results may be explained by the diversity of sub-

ject characteristics (body composition and metabolic profile) 

and the type of intervention used (exercise only or diet plus 

exercise). In addition, exercise intensity also appears to affect 

adiponectin in different ways. Moderate-to-high-intensity 

aerobic or resistance exercise training appears to increase 

adiponectin levels, in contrast to low-intensity exercise, which 

suggests a dose-response relationship.113 More importantly, 

many studies have shown that improvements in insulin 

sensitivity after exercise training may occur in the absence 

of changes in adiponectin.102,104,105,108,114 It is likely that the 

influence of other substances that are modified by exercise 

training and affect adiponectin synthesis and secretion, such 

as TNF-α and IL-6, may have different effects on adiponectin 

levels according to the type of intervention.102

The anti-inflammatory effects of exercise
It has been well established that several proinflammatory 

and anti-inflammatory cytokines increase markedly after 

exercise in a dose-response manner. The higher the duration, 

intensity, and amount of muscle mass recruited, the greater 

the increase.9,115 However, this increase differs from that of 

severe infections, in which the cytokine cascade consists of an 

initial increase in TNF-α and IL-1b followed by increases in 

IL-6, IL-1ra, aTNF-R, and IL-10.116 IL-6 is the first cytokine 

to increase in an exponential fashion (up to 100-fold) in 

response to exercise, followed by modest increases by one- to 

two-fold of TNF-α and IL-1.115,117 This inflammatory response 

is then counterbalanced by an increase in IL-1ra and IL-10, 

which are anti-inflammatory cytokines.117,118 As described 

earlier, IL-10 is a potent inhibitor of IL-1 and TNF-α pro-

duction, and it has been postulated that IL-10 is responsible 

for orchestrating the anti-inflammatory reaction.117 Studies 

have demonstrated that IL-6 is responsible for the increase 

in anti-inflammatory cytokines (IL-10 and IL-1ra) after exer-

cise, and it also inhibits the synthesis of TNF-α and IL-1,118 

thus inducing an anti-inflammatory milieu.9

It has been suggested that regular exercise training may 

exert a chronic anti-inflammatory effect that is potentially 

due to the repeated anti-inflammatory responses elicited 

by each acute bout of exercise.117 However, a link between 

the acute and chronic effects of exercise has not yet been 

established.

Epidemiologic studies have reported a negative asso-

ciation between the amount of regular physical activity 

and the levels of IL-69 and TNF-α.117 Interventional studies 

also support this relationship, although the results are less 

consistent.

A few studies have reported no changes in IL-6 and TNF-α 

levels after exercise training.102,104,106,109,112,119 The majority of 

studies, however, have reported a decrease in IL-6,111,120–122 

TNF-α,123–125 or both.126–128 It has been proposed that a weight 

loss of 10% is associated with a marked improvement in the 

metabolic abnormalities associated with obesity, including 

circulating inflammatory markers.8 In addition, overweight to 

obese people may present low-grade inflammation due to an 

excess fat mass126 and are likely to benefit more from weight 

loss compared with normal-weight subjects. Giannopoulou 

et al104 reported greater decreases in IL-6 levels in subjects 

who demonstrated the highest basal IL-6 levels. Most of the 

studies that reported decreased TNF-α and/or IL-6 levels after 

training evaluated overweight to obese people and used diet 

plus exercise as interventions.102,111,121,122,125–130 The weight 

losses in these studies were substantial (7%–15%), which 

might explain the positive results. If IL-6 and TNF-α are 

highly expressed and secreted from adipose tissue, weight loss 

and fat mass loss would lead to significant decreases in these 

cytokine levels. The isolated effects of exercise, however, 

are much less consistent. Only a few studies have evaluated 

the effects of exercise training without diet on the levels 
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of IL-6 and TNF-α,104,109,123,124 and all but one119 evaluated 

overweight to obese subjects. These studies reported a weight 

loss that did not exceed 5% (3 kg), which is expected because 

exercise training per se does not induce a considerable energy 

deficit that could lead to substantial weight loss.131 The lack of 

significant weight loss in these studies and the different types 

of exercise used may explain the inconsistent results. Four 

studies reported no change,102,104,119 and two studies reported 

a decrease in TNF-α levels.123,124 Thus, the combination of 

exercise training and a hypocaloric diet shows more consistent 

results for the reduction of markers of inflammation than does 

exercise or even diet alone in overweight to obese subjects. 

However, the independent effect of exercise training on 

cytokine production from different cell types within adipose 

tissue requires further investigation.114

To our knowledge, no studies in humans have evaluated 

the effects of exercise on IL-10 levels. However, one experi-

mental study has recently demonstrated that the mesenteric 

adipose tissue of endurance-trained rats showed an increase in 

TNF-α content and an even greater increase in IL-10 content 

in comparison with sedentary rats.37 The authors suggested 

that increased TNF-α is likely to function as a modulator of 

lipid metabolism by increasing lipolysis in adjacent tissues 

and that increased IL-10 may block the potentially deleterious 

inflammatory effects caused by TNF-α. Thus, the increased 

IL-10/TNF-α ratio after exercise training may favor the onset 

of an anti-inflammatory environment in adipose tissue, which 

represents one of the possible mechanisms through which 

exercise may exert its anti-inflammatory effects.

Future studies should evaluate the effects of exercise 

training with or without dieting on proinflammatory and anti-

inflammatory levels to determine the inflammatory balance 

rather than the inflammatory cytokine status alone. Even in 

the absence of changes in proinflammatory cytokines, an 

increase in anti-inflammatory cytokine levels may result in an 

anti-inflammatory environment. Costa Rosa132 has elegantly 

suggested the use of “exercise as a complementary strategy 

in the treatment of chronic diseases”, corroborating the find-

ing that regular exercise appears to protect against diseases 

associated with low-grade systemic inflammation, such as 

most chronic diseases.8

Effects of exercise on body  
fat distribution
Previous studies have consistently shown that without any 

dietary restrictions, exercise training has a modest effect 

on weight and fat loss,6,7,133–135 whereas resistance exercise 

training may even induce increases in body weight through 

elevations in the fat-free mass.7,134,135 One exercise session 

with a duration of 60–90 minutes will lead to the oxidation 

of a very small amount of fat (approximately 50–75 g at the 

most), which has an obviously feeble effect on weight loss.81 

However, if energy intake remains stable, aerobic exercise 

training could have a substantial effect on adiposity over a 

prolonged period.81 Furthermore, there seems to be a pref-

erential reduction in VAT and abdominal SAT rather than 

changes in gluteofemoral SAT136,137 in response to exercise 

training-induced weight loss. Although it is clear that a 

greater amount of weight results in the reduction of more 

visceral fat, even in the absence of weight loss,138–141 exercise 

training may lead to significant reductions in VAT.

As described earlier, the capacity for TAG mobilization of 

adipose tissue varies according to its location.6,17 Abdominal 

adipocytes, especially visceral adipocytes, are more sensi-

tive and responsive to the lipolytic effect of catecholamines 

than gluteofemoral SAT5 due to the number and sensitiv-

ity of b- and α-adrenoreceptors. Thus, because exercise 

greatly enhances sympathetic-induced catecholamine levels, 

repeated bouts of exercise could lead to consistent, preferen-

tial lipid mobilization in abdominal adipose tissue, especially 

VAT, as opposed to gluteofemoral SAT, thus resulting in 

decreased abdominal fat and sustained SAT.6,133

Epidemiologic studies have demonstrated an inverse 

relationship between training status and the degree of 

upper-body fat.5,140 More importantly, evidence from inter-

ventional studies support exercise as an effective interven-

tion for reducing abdominal fat, especially visceral fat, in 

overweight or obese individuals.140 However, it is important 

to note that pretraining weight is a strong determinant of 

exercise-induced changes in abdominal fat,6 as most studies 

have reported a reduction of abdominal fat in overweight 

and obese subjects but not in nonobese subjects.140 Thus, if 

excess upper-body fat, especially in the visceral region, has 

a greater association with several cardiovascular risk factors 

and diseases compared with excess lower-body fat,17,41,42,44,45 

exercise training may be considered a very important non-

pharmacologic treatment for obesity, in part by altering the 

distribution of body fat toward lower-body regions.

Liposuction and exercise training
Liposuction and exercise appear to directly affect metabo-

lism in similar ways, which suggests a possible interaction 

between these two strategies. Nevertheless, there is one 

main difference between them: liposuction surgery decreases 

SAT exclusively, whereas exercise training enhances lipid 

metabolism in SAT but also in VAT. Assuming that the 
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immediate liposuction-induced increase in the VAT/SAT 

ratio might be detrimental to metabolism,53 exercise training 

might be a prime strategy to block or reverse these possible 

deleterious effects due to its ability to reduce VAT.5,6

However, the aforementioned hypothesis is very unlikely 

because most studies in humans have failed to demonstrate 

detrimental effects of liposuction on metabolism.4,51,53,55–63 

During liposuction, not only the abdominal superficial SAT 

layer but also the deep SAT layer is removed, and the latter is 

strongly related to insulin resistance and other cardiovascular 

risk factors.38 In accordance, most studies have reported either 

no change55–58 or improvements in one or more cardiovascular 

risk factors after liposuction.4,51,53,59–63 Therefore, in light of the 

positive effects on insulin sensitivity and the inflammatory bal-

ance, physical exercise training could have an additive or even 

a synergistic effect with liposuction on the metabolic profile.

Finally, animal studies have demonstrated that when body 

fat is surgically removed, it is recovered within a period of 

weeks to months,54,67–70 usually due to compensatory adipose 

tissue expansion at intact depots54,68,69 rather than regrowth of 

the fat mass at aspirated depots.67 According to the “lipost-

hatic theory” proposed by Kennedy,66 an instant decrease in 

body fat through liposuction could trigger feedback systems 

that might favor the recovery of body fat through a decrease 

in energy expenditure and/or an increase in energy intake. 

According to animal67,77 and human studies,55 it is likely that 

decreases in energy expenditure and/or increases in metabolic 

efficiency may provide the extra energy needed for com-

pensatory fat deposition following fat removal.67,77 Regular 

exercise training increases the total energy expenditure and 

preserves or even increases the fat-free mass,7 which could 

prevent the liposuction-induced decrease in energy expen-

diture and enhance lipid mobilization and oxidation.6 Thus, 

exercise training associated with liposuction could attenuate 

or even block the possible compensatory fat deposition in 

intact depots or regrowth of the fat mass.

To our knowledge, no human studies (and only one experi-

mental study) have attempted to evaluate the effects of lipo-

suction associated with exercise training.142 As expected, the 

authors reported that exercise training attenuated the increased 

lipogenesis rate and thus impaired the restoration of adipose 

tissue observed in lipectomized sedentary animals. Further 

studies are necessary to confirm these results in humans.

Conclusion
Liposuction is the most popular aesthetic surgery performed 

worldwide.47 In general, studies investigating the metabolic 

effects of liposuction are controversial, and most of the studies 

performed in humans have reported either no change55–58 

or improvements in one or more cardiovascular risk 

factors.4,51,53,59–63 In addition, animal studies have shown that 

when body fat is surgically removed, it is recovered within a 

period of weeks to months,54,67–70 but the few studies performed 

in humans have demonstrated inconsistent results.

Chronic exercise training induces physiologic adapta-

tions that enhance lipid oxidation during exercise and 

improve insulin sensitivity and inflammatory balance. It also 

results in an increased total energy expenditure, a preserved 

or increased fat-free mass,7 and reduced abdominal fat,6 espe-

cially visceral fat, in overweight or obese individuals.140

Thus, one could suggest that the association of exercise 

training with liposuction could, first, attenuate or even block 

the possible liposuction-induced compensatory fat deposi-

tion in intact depots or regrowth of the fat mass and, second, 

exert an additive or even a synergistic effect with liposuction, 

improving insulin sensitivity and the inflammatory balance, 

which would lead to an improvement of cardiovascular risk 

factors.

Thus, one could suggest that liposuction and exercise 

are safe and effective strategies for fat loss that could be 

associated with better results either for aesthetic purposes 

or for the treatment of metabolic disorders. Furthermore, 

studies in humans regarding the interaction of these two fat 

loss interventions on metabolism and adiposity are needed 

to confirm the positive effects of exercise reported in animals 

after partial lipectomy.142
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