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Purpose: Sepsis-induced lung injury (SLI) is a serious complication of sepsis. PANoptosis, a novel form of inflammatory 
programmed cell death that is not yet to be fully investigated in SLI. Our research aims to screen and validate the signature genes 
of PANoptosis in SLI by bioinformatics and in vivo experiment.
Methods: SLI-related datasets were downloaded from NCBI Gene Expression Omnibus (GEO) database. Differentially expressed 
genes (DEGs) of SLI were identified and intersected with the PANoptosis gene set to obtain DEGs related to PANoptosis 
(SPAN_DEGs). Then, Protein–Protein Interaction (PPI) network and functional enrichment analysis were conducted based on 
SPAN_DEGs. SVM-REF, LASSO and RandomForest three algorithms were combined to identify the signature genes. The 
Nomogram and ROC curves were performed to predict diagnostic value. Immune infiltration analysis, correlation analysis and 
differential expression analysis were used to explore the immunological characterization, correlation and expression levels of the 
signature genes. Finally, H&E staining and qRT-PCR were conducted for further verification in vivo experiment.
Results: Twenty-four SPAN_DEGs were identified by intersecting 675 DEGs with the 277 PANoptosis genes. Four signature genes 
(CD14, GSDMD, IL1β, and FAS) were identified by three machine learning algorithms, which were highly expressed in the SLI 
group, and had high diagnostic value in the diagnostic model. Moreover, immune infiltration analysis showed that most immune cells 
and immune-related functions were higher in the SLI group than those in the control group and were closely associated with the 
signature genes. Finally, it was confirmed that the cecum ligation and puncture (CLP) group mice showed significant pathological 
damage in lung tissues, and the mRNA expression levels of CD14, IL1β, and FAS were significantly higher than the sham group.
Conclusion: CD14, FAS, and IL1β may be the signature genes in PANoptosis to drive the progression of SLI and involved in 
regulating immune processes.
Keywords: sepsis, lung injury, PANoptosis, machine learning, immune infiltration analysis

Introduction
Sepsis is a common life-threatening systemic inflammatory disease caused primarily by a dysregulated response to 
pathogenic infection.1 Multiple organs may be damaged during the development of sepsis, the lung is especially 
vulnerable, occurs the earliest and is one of the most common organs to fail.2 Approximately 50% of patients with 
sepsis develop acute lung injury (ALI).3 Additionally, sepsis is also the dominant cause of acute respiratory distress 
syndrome (ARDS) or ALI. The main pathological signatures of ARDS/ALI are acute inflammation, alveolar epithelial 
injury, interstitial edema and immune cell infiltration.4 Few efficient drugs or therapies are available to treat sepsis- 
induced lung injury (SLI) at present, resulting in a higher mortality rate and poor prognosis as well.5 Anti-inflammatory 
therapy, noninvasive ventilation, invasive mechanical ventilation, extracorporeal membrane oxygenation and supportive 

Journal of Inflammation Research 2024:17 1941–1956                                                     1941
© 2024 Yang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Inflammation Research                                                         Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 30 November 2023
Accepted: 20 February 2024
Published: 28 March 2024

Jo
ur

na
l o

f I
nf

la
m

m
at

io
n 

R
es

ea
rc

h 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


care are the main treatments in clinical.6 However, the exact molecular mechanisms of SLI remain unclear, and the 
development of new and effective therapeutic strategies is urgently needed.

Cell death has been proven to play a crucial role in infections, inflammatory diseases, neurodegenerative diseases, 
cancer, etc. With the continuous updating of cell death modalities such as apoptosis, pyroptosis, autophagy, ferroptosis, 
and cuproptosis, recent studies have uncovered complex cross-linking process between cell death patterns.7 PANoptosis 
(“P” for pyroptosis, “A” for apoptosis, and “N” for necroptosis) is an inflammatory programmed cell death regulated by 
the PANoptosome complex, with key signatures of pyroptosis, apoptosis and necroptosis.7 Some biomarkers related to 
PANoptosis, including TNF receptor 1 (TNFR1), cysteinyl aspartate-specific proteinase (caspase)-3, caspase-7 and 
caspase-8 for apoptosis, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis- 
associated speck-like protein containing a CARD (ASC), caspase-1, and Gasdermin D (GSDMD) for pyroptosis, 
TNFR1, receptor-interacting protein kinase 1 (RIPK1), RIPK3, caspase-8, and mixed-lineage kinase domain-like 
(MLKL) for necroptosis have shown a fairly strong link in inflammatory disease pathogenesis.8 The organism partici-
pates in PANoptosis by regulating the activation and inhibition of cell death during bacterial infection mainly through 
TLRs and related death receptor (including TRIF, FADD, MyD88, and RIPK1) through alters activation status, gene 
expression, and protein localization of cell death initiator proteins.9 Previous studies have revealed that MiR-29a-3p 
could ameliorate ALI by reducing the level of inflammatory factors and downregulate PANoptosis-related genes Z-DNA 
binding protein 1 (ZBP1), GSDMD, caspase-3, caspase-8, and MLKL in mice lung tissues.10 Besides, pyroptotic 
macrophages can release danger-associated molecular pattern molecules and danger signals to enhance the inflammatory 
response during the pathogenesis of sepsis-associated ALI.11 Moreover, it was demonstrated that the macrophage- 
excretive exosome Aminopeptidase N (APN) could trigger lung epithelial cell necroptosis through APN-related mechan-
isms in SLI.12,13 Consequently, different types of programmed cell death are involved in inflammatory responses and 
tissue damage, and play an important role in maintaining tissue homeostasis in SLI. It would be sensible to infer that 
PANoptosis may be closely associated with the pathological mechanism of SLI.

However, the role of PANoptosis in SLI remains unclear, and requires further exploration. Bioinformatics and 
machine learning have emerged as potential strategies for exploring underlying mechanisms and potential 
biomarkers.14 In the study, R tool and the limma package were used to perform differential gene analysis based on the 
four data sets, and then merged differentially expressed genes (DEGs) with PANoptosis genes to obtain DEGs related to 
PANoptosis (SPAN_DEGs) for functional enrichment analysis. The signature genes were identified by three machine 
learning algorithms, including support vector machine-recursive signature elimination (SVM-RFE), least absolute 
shrinkage and selection operator (LASSO) logistic regression, and RandomForest (RF). Subsequently, the Nomogram 
and receiver operating characteristic (ROC) curves were established for diagnostic value prediction. Immune infiltration 
analysis and the signature genes correlation with infiltrating immune cells were performed to investigate the mechanisms 
of immunity in SLI. Then, gene correlation analysis and differential expression analysis were implemented to explore the 
correlation and expression levels of the signature genes. Finally, we verified the results by hematoxylin and eosin (H&E) 
staining and quantitative real-time PCR (qRT-PCR) in animal experiments. In summary, the research can provide new 
therapeutic targets for sepsis patients with lung injury.

Materials and Methods
Data Acquisition and Preprocessing
Sequencing data of GSE15379, GSE23767, GSE52474 and GSE60088 from mice lung tissues were downloaded from the 
NCBI Gene Expression Omnibus15 (GEO; https://www.ncbi.nlm.nih.gov/geo/). The specific information of these datasets 
is displayed in Table 1. The raw datasets were pre-processed by “affy” in R, each probe name in microarray datasets was 
converted into corresponding gene symbol. Then, these datasets were normalized, the average value was taken as its 
expression value when multiple probes corresponded to a common gene. Batch effects and other unwanted variance 
between the two datasets were eliminated using the surrogate variable analysis (SVA) package from Bioconductor. 
Subsequently, the SLI-related genes expression matrix file was identified for the following analysis. The LIMMA 
package with p-value <0.05 and |log2 fold-change (FC)|≧0.5 as screening criteria was applied to screen DEGs between 
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the control and SLI groups. The expression heat maps and Volcano plot of the DEGs were presented by using the 
R package pheatmap and ggplot2. Meanwhile, 277 PANoptosis-related genes were identified from the published 
literature by merging the gene lists of apoptosis, necroptosis and pyroptosis while removing redundant genes.16 

Finally, DEGs were intersected with PANoptosis-related genes to obtain SPAN_DEGs.

Construction of PPI Network and Functional Enrichment Analysis
To explore the correlations between SPAN_DEGs, the SPAN_DEGs gene set was imported into STRING website 
(version 12.0, https://string-db.org/) to construct PPI (protein–protein interaction) network. The TSV file was down-
loaded and then imported to the cytoscape 3.7.0 for visualization, the size of the nodes and the thickness of the 
connecting lines were plotted according to the degree and combined score. Gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to investigate the biological 
functions and related signaling pathways of SPAN_DEGs. Go consists of cellular components (CC), molecular functions 
(MF) and biological pathways (BP) and is used to analyze gene function and biological processes.17 KEGG is now 
widely used to explain the functions and involved pathways of genes. Furthermore, we used subset sets from the 
Molecular Signatures Database for Gene Set Enrichment Analysis (GSEA) to assess the pertinent pathways and 
molecular mechanisms based on phenotypic categorization and gene expression profiles.18

Acquisition of the Signature Genes by Machine Learning Algorithms
Three machine learning algorithms, including SVM-RFE, LASSO logistic regression analysis, and RF algorithm, were 
utilized to screen the signature genes from SPAN_DEGs. SVM-REF is a machine learning method based on support 
vector machines, which finds the best variables by censoring the signature vectors generated by SVM.19 LASSO logistic 
regression identifies variables mainly by finding the λ with the smallest classification error by “glmnet” package and is 
mainly used to screen signature variables to construct the best classification model.20 SPAN_DEGs were ranked by using 
the RF algorithm, and the relative value above 0.25 was considered to be typical of chance causes.21 Finally, the genes 
obtained by intersecting the three machine learning algorithms with each other were regarded as the signature genes.

Construct a Diagnostic Nomogram and ROC Analysis
We used the “rms” R package to create a nomogram to predict the recurrence of SLI by adding the score corresponding 
to each factor and transferring the overall score to the bottom scale.22,23 ROC curves were visualized to present the area 
under the curve (AUC) for evaluating their diagnostic value. In general, an AUC of 0.5 indicates no discrimination, 
whereas values between 0.7 and 0.8 are regarded as acceptable, between 0.8 and 0.9 as excellent, and beyond 0.9 is 
considered outstanding.24

Immune Infiltration Analysis
The immune infiltration analysis was investigated using ssGSEA based on immunologic signature gene sets, which 
contained two parts: 16 immune cell types (activated dendritic cells (aDCs), B cells, CD8+ T cells, DCs, immature DCs 
(iDCs), macrophages, mast cells, neutrophils, natural killer (NK) cells, plasmacytoid DCs (pDCs), T helper cells, 
T follicular helper (Tfh), T helper type 1 (Th1) cells, Th2 cells, tumor-infiltrating lymphocytes (TIL), regulatory 
T (Treg)) and 13 immune function types (antigen presenting cell (APC) co-inhibition, APC co-stimulation, chemokine 

Table 1 The Summarized Information of 
Microarray Datasets

GEO Data Set Platform Control SLI

GSE15379 GPL1261 3 3

GSE23767 GPL6887 3 8

GSE52474 GPL1261 15 10
GSE60088 GPL1261 4 5
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C-C-Motif receptor (CCR), check-point, cytolytic_activity, human leukocyte antigen (HLA), inflammation promoting, 
major histocompatibility complex (MHC) class I, parainflammation, T-cell co-inhibition, T-cell co-stimulation, type 
I interferon (IFN) response, Type II IFN response). The various levels of infiltration of immune cells and immune 
function types between the control group and the SLI group were performed. Besides, we analyzed the correlation 
between the signature genes and immune cells and immune function types based on Spearman correlation analysis.

Correlation Analysis and Difference Analysis of the Signature Genes
To investigate the correlation between the signature genes, the “corrplot” package was used to perform correlation 
analysis between the signature genes. Meanwhile, the expression levels of the signature genes in the control and SLI 
groups were implemented by using “ggpubr” package.

Animal Modeling and Animal Group
6–8-weeks old male C57BL/6 mice, weighting 20–22 g, were purchased from Guangzhou Regal Biotechnology Co., Ltd. 
(SCXK (Yue) 2021-0059, Guangzhou, China). All mice were housed in a standard specific pathogen-free (SPF) level 
laboratory animal room with a standard at 22–24 °C and 50–60% relative humidity with 12/12–h light/dark schedule.

SLI model was established by cecum ligation and puncture (CLP) method as previously published protocol.25 

Adaptive feeding for 3 days, all mice were fasted for 12 h before operation and drinking freely. Mice were anesthetized 
by intraperitoneal injection of 1% pentobarbital (0.08 mL/10 g), the peritoneum was then opened to 1–2 cm to expose the 
cecum. We ligated the distal point of the ileocecal valve of the cecum with a 4–0 silk ligature and punctured it twice with 
a 21G needle, then gently squeezed a small amount of feces before returning the cecum to its original position in the 
abdominal cavity and closing it. The mice in the sham group were simply exposed to the cecum by laparotomy and then 
closed without CLP. After operation, all mice were subcutaneously injected with 0.9% normal saline (37°C, 0.5mL/10g) 
and rewarmed until resuscitation. After 24 h of surgery, all mice were sacrificed and collected lung tissue.

Histopathologic Analysis
Fresh lung tissue was fixed with 4% paraformaldehyde (PFA) for at least 24 h, dehydrated with gradient ethanol, paraffin 
embedded, sectioned into 4 μm slices for hematoxylin and eosin (H&E), and observed lung pathological injuries under 
the optical microscope. Histopathologic scoring criteria of lung injury consists of five areas, namely neutrophil infiltra-
tion, alveolar congestion, interstitial edema, alveolar hemorrhage and thickening of the alveolar wall, each item was 
scored 0–3, from no injury to severe injury.26

RNA Extraction and Quantitative Real-Time PCR (qRT-PCR)
We used qRT-PCR to verify the differential expression of mRNAs for the characterized genes. Total RNA of lung tissue 
was extracted by using Trizol reagent (Invitrogen, Carlsbad, CA, USA), the purity and concentration of total RNA was 
detected using a MicroplateReader (BioTek Epoch 2, Vermont, USA). According to the cDNA synthesis kit (RR037A, 
Takara, Japan), the mRNA was reverse-transcribed into complementary DNA (cDNA) (Applied Biosystems™ 2720 
Thermal Cycler, Thermo Fisher Scientific, Waltham, MA, USA). The mRNA expression levels were measured with the 
SYBR® Premix Ex Taq™ II (RR820A, Takara, Japan) by using Applied Biosystems® 7500 Fast Real-Time PCR System 
(Applied Biosystems Inc., Carlsbad, CA, USA). Relative mRNA levels were calculated using the 2−ΔΔCT method. The 
primer sequences used in the experiments were synthesized by Shanghai Shenggong Technology Co., Ltd, which are 
presented in Table 2.

Statistical Analysis
R software (v.4.1.0) and GraphPad Prism 9.5.0 (GraphPad Software, San Diego, CA, USA) were used for statistical 
analysis and figures construction. Continuous variables were displayed as mean±standard deviation (SD), Student’s t-test 
or Wilcoxon test was employed to compare whether there is a significant difference between the two groups of data. P < 
0.05 indicated statistical significance.
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Results
Identification of SPAN_DEGs and Functional Enrichment Analysis
The merged GEO datasets contained 25 control group samples and 26 SLI group samples, these samples were normalized 
and presented in a box plot (Figure 1A). Under the criteria of p-value <0.05 and |log2FC| ≧ 0.5, 675 DEGs were 
identified, with 465 up-regulated genes and 210 down-regulated genes. The volcano plot, a heat map as well as box plots 
of typical DEGs visually showed the results of differential expression analysis (Figure 1B–D). The PANoptosis gene set 
was composed of 27 genes related to pyroptosis, 259 genes related to apoptosis, 15 genes related to necrosis (Figure 1D, 
Supplementary Table 1). We mapped 675 DEGs and PANoptosis gene set to obtain 24 common genes, defined as 
PANoptosis-associated DEGs for SLI (SPAN_DEGs) (Figure 2A).

We constructed PPI network to explore the interrelationships between SPAN_DEGs, a total of 24 nodes and 118 
edges in the PPI network (Figure 2B). To further investigate the importance of these genes, a node’s size and color 
depend on its degree, the tightness of the connection between the nodes is indicated combined score (Figure 2C). The top 
15 GO terms were shown in a bubble chart (Figure 2D). BP enrichment revealed SPAN_DEGs are mainly enriched in 
apoptotic process, positive regulation of nuclear factor kappa B (NF-κB) transcription factor activity, positive regulation 
of DNA-binding transcription factor activity, positive regulation of cytokine production, positive regulation of IL-8 
production. Enriched CC is related to membrane raft, death-inducing signaling complex, endosome membrane, cyto-
plasmic vesicle membrane, caveola. MF enrichment revealed SPAN_DEGs are mainly enriched in tumor necrosis factor 
receptor superfamily binding, death receptor binding, endopeptidase activity, protein serine/threonine kinase activity, 
caspase recruitment domain (CARD) domain binding. KEGG enrichment analysis suggested that SPAN_DEGs were 
mainly enriched in TNF signaling pathway, NOD-like receptor signaling pathway, cytosolic DNA-sensing pathway, Toll- 
like receptor signaling pathway, NF-kappa B signaling pathway (Figure 2E). The results of GSEA analysis showed that 
SPAN_DEGs were mainly involved in IL-17 signaling pathway, NOD-like receptor signaling pathway (Figure 2F). 
Overall, these results showed that NOD-like receptor signaling pathway, TNF signaling pathway were the main path-
ways, suggesting they may be involved in inflammatory response and oxidative stress.

Selection of the Signature Genes
A total of 5 predicted signature genes (CD14, GSDMD, DYNLL1, PSMD9, and STAT3) were obtained by SVM-RFE 
machine learning algorithm (Figure 3A). Seven predicted signature (CD14, IL1β, TNF, IRF1, GSDMD, SNAI2, and 
FAS) genes were selected from statistically significant variables by LASSO regression analysis (Figure 3B). The top 10 
genes with relative importance (CD14, CASP4, IL1β, FAS, MYD88, GSDMD, BID, STAT3, and IRF1) were screened by 
RF algorithm (Figure 3C and D), the specific results are presented in Table 3. Finally, we used a Venn diagram to show 
that the four signature genes (CD14, GSDMD, IL1β, and FAS) that overlapped each other were found through the 
intersection of the three machine learning algorithms described above (Figure 3E).

Construction and Evaluation of a Diagnostic Nomogram
We constructed a diagnostic nomogram for the signature genes (CD14, GSDMD, IL1β, and FAS) using the rms package 
(Figure 4A) and assessed their predictive efficacy employing calibration curves. The result of calibration curves showed 

Table 2 Primers Used for qRT-PCR

Gene Name Forward Primer Reverse Primer

CD14 CTCTGTCCTTAAAGCGGCTTAC GTTGCGGAGGTTCAAGATGTT
FAS TATCAAGGAGGCCCATTTTGC TGTTTCCACTTCTAAACCATGCT

GSDMD CCATCGGCCTTTGAGAAAGTG ACACATGAATAACGGGGTTTCC

IL-1β GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG
β-actin GTGACGTTGACATCCGTAAAGA GCCGGACTCATCGTACTCC

Abbreviations: qRT-PCR, quantitative real-time PCR; CD14, cluster of differentiation 14; FAS, factor-related 
Apoptosis; GSDMD, Gasdermin D; IL-1β, Interleukin—1β.
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Figure 1 Data preprocessing and differential gene analysis. (A) Boxplot after normalization of raw data between samples. (B) Volcano plot of DEGs. Red represents up- 
regulated DEGs, grey represents no significant difference, and blue represents down-regulated DEGs. (C) Heat map of DEGs. Red indicates theDEGs is highly expressed in 
the sample, and blue indicates the DEGs is lowly expressed in the sample. (D) Box plots of typical DEGs. (E) The PANoptosis gene list. **p < 0.01, ****p < 0.0001.
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Figure 2 PPI network construction and functional analysis of SPAN_DEGs. (A) The Venn diagram of DEGs versus PANoptosis related genes. (B) PPI network of 
SPAN_DEGs. (C) The core target network of SPAN_DEGs. (D) GO analysis based on the SPAN_DEGs. (E) KEGG enrichment analysis based on the SPAN_DEGs. (F) 
GSEA analysis based on the SPAN_DEGs.

Figure 3 Signature genes selection. (A) The accuracy curve and error rate curve for 5-fold cross-validation based on SVM-RFE algorithm. (B) Lasso regression plot and 10- 
fold cross-validation plot. (C) RF error rate versus the number of classification trees. (D) The top 20 relatively significant genes based on RF algorithm. (E) Three algorithmic 
Venn diagram screening signature genes.
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that the predicted probability of the model is fairly consistent with the actual probability, indicating that the model is 
quite accurate (Figure 4B). Additionally, ROC curve analysis can also be used to evaluate predictive correctness. The 
AUC of the ROC curve of nomogram and these signature genes was 0.957 of nomoscore, 0.932 of CD14, 0.823 of FAS, 
0.791 of GSDMD, and 0.900 of IL1β respectively, implying that these signature genes had great diagnostic efficiency in 
the model (Figure 4C and D).

Immunological Infiltration Analysis
The results of ssGSEA scores of immune cells and immune functions between the control and SLI groups revealed that 
CD8+ T cells and B cells in the SLI group were lower than in the control group after excluding the items with not 

Table 3 The Results of Three Machine Learning Algorithms

FeatureName FeatureID AvgRank Gene Coefficients Gene Importance

SVM-RFE CD14 1 3.1 LASSO (Intercept) −20.52541387 RF CD14 7.040699814
GSDMD 10 5.4 CD14 1.303205256 CASP4 3.052567717

DYNLL1 23 6.3 IL1β 8.58E-05 IL1β 2.193567885

PSMB9 20 6.9 TNF 0.094865629 FAS 1.943585015
STAT3 12 7.3 IRF1 0.199916584 MYD88 1.793590201

GSDMD 1.130287863 GSDMD 1.473221718

SNAI2 −0.85481821 BID 1.060887261
FAS 0.232234042 STAT3 0.944497169

IRF1 0.736430511
SNAI2 0.682371795

Abbreviations: SVM-RFE, support vector machine-recursive signature elimination; LASSO, least absolute shrinkage and selection operator; RF, 
RandomForest; CD14, cluster of differentiation 14; GSDMD, Gasdermin D; DYNLL1, Dynein Light Chain LC8-Type 1; PSMB9, proteasome 20S subunit 
beta 9; STAT3, Signal transducer and activator of transcription 3; IL-1β, Interleukin—1β; TNF, tumor Necrosis Factor; IRF1, Interferon regulatory factor 1; 
SNAI2, Snail Family Transcriptional Repressor 2; FAS, factor-related Apoptosis; CASP4, caspase-4; MYD88, Myeloid differentiation factor 88; BID, BH3- 
Interacting Domain Death Agonist.

Figure 4 Construction and validation a diagnostic nomogram model. (A) A diagnostic nomogram was developed based on the four signature genes. (B) Calibration curves 
to assess the predictive power of the nomogram. (C) ROC curve of the four signature genes. (D) ROC curves of nomoscore and the four signature genes, respectively.
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statistically significant (p > 0.2), and the rest immune cells and immune functions in the SLI group were higher than 
those in the control group (p < 0.2) (Figure 5A). The heat map of the correlation between signature genes and immunity 
showed that GSDMD was negatively correlated with mast cells, macrophages, CD8+ T cells and was positively 
correlated with others. After excluding entries that were not statistically significant, CD14, FAS, and IL1β were 
positively correlated with all remaining immune cells and immune functions (Figure 5B).

Correlation Analysis and the Expression Levels of the Signature Genes
Difference analysis was conducted to further determine the four signature genes expression levels between the control 
group and the SLI group, we found that these signature genes were highly expressed in SLI group based on difference 
expression analysis (p < 0.05) (Figure 6A–D). Furthermore, We performed the correlation analysis to better understand 

Figure 5 Correlation between SLI and immunity. (A) Comparison of ssGSEA scores of immune cells and immune functions between the SLI group and the control group. 
(B) Correlation between the characteristic genes and immunity. *p < 0.05, **p < 0.01, ***p < 0.001, “ns” represents no significance.

Figure 6 The expression levels of the four signature genes between the SLI group and the control group. (A) The expression level of CD14. (B) The expression level of 
GSDMD. (C) The expression level of IL-1β. (D) The expression level of FAS.
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the correlation between the signature genes, the results of the heat map and the scatter plots of correlation coefficients 
indicated that FAS and CD14 (r = 0.75, p < 1e-0.5), CD14 and IL1β (r = 0.74, p < 1.4e-0.5), and FAS and IL1β (r = 0.7, 
p < 6.1e-0.5) were positively correlated, indicating that the signature genes CD14, FAS and IL1β may have had 
significantly similar features in SLI (Figure 7A–G).

H&E Staining
The lung sections of mice in the sham group showed normal alveolar structure, relatively homogeneous alveolar lumen 
volume, thin alveolar septum, no edema or inflammatory infiltrate, homogeneous cytoplasmic staining, clear nuclei. 
Whereas the lungs of the CLP group mice revealed alveolar congestion, inflammatory exudation, and thickening of the 
alveolar septum, with the higher lung injury score than the sham group (p < 0.0001) (Figure 8A and B).

Validation of Bioinformatics Results by qRT-PCR
The qRT-PCR results indicated that the mRNA expression levels CD14, FAS, and IL1β in lung tissues were significantly 
higher in the CLP group than the sham group (p < 0.05) and were consistent with the results of bioinformatics analysis 
(Figure 9A–C). However, the mRNA expression level of GSDMD was higher in the sham group than the CLP group (p > 
0.05) (Figure 9D).

Discussion
Sepsis is a life-threatening organ dysfunction caused by a complex series of pathological processes resulting from 
a dysregulated host response to infection, often accompanied by a dysregulated immune response and multi-organ 
dysfunction, leading to high mortality rates and an enormous healthcare burden worldwide.1,27 The lung is the most 
commonly affected organ, with approximately 50% of sepsis causing lung injury, but the exact mechanism remains 
unclear and effective drugs are extremely limited.3,28,29 Recently, as the concept of PANoptosis was proposed, revealing 
the complex interplay of different cell death patterns in the development of disease, which has become a research hotspot 

Figure 7 Correlation between the four signature genes. (A) Heat map of correlation. (B) A scatter plot between CD14 and GSDMD. (C) A scatter plot between IL-1β and 
FAS. (D) A scatter plot between IL-1β and GSDMD. (E) A scatter plot between CD14 and FAS. (F) A scatter plot between GSDMD and FAS. (G) A scatter plot between IL- 
1β and CD14.
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to identify new biomarkers and therapeutic targets.30 However, the current research about the role of PANoptosis in SLI 
is insufficient.

With the rapid development of bioinformatics technologies and molecular studies, they play an important role in 
mechanistic research of related diseases and drug development. Our study utilized a thorough and in-depth assessment 
system to mine and validate the signature genes and molecular pathways of PANoptosis involved in SLI through 
bioinformatics. In particular, the use of machine learning algorithms and immune infiltration analysis makes the study 
more scientific and convincing, aiming to deeply explore the pathologic processes and molecular mechanisms of SLI and 
provide new ideas and therapeutic targets for research and clinical treatment.

In our study, we identified 675 DEGs and found 465 up-regulated genes and 210 down-regulated genes. The Volcano 
plot and heat map of DEGs revealed that multiple chemokines (CCL2, CCL3, CCL7, CCL12, and CCL17), CXC 

Figure 8 Lung pathological change of mice. (A) Results of H&E staining of the lung tissues (Images were magnified at 200× and 400×, Scale bar = 50 μm). (B) Lung injury 
score of HE staining (n=3). Data are represented as the mean ± SD. ****P < 0.0001.

Figure 9 The results of RT-PCR experiment. (A–D) The mRNA expression levels of CD14, IL1β, FAS, and GSDMD in mice lung tissues (n=6). Data are represented as the 
mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001.
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chemokine subfamily (CXCL1, CXCL2, CXCL3, and CXCL10), interleukins (IL-6 and IL-1β), and Serum amyloid As 
(SAA1 and SAA3) were main up-regulated genes, Methyltransferase-like protein 7A2 (METTL7A2) was main down- 
regulated gene. Notably, the inflammatory hyperresponsive phase, macrophages polarize toward the M1 type and release 
large amounts of inflammatory factors (TNF-α, IL-6 and IL-1β) and chemokines in the early stages of sepsis. Moreover, 
chemokines are a class of small cellular factors or signaling proteins secreted by cells, and are also crucial active 
mediators in the immune response, which can induce the proliferation of immune cells to further participate in the 
immune response, activate a variety of enzyme activities and stimulate the killing activity of natural killer cells.31 

CXCL1 and CXCL2, as specific CXC chemokines, can effectively attract neutrophils and are important regulators of 
neutrophil infiltration in SLI.32 In particular, it was found that inhibiting of CXCR2, the main receptor for CXCL2 and 
CXCL1, significantly alleviated the pulmonary accumulation of neutrophils in the sepsis mice.33 As an acute-phase 
protein, SAA is highly expressed following infection and stress and can be used as a sensitive and reliable marker of 
inflammatory response for the early diagnosis of sepsis.34,35 METTL7A is a member of the METTL family of 
methyltransferases, METTs can catalyze DNA methylation and are involved in inflammatory responses and immune 
dysregulation, and play an important role in lung cancer, pneumonia, and other diseases.36

By taking the intersection of 675 DEGs with 277 PANoptosis-related genes, 24 SPAN_DEGs were obtained. The 
results of PPI network presented that TNF, CASP1, IL-1β, Myd88, STAT3, and IRF1 were the top 6 genes in the network 
according to degree values. In the classical pyroptosis pathway, active caspase-1 (CASP1) can cleave GSDMD protein to 
form active N-terminus and C-terminus, and the N-terminus contributes to perforation of the cell membrane and cell 
death, and CASP1 can also process pro-IL-1β to form active IL-1β, which can be released into extracellular cells to 
amplify inflammation, whereas heat shock factor 1 (HSF1) can inhibit the activation of CASP1 and the maturation of IL- 
1β through the promotion of ubiquitination of NLRP3.37 Myeloid differentiation factor 88 (MyD88) is an important 
junction protein molecule in the TLR4/MyD88/NF-κB signaling pathway, LPS-induced SLI was associated with 
activation of the TLR4/MyD88/NF-κB signaling pathway, which was significantly inhibited by Allicin, and down- 
regulated the expression of the inflammatory cytokines IL-1β, TNF-α, and IL-6.38 STAT3 is a core member of the JAK/ 
STAT signaling pathway, previous studies have shown that the JAK2/STAT3 signaling pathway can be activated by 
a number of cytokines in the early stage of sepsis, and aggravate SLI.39 As a member of the interferon transcription factor 
family, interferon regulatory factor 1 (IRF1) is recognized as a key molecule in the regulation of macrophage M1 
polarization and the development of sepsis-related ARDS, thereby promoting SLI.40 These findings suggest that the core 
genes screened from SPAN_DEGs are closely related to multiple inflammatory pathways and all of them are key genes 
on the pathways. Therefore, it can be reasonably inferred that PANoptosis may participate in the complex immuno- 
inflammatory regulatory process in the pathogenesis of SLI.

Subsequently, GO, KEGG and GSEA enrichment analysis showed that SPAN_DEGs mainly associated with TNF- 
signaling pathway, NOD-like receptor (NODs) signaling pathway, cytosolic DNA-sensing pathway, Toll-like receptor 
(TLRs) signaling pathway, NF-κB signaling pathway, IL-17 signaling pathway. These regulatory pathways have been 
reported to be closely associated with SLI in previous studies. TNF is one of the cytokines that make up the acute-phase 
response and is involved in the systemic inflammatory response, triggering the activation of a number of pathways, 
including the NF-κB and MAPK pathways. In addition, TNF-α has also been found to participate in sepsis immuno-
suppression by increasing apoptosis, and its plasma level is significantly correlated with sepsis mortality.41,42 During lung 
injury, macrophages recognize pathogen-associated molecular patterns (PAMPs) of microorganisms or danger-associated 
molecular patterns (DAMPs) through TLRs, NODs, and a variety of other pattern-recognition receptors, and then clear 
and phagocytose them. In addition, pattern recognition leads to the release of cytokines involved in the initial response, 
TNF-α, type I IFN, and IL-1β, which are released and will activate lung macrophages through the NF-κβ or IRF signaling 
pathways.43,44 A research focused on bioinformatics analysis and experimental verification revealed that IL-17 signaling 
pathway is significantly associated with the development of pneumonia-induced sepsis, and activation of the IL-17 
signaling pathway promotes cellular charring in pneumonia-induced sepsis.45 These findings suggested that the pro- 
inflammatory role of SPAN_DEGs in SLI may be exerted by modulating the above pathways.

Using SVM-RFE, LASSO logistic regression analysis, and RF machine learning algorithm, we screened four 
signature genes CD14, GSDMD, IL1β, and FAS, which are strongly associated with PANoptosis in SLI and have 
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significant diagnostic value. Besides, we found the four signature genes were highly expressed in the SLI group and there 
was a positive correlation between them. CD14, a member of the cell surface glycoprotein family, is a high-affinity 
receptor that ensures that TLR4 responds to LPS, as well as being important for the production of pro-inflammatory 
cytokines by macrophages.46 Extracellular CD14 is important for host defense during infection, particularly for bacterial 
clearance.47 Additionally, a study also found that CD14 is a plasma membrane-associated protein that is part of the P2X7 
receptor secretome, and its deficiency impairs macrophage pro-inflammatory cytokines production.46 As a member of the 
gasdermin family, GSDMD is the ultimate effector protein of cellular death, and it can mediate organ damage, cellular 
regulation, and molecular mediation in the development of sepsis.48 Experimental studies have found that in the LPS- 
induced sepsis mouse model, the symptoms of the GSDMD knockout mice were significantly reduced, and the survival 
rate was greatly increased,49 suggesting that pyroptosis plays a key role in sepsis, whereas GSDMD can serve as an 
important target gene. As a core factor in sepsis-induced inflammatory response and tissue injury, IL-1β produced by pro- 
inflammatory macrophages is also involved in cytokine storm-induced pulmonary vascular leakage inducing inflamma-
tory injury in sepsis.50 Meanwhile, IL-1β is involved in the cAMP-CREB-VE-calmodulin pathway, and down-regulation 
of this pathway is a crucial mechanism for lung endothelial barrier damage and further lung injury in the pathogenesis of 
sepsis.51 Noticeably, we found some Chinese herbal medicine compounds or monomers could alleviate SLI by 
modulating apoptosis, pyroptosis, or necrosis. For example, Salidroside pretreatment was found to alleviate PM2.5- 
induced lung injury via inhibition of apoptosis and pyroptosis through regulating NLRP3 inflammasome pathway.52 

A CLP-induced SLI mouse model was constructed to confirm the effect of CD14, GSDMD, IL1β, and FAS on SLI. The 
results of qRT-PCR consistently showed that CD14, IL1β, and FAS expression was significantly increased in SLI, only 
the expression of GSDMD was not inconsistent with our bioinformatics analysis.

We further evaluated the immune cell infiltration between the two groups. Unsurprisingly, the SLI group had 
significantly higher levels of most types of immune cell infiltration, except for CD8+ T cells and B cells. It is well 
known that the pathogenesis of sepsis involves aberrant activation of immune cells in the early stages and sepsis- 
associated immunosuppression, which leads to apoptosis and a decrease in the number of CD8+ T cells.53 B cells act as 
a major player in acquired immunity, it was reported that B cells were found to be severely reduced in the bone marrow 
and spleen of SARS-CoV-2 infected decedents, and this impeded the humoral immune response to SARS-CoV-2 
infection.54 Besides, our research found that CD14, FAS, and IL1β are tightly associated with a variety of immune 
cells and immune functions, indicating that these signature genes may be involved in regulating the immune- 
inflammatory response during PANoptosis in SLI.

Nevertheless, some limitations do exist in our study. Firstly, the sample size included was insufficient, in addition, 
there was some heterogeneity in different datasets, which could cause some bias in our results. To address this, the 
sample size needs to be expanded later to further validate the results and establish a more accurate clinical model. 
Secondly, our study lacked clinical samples for validation, in order to solve this problem, further in-depth clinical studies 
can be followed. Finally, the mechanism by which these signature genes affect SLI by regulating pan-apoptosis needs to 
be further investigated. It is important to recognize that our study provides valuable insights for the diagnosis and 
treatment of SLI by targeting PANoptosis.

Conclusions
In conclusion, our study deeply explored the relationship between PANoptosis process and SLI through comprehensive 
bioinformatics analysis, and finally identified four characteristic genes, CD14, GSDMD, IL-1β, and FAS, respectively. 
Then, these signature genes were highly correlated with immune cell infiltration and immunological response and 
consistently associated with multiple Immunoinflammatory pathways, indicating that they may contribute to SLI by 
regulating immune processes during PANoptosis. Finally, we found that CD14, FAS, and IL-1β may be involved in 
PANoptosis to drive the progression of SLI by experimental verification. This study will contribute to the development of 
early diagnostic indicators and immunotherapy methods for SLI.
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