
R E V I E W

Targeting Neutrophil Extracellular Traps in Gouty 
Arthritis: Insights into Pathogenesis and Therapeutic 
Potential
Cantao Li*, Chenxi Wu*, Fenfen Li, Wenjing Xu, Xiaoxi Zhang, Yan Huang, Daozong Xia

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China

*These authors contributed equally to this work 

Correspondence: Daozong Xia, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Baichuan Street, Fuyang District, Hangzhou, 
Zhejiang Province, People’s Republic of China, Email xdz_zjtcm@hotmail.com 

Abstract: Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of 
monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, 
the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure 
of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic 
target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential 
of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of 
NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and 
cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes 
underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current 
pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors 
that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. 
Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of 
recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These 
findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative 
therapeutic strategies and novel approaches for the management of GA. 
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Introduction
Gouty arthritis (GA) is an inflammatory arthritis caused by abnormal monosodium urate (MSU) deposition that occurred 
in joints and peripheral tissues1 Ample evidence has suggested that the incidence and prevalence of GA are increasing 
around the world,2 bringing burdens on health systems.3 Patients with GA are characterized by high levels of serum uric 
acid (UA).4 experiencing bursts of symptoms and remission including intense pain, redness and swelling.5 Uric acid can 
accumulate in the bloodstream due to its excessive production or impaired renal excretion, ultimately resulting in the 
formation of needle-shaped crystals in the joints and adjacent tissues.6 Subsequently, the deposition of uric acid crystals 
in joints triggers an immune response as the body identifies the crystals as foreign substances, thereby initiating an 
inflammatory cascade that ultimately culminates in the distressing symptoms of gouty arthritis.7,8 Nevertheless, the 
underlying mechanisms behind GA onset and its interaction with the immune system are relatively vague.

Neutrophils are the most abundant immune cells in human and animal peripheral blood.9 As the first-line cells in immune 
system, neutrophils exhibit rapid responsiveness to both microbial and inflammatory cues emanating from damaged tissues. 
Neutrophils are swiftly mobilized to the site of injury to combat various pathogens, such as microcrystals.10 In homeostatic 
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conditions, neutrophils are maintained at a low baseline density.11 However, when tissue damage or infection occurs, 
neutrophils assume critical roles as immune effectors, with their density increasing dramatically and their recruitment to the 
damaged site being promptly activated.12

Extracellular traps (ETs) are web-like structures containing DNA, histones, and various granule proteins like myeloperox
idase (MPO), released by activated neutrophils and other immune cells to capture and eliminate invading pathogens.13 Among 
them, neutrophils extracellular traps (NETs) have been implicated in different pathological conditions, such as GA.14 During GA 
development, NETs are released in response to MSU crystal stimulation, triggering an inflammatory cascade. It seems that 
inhibiting the formation of NETs, also called NETosis, appears as a feasible approach to alleviate GA.15 Several studies have also 
identified various factors that regulate the formation and degradation of NETs.16,17 However, evidence also showed that 
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aggregated NETs (aggNETs), consisting of high-density of NETs, appeared to exert protecting role from inflammation via 
packing MSU crystals, and the mechanisms of which still remain elusive.18 Of note, targeting components from NETs offers new 
avenues for developing NET-based therapies for the GA treatment. In this review, we undertake a comprehensive review of the 
constituents of NETs and the diverse mechanisms underpinning NETosis, providing a detailed illustration. Additionally, we 
synthesize current knowledge on clinically available pharmacological interventions for GA and innovatively evaluate natural and 
synthetic product-based inhibitors that target NET formation as novel therapeutic options. This review aims to illuminate 
potential therapeutic strategies that leverage our understanding of NETs to combat GA effectively.

NET: The Special Network Structure Released by Neutrophil
NETs have gained a wide range of attention for their production, which is accompanied by the following inflammatory 
cascade. NETs are reticular skeletons composed of DNA released by neutrophils outside the cell, to which nuclear 
proteins (eg, histones), cytoplasmic proteins, granular proteins (eg, neutrophil elastase (NE), myeloperoxidase (MPO)), 
and antimicrobial peptides, etc., are attached (Figure 1). Most of these components exert different effects when they 
encounter different responses in the immune system.

The extracellular DNA in NETs is derived from the chromatin of the neutrophil nucleus, which is extruded from the 
cell and released into the extracellular space. The process of NETosis, characterized by the dissolution of the nuclear 
envelope, decondensation of chromatin and extrusion of DNA, is activated in response to various stimuli.19,20 As the 
major component of NETs, extracellular DNA is considered to be a damage-associated molecular patterns (DAMPs)21,22 

that induces pro-inflammatory cascades.23 NETs have been implicated in the pathogenesis of various of inflammatory and 
autoimmune diseases, including sepsis, rheumatoid arthritis, and lupus.24,25 The DNA in NETs can activate different 
immune cells, such as macrophages and dendritic cells, leading to the release of pro-inflammatory cytokines and 
amplification of the inflammatory responses.26,27 A study28 has shown that the level of cell-free DNA in the plasma of 
patients with sepsis was positively correlated with mortality, meaning the higher the level of cell-free DNA, the higher 
the mortality rate of sepsis. Furthermore, DNA has been identified as a key factor in extending the lifespan of 
neutrophils. Notably, stimulation of neutrophils with mitochondrial DNA has been shown to enhance their activity.29 

DNA’s significance as the fundamental framework of NETs is undeniable.
Histones are a group of highly basic and conserved proteins located in the nucleus and are a key component of the web-like 

structures that are released by activated neutrophils. Several histone subtypes, including histones H2, H3, and H4 constitute 

Figure 1 Neutrophils extracellular trap formation. After being stimulated by various inducers including microbial products, cytokines, immune complexes and etc, 
neutrophils undergo chromatin decondensation and nuclear membrane breakdown, leading to the release of NETs. NETs are mainly DNA-based skeleton structures whose 
surfaces are inlaid with histones, NE, MPO PAD4. Moreover, NETs are characterized by antibacterial effect through capturing and killing pathogenic microorganisms.
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a complex with DNA called nucleosome.30 Histones, a key component of NETs, contribute significantly to the antimicrobial 
activity of NETs. Specifically, the positively charged amino acids in histones negatively interact with the charged cell membranes 
of microorganisms, promoting their adherence to the NETs and leading to subsequent elimination.31 Not only do histones possess 
antimicrobial properties, but they also exhibit toxic effects on the host, triggering pro-inflammatory responses upon their release 
from the nucleus into the extracellular space.32,33 The release of histones from dying cells, including from NETs, has been 
implicated in the pathogenesis of a range of inflammatory and autoimmune diseases, including sepsis, rheumatoid arthritis, and 
lupus.34 On the one hand, histones can be passively released through the necrotic program to exacerbate inflammatory responses. 
Moreover, histones can also be actively released during NETosis to exert an antibacterial effect.35 The role of histones as damage- 
associated molecular patterns (DAMPs) can trigger toll-like receptors (TLRs), activate the NLRP3 inflammasome, and induce 
calcium influx, leading to the initiation of inflammation in conditions, such as acute pancreatitis.36 In septic mice, histones can be 
expected to result in endothelial dysfunction, organ failure and even death.37 It must be mentioned that high mobility group box 1 
(HMGB1) is a key component of NETs, where it plays an important role in immune response like histones. HMGB1 is a highly 
conserved nuclear protein present in most mammals. In its capacity as DAMPs, HMGB1 can promote the aggregation of 
neutrophils at sites of tissue damage and enhance inflammatory responses via interaction with other DAMPs (such as DNA) or 
pathogen-associated molecular patterns (PAMPs) (such as lipopolysaccharide (LPS)).38,39 HMGB1 containing disulfide bonds 
binds to TLR4, inducing cytokine production by macrophages and also promotes NETs formation by neutrophils.40 The 
relationship between histones and HMGB1 in the context of NETs is complex and involves both synergistic and antagonistic 
interactions.41 HMGB1 is known to promote the release of histones from neutrophils and to enhance their ability to bind to 
bacterial membranes, thereby increasing the efficacy of NETs in killing invading microorganisms.42 However, HMGB1 is able to 
exert both pro-inflammatory and anti-inflammatory effects, depending on the cellular and molecular context when histones begin 
to activate immune cells and promote inflammation.43,44

Peptidyl arginine deiminase 4 (PAD4) is a calcium-dependent enzyme that plays a critical role in NETs formation. During 
the process of NETosis, activated neutrophils undergo chromatin decondensation and nuclear membrane breakdown, allowing 
for the release of NETs composed of DNA, histones, and other proteins.45 The citrullination of histones by PAD4 is a crucial 
step in this process, as it alters their charge and structure, facilitating their release from chromatin and promoting the formation 
and stability of NETs.46,47 PAD4 has been implicated in the pathogenesis of a range of autoimmune and inflammatory 
diseases.48–50 Wesley et al demonstrated that mice lacking PAD4, a key enzyme involved in NETosis, exhibited a significant 
reduction in NET formation and pro-inflammatory cytokine production, leading to protection against acute kidney injury 
induced by renal ischemia/reperfusion.51 Renal function was restored to 48 hours after ischemia/reperfusion, whereas renal 
function in wild-type mice gradually deteriorated. The PAD-specific inhibitor YW3-56 was used for validation, which 
indicates that PAD4 plays a key role in ischemia/reperfusion-induced acute kidney injury. It is also a strategic point to 
differentiate apoptosis52 and necrosis.53,54

MPO is present in specific tissues within neutrophils, monocytes, and macrophages. The majority (95%) of MPO found in 
the bloodstream originates from neutrophils, making changes in its levels a reflection of alterations in neutrophil functionality. 
Some studies55,56 have found that MPO in NETs was biologically active and exhibited bactericidal ability after binding to 
DNA in NETs, where it generated hypochlorous acid and other reactive oxygen species (ROS) that contributed to the 
microbicidal activity of NETs.57 MPO is also involved in the modification of histones, which helps increase the antimicrobial 
activity of NETs.58 Simultaneously, by utilizing hydrogen peroxide (H2O2) and chloride ions, MPO has the ability to generate 
hypochlorite, which effectively contributes to the eradication of bacteria. This evidence demonstrates that MPO can enhance 
the bactericidal efficacy of NETs, while also causing tissue damage. Therefore, MPO may act as an antigen in the pathogenesis 
of anti-neutrophil cytoplasmic antibody-associated vasculitis.59 Meanwhile, MPO has emerged as a key player in the 
pathogenesis of numerous inflammatory conditions, such as vasculitis, systemic lupus erythematosus, and acute 
pancreatitis.60–62 By producing ROS and other substances, MPO can inflict tissue damage and exacerbate inflammation, 
thereby contributing to the pathophysiology of these diseases.63 Recent studies have shown that inhibiting MPO activity with 
a specific inhibitor is capable of suppressing the formation of NETs.57,64 Collectively, these findings underscore the 
importance of MPO as a critical component of NETs in mediating their antimicrobial activity, but also emphasize the need 
to regulate its activity to prevent its contribution to inflammatory disease pathogenesis.
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Neutrophil elastase (NE) represents a serine protease variant prominently housed within the azurophilic granules of 
neutrophils, exerting a pivotal role as a fundamental constituent within NETs. The presence of both NE, as well as MPO, 
within neutrophils is notable, as these enzymes are extensively associated with the fiber network of NETs.65 During NETosis, 
translocation of NE to the nuclear membrane is required for chromatin decondensation, whereas MPO can bind to chromatin 
and enhance chromatin dedensification.66,67 In addition to degrade extracellular matrix proteins and inflammatory mediators 
such as cohesin, various membrane proteins and IL-8, etc., NE is capable of inhibiting tissue factors and promoting the 
formation of vascular fibrin.66,68,69 Studies have shown that the formation of NETs involved with MPO and NE depends on the 
different types of stimuli. Parker59 et al found that the generation of phorbol 12-myristate 13-acetate (PMA)-stimulated NETs 
required the involvement of MPO without the need for Staphylococcus aureus or E. coli. Conversely, Leishmania parasites70 

induced the generation of NETs that required NE without the need for MPO and ROS. As a potent inducer of NETs, PMA is 
widely used in the research about NETs based on the different kinds of signaling pathways, enzymes, and ROS requirements.71 

Another inducer of NETs is the MSU crystal. In gout, MSU crystal is the main precipitated form of urate in the blood, at the 
same time, is also an important participant in activating the neutrophils, which facilitates the release of NETs.72 It is worth 
noting that, unlike PMA, the release of NETs induced by MSU crystal is uncertain if the ROS involvement is needed. 
According to the in vivo research from Davidson and her companions,73 NET formation induced by MSU crystals was 
independent of ROS production. The same findings were also found in other studies. Tatsiy et al found that under the activation 
of MSU crystals, NETosis was found to be independent of endogenous ROS, but under the control of PAD4.74 Conversely, 
NETosis caused by MSU crystals in vitro was found to be in an ROS-dependent manner. What’s more, inhibiting ROS through 
different anti-oxidants restrained NETosis caused by MSU crystals.1 This controversial view deserves a deeper exploration, 
which may provide insights into the progression of NETosis in diseases.

The Formation of NETs: Vital NETosis and Suicidal NETosis
The formation process of NETs is called NETosis which is a novel type of programmed cell death distinguished from 
neutrophil apoptosis, necrosis and pyroptosis. The concept of NETosis was firstly purposed by Brinkman and his colleagues in 
2004.75 They offered the opinion that neutrophils were activated and released extracellular meshwork, called NETs, that was 
decorated with granule proteins and chromatin, leading to degrade virulence factors and kill bacteria. Following an extensive 
span of nearly two decades devoted to research, there has been a discernible augmentation in the comprehension of NETosis, 
leading to a more comprehensive and profound knowledge of this biological process. The process of NETosis can be triggered 
by various stimuli, such as microbial products, cytokines, and immune complexes, and can occur via distinct mechanisms, 
mainly involving vital and suicidal NETosis that depend on the viability of neutrophils.19,45,76

The most striking difference between NETosis and other modes of death is the changes in the nucleus and the release of 
NETs. Upon stimulation, the nuclear membrane of neutrophils disintegrates into vesicles, while chromatin begins to 
deconcentrate. Then, antimicrobial peptides are released from intracellular particles to adhere to lost chromatin. 
Simultaneously, upon the disruption of the plasma membrane, a diverse array of intracellular components, including proteins, 
DNA, and other entities, are extruded into the extracellular milieu. Notably, this process does not entail the condensation of 
chromatin, commonly known as chromatin pyknosis. Although researches have proved that the formation of NETs improved 
the body’s defense mechanism, NETs are believed to be capable of causing the body to break the pro- and anti-inflammation 
balance.77,78 Apoptosis is cell shrinkage accompanied by DNA rupture and nucleus condensation. The whole cell forms 
apoptotic bodies through blebbing and other methods. Of note, the process of apoptosis does not cause a rupture of the plasma 
membrane and the release of NETs, which is the biggest difference between apoptosis and NETosis.79 Additionally, neither 
inflammatory mediators nor inflammatory responses occur in this process. Cell necrosis leads to the swelling and rupture of 
cells, including the processes like the swelling of various intracellular organelles such as the nucleus, the rupture of the plasma 
membrane, the release of cellular contents, and the triggering of inflammation.79 What distinguishes with NETosis is that in 
the process of cell necrosis, DNA is barely released. Fuchs et al80 performed live cell imaging of NETs to reveal the difference 
between NETosis, apoptosis and pyroptosis. Pyroptosis is typified by cellular shrinkage, accompanied by DNA fragmentation 
and degradation, which is similar with the apoptotic process.81 Pyroptosis is distinguished by cell necrosis accompanied by the 
process of cell swelling, rupturing and releasing intracellular inflammatory substances, which induces inflammation in the 
body without production and release of NETs structure.82,83
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Vital NETosis, also known as non-lytic NETosis or “vivacious NETosis”, is a relatively new type of NETosis that was 
first described in 2011.84 Unlike suicidal NETosis, vital NETosis does not result in the death of the neutrophil, but rather, 
the release of NETs while the neutrophil remains alive and functional.85 During vital NETosis, the neutrophil undergoes 
significant morphological changes, including the formation of nuclear lobes and the extrusion of chromatin into the 
extracellular space, which is accompanied by the release of antimicrobial molecules such as myeloperoxidase and 
neutrophil elastase. Vital NETosis has been suggested to play a role in promoting wound healing and preventing 
excessive inflammation, as it can limit the spread of bacterial infections and promote tissue regeneration.86

On the other hand, suicidal NETosis, also known as lytic NETosis or “suicidal NETosis”, is a more well-known and 
characterized type of NETosis that results in the death of the neutrophil.87 Suicidal NETosis is distinguished by the rupture of 
the nuclear envelope of neutrophils, subsequently leading to the extracellular release of chromatin and granular proteins. This 
process is mediated by the activation of the NADPH oxidase complex, which produces ROS that lead to DNA damage and 
histone citrullination, as well as the activation of proteases and endonucleases that degrade the neutrophil’s nuclear and 
cellular components.88 Suicidal NETosis is important for the host defense against various pathogens, including bacteria, fungi, 
and viruses, but it can also contribute to tissue damage and the development of autoimmune and inflammatory diseases.89

In summary, vital and suicidal NETosis are two distinct forms of neutrophil death that contain the process of releasing 
extracellular traps to fight against pathogens. Vital NETosis is currently considered as a relatively new and less 
characterized process that enables neutrophils to remain viable and functional. In contrast, suicidal NETosis is a well- 
established mechanism that results in the death of neutrophils and is critical for host defense against infections.

The Underlying Mechanism of NETs Formation
According to the formation mechanism of NETs, it is mainly divided into three pathways: nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase 2 (NADPH oxidase 2, NOX)-dependent, -independent and others (Figure 2).

Figure 2 The underlying mechanism of NETs formation. The mechanism of NETs formation can be classified into NOX-dependent pathway, NOX-independent pathway and 
others. The NOX-dependent pathway to induce NETs formation contains RAF-MEK-ERK pathway, DAG-PKC pathway and iICs-FcγRIIIB Pathway. On the other hand, NETs 
formation is caused by NOX-independent pathway including the mitochondrial DNA pathway, Calcium pathway and histone acetylation pathway. In some special cases, NETs 
formation can be performed through neither NOX-dependent pathway nor NOX-independent pathway, as referred to rapid release of NETs formation. On the contrary, 
pathway like the mTOR pathway is involved in NETs formation by either NOX-dependent pathway or NOX-independent pathway.
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NOX-Dependent Formation of NETs
The NADPH oxidase complex is a critical enzyme involved in the generation of ROS that is necessary for the formation 
of NETs. It has been reported that NOX-dependent formation of NETs is a critical mechanism in the pathogenesis of 
various inflammatory and autoimmune diseases.90 The NOX-dependent pathway is the predominant mechanism involved 
in the production of NETs.80 Plenty of pro-inflammatory mediators can stimulate neutrophils to generate NETs, such as 
PMA, LPS, interlukin-6 (IL-6), IL-8, tumor necrosis factor alpha (TNF-ɑ), as well as bacteria, fungi, and chemicals.91 

The activation of NOX by stimuli causes the generation of ROS, including O2, H2O2, and HOCl. In addition to killing 
microorganisms,92 ROS is capable of activating NE and MPO in neutrophils93 and interacting with the nucleus without 
restraint, in which serine proteases and NE cleave histones to promote chromatin decondensation.94,95 Soon afterwards, 
the nuclear membrane loses integrity, leading to the release of chromatin into the cytosol and subsequently the final form 
NETs.65,69 Here, the pathways involved in the NOX-dependent formation of NETs are illustrated in the following.

RAF-MEK-ERK Pathway
The rapidly accelerated fibrosarcoma (RAF)-mitogen-activated protein kinase (MEK)-extracellular signal-regulated kinase 
(ERK) pathway (RAF-MEK-ERK pathway) is one of the mitogen-activated protein kinase pathways. This signaling pathway 
exhibits the capacity to convey extracellular signals to the nucleus, facilitating interactions with specific transcription factors 
and subsequently eliciting context-dependent cellular responses.96 The RAF-MEK-ERK pathway can be activated by various 
stimuli, for example PMA and Fcγ receptors (FcγRIIIb), to induce NETosis.97 Some studies98,99 have shown that the RAF- 
MEK-ERK pathway is crucial in the process of PMA-induced NETs generation, while downregulating the expression of 
apoptotic protein Mcl-1 to prevent cell apoptosis. This downregulation can be blocked with protein kinase C (PKC), cRaf and 
MEK inhibitors.100 In addition, this pathway also acts as a vital role in NETs induced by unconventional stimuli. During the 
process of amoebiasis, neutrophils form the host are stimulated and NETs are induced by amoeba. Study has proved that 
selective inhibition on RAF and ERK exhibited prevention of E. histolytica induced NETs.101 The evidence strongly implies 
that RAF-MEK-ERK pathway serves as an upstream modulator of NADPH oxidase, thereby implicating its involvement in 
the formation of NETs through the activation of NADPH oxidase and up-regulation of anti-apoptotic proteins. While the study 
also showed that the inhibitor targeted NADPH could not block the E. histolytica-induced NETs formation,101 which might be 
explained by that ROS generated by trophozoites and processed by the extracellular MPO during the contact with neutrophils 
were of relatively importance for E. histolytica induced NETosis.102 These finding sheds light on the intricate regulatory 
mechanisms underlying NETosis and further underscores the interconnectedness of signaling pathways in orchestrating 
neutrophil functions.

DAG-PKC Pathway
Protein kinase C (PKC) is mainly distributed in the cytoplasm in an inactive state and is activated by diacylglycerol 
(DAG) and then transferred to the cell membrane to participate in the formation of NOX complex, leading to the 
increased generation of ROS and the sequent formation of NETs.103–105 The DAG-PKC pathway can be considered as an 
upstream signaling pathway for NOX-dependent formation of NETs.105 DAG mimicking PMA can stimulate neutrophils 
to form NETs,106 therefore, leading to the association between PKC signaling and NETs formation via NADPH oxidase- 
ROS pathway and PKC. Gray et al106 used LY333531 to inhibit PKCβ (LY333531 is a specific potent inhibitor of PKCβ 
that is a subtype of the PKC family), and the results showed the respiratory burst activated by NADPH oxidase was 
inhibited, and the formation of NETs was also suppressed. The findings of this study provide corroborative evidence for 
the involvement of the DAG-PKC pathway in the formation of NETs. Notably, among the PKC isoforms, PKCβ emerges 
as the primary regulatory isoform governing the process of NET generation.

iICs-FcγRIIIB Pathway
Immobilized immune complexes (iICs) are immune complexes that consist of autoantibodies and self-antigens, and Fc gamma 
receptor IIIb (FcγRIIIB) is a receptor expressed on neutrophils that binds to the Fc portion of IgG antibodies.107 Upon binding of 
iICs to FcγRIIIB receptors which presents on the surface of neutrophils, a signaling cascade is initiated, enhancing the induction 
of NETosis and subsequent formation of NETs in an ROS release-dependent manner.107 Alemán et al108 demonstrated that 
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activation of FcγRIIIB receptors using specific antibodies effectively induces the generation of NETs, akin to the stimulatory 
effect observed with PMA. These findings highlight the iICs-FcγRIIIB pathway as a significant contributor to the mechanistic 
landscape of NET formation. Upon binding of iICs to FcγRIIIB, a plethora of downstream signaling cascades is triggered. 
Among these, the activation of protein kinases, particularly the Src family kinases, plays a pivotal role in phosphorylating and 
activating subsequent downstream effectors. Notably, this includes the guanine nucleotide exchange factor Vav1, which, upon 
activation, serves as a crucial mediator engaging the small GTPase Rac, thereby facilitating its activation. Consequently, Rac 
activation leads to the initiation of the NOX complex, ultimately enhancing the production of ROS. This robust ROS generation 
contributes significantly to the formation of NETs, thus substantiating the integral involvement of this signaling pathway in the 
NETosis process.107 Alongside the involvement of the Src family kinases and Vav1, a constellation of additional downstream 
signaling pathways is likely implicated in the activation of the NOX complex and subsequent ROS production. These pathways 
encompass the RAF-MEK-ERK pathway and the DAG-PKC pathway.100,109 These pathways can be activated by various 
signals, including cytokines, growth factors, and G protein-coupled receptors, and can activate the NOX complex and the 
subsequent formation of NETs.

NOX-Independent Formation of NETs
While the canonical pathway of NET formation involves the production of ROS by the NOX complex, NETs can also be 
formed through NOX-independent mechanisms. The exact signaling pathways for NOX-independent formation of NETs 
are still not fully understood, but several mechanisms have been proposed.110,111 Here are some of the proposed signaling 
pathways for NOX-independent formation of NETs.

Mitochondrial DNA (mtDNA) Pathway
The release of mtDNA can activate the immune system and contributes to the pathogenesis of several diseases, including 
autoimmune diseases, cancer, and cardiovascular diseases.112–114 It should be noted that mtDNA can serve as a DAMP to 
promote the formation of NETs.115 The pathway for mtDNA release involves several steps. Initially, a critical event in 
the cellular milieu involves the occurrence of mitochondrial permeability transition, culminating in the release of 
mitochondrial constituents, such as mtDNA, into the cytoplasmic compartment. This process significantly contributes 
to the intricate dynamics of cellular homeostasis and underscores the pivotal role played by mitochondria in orchestrating 
essential cellular functions. Second, the mtDNA is recognized by the cGAS-STING pathway, which triggers the 
production of type I interferons and other inflammatory cytokines. Finally, the mtDNA can directly activate the 
NLRP3 inflammasome, which leads to the production of IL-1β and other pro-inflammatory cytokines.116 According to 
Yousefi et al, their understanding suggests that the release of mtDNA is a regulated process that enables neutrophils to 
use their DNA as a weapon against microbes. In addition, it has been proposed that mitochondrial DNA may exert 
immunomodulatory effects on other immune cells.113,117 Furthermore, one of the responsible underlying mechanisms 
entails the belief that SIRT1 possesses the capacity to stimulate the initiation of mitochondrial permeability transition 
pore channels, facilitating the liberation of mitochondrial DNA and consequently giving rise to the formation of 
mitochondria-dependent vital NETs, as opposed to the conventional citrullinated histone H3-dependent NETs.118 It is 
implied that neutrophil-SIRT1-vital NET pathway may be a potential strategy to prevent tumor metastasis.

Calcium Pathway
The calcium pathway refers to the signaling cascade triggered by the release of intracellular calcium ions in response to 
stimuli such as LPS.119 In the context of NET formation, calcium signaling has been shown to activate the NOX- 
independent pathway. This pathway is triggered by the calcium-activated potassium channel of small conductance (SK 
channel), which is the major calcium activated potassium channel known to be present on neutrophils. Among the SK 
channel members (SK1, SK2 and SK3), SK3 is expressed predominantly on neutrophils and the knockdown of SK3 in 
differentiated HL-60 (dHL-60) cells reduces the NETs formation induced by ionomycin-mediated NOX-independent 
NETosis. Ionomycin is a natural calcium ionophore produced by a different gram-positive bacteria Streptomyces 
conglobatus and has proved the ability to induce NOX-independent NETosis.110 On the other hand, David et al raised 
the conclusion that NOX-independent NETosis caused by calcium ionophores required the mitochondrial ROS, which 
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was regulated by the NOX2 enzyme.110 However, evidence also present the correlation between calcium pathway and 
NOX-dependent NETosis. Calcium is a vital regulator of NETosis, as it activated enzymes and signaling pathways that 
involve in the production of ROS, which are essential for NOX-dependent NETosis.19 One of the calcium dependent- 
enzymes is PAD4, which modified histones and chromatin decondensation.120 Also, calcium is deemed as a regulator of 
NADPH oxidase, the main source of ROS in neutrophils.121

Histone Acetylation Pathway
Histone acetylation is a post-translational modification that loosens the chromatin structure and affects gene expression.122 

Histone deacetylases (HDACs) are enzymes that removes acetyl groups from histones and modulates chromatin condensation. 
According to the study,123 histone acetylation (particularly H4K8) and spontaneous NETosis at baseline were increased by 
agents that block HDAC activity and enhance histone acetylation, known as HDAC inhibitors. Also, the same situation 
happened to the NETosis induced by PMA, A23187, or LPS in an additive manner. In the further investigation, inhibition or 
knockdown of HDAC1, HDAC2, HDAC3, or HDAC6 increased histone acetylation and spontaneous NETosis at baseline. 
And the inhibition of HDAC was beneficial for the elevation of chromatin decondensation during NETosis induced by PMA. 
Interestingly, there was a performance that increased in mitochondrial ROS production and caspase-3 activation, both of 
which were associated with NOX-independent NETs formation, displayed by the inhibition of HDAC. What’s more, it is 
showed that the neutrophil death form was available to be switched from NETosis to apoptosis with HDAC inhibitors in dose- 
dependent manner.124 The evidence mentioned above implied that histone acetylation may be involved in NOX-independent 
NETs formation by multiple pathways and deserves attention of researchers in the field of NETs. Despite the researchers’ 
partial comprehension of the histone acetylation process, there is currently a limited repertoire of drugs targeting NETosis 
through modulation of histone acetylation. Consequently, there is still great potential for drug development in this specific 
domain.

Others
Apart from NOX-independent and NOX-dependent way for the formation of NETs, some methods are found to be 
classified into neither of them, as referred to rapid release of NETs formation. With the in-depth study of NETs, it has 
been found that neutrophils can continue to remain active after the clearance of NETs and come into play with 
antibacterial effects. This process only takes 5–60 minutes, which is different from the release of suicidal NOX- 
dependent NETosis or NOX-independent NETosis lasting more than 3 hours.125 At the end of this process, neutrophils 
eventually rupture and die. Yipp et al45,126 proposed that the formation of nuclear DNA in rapid NETosis was dependent 
on the binding of LPS. Under the action of gram-negative bacteria, generally, LPS binds to TLR4 on the platelet surface 
to generate NETs in a NOX-independent manner. For gram-positive bacteria, TLR2 and complement receptor 3 are 
required. After a few minutes of S. aureus stimulation, neutrophils were observed under a microscope to depolymerize 
their chromosomes, forming beads of DNA strands and nucleosomes. Late chromosomes are excreted in the form of 
nuclear vesicles, and neutrophils appear to be anucleate. Parts of chromatin and dense granules are excreted from cells by 
exocytosis to form NETs. The process mentioned above only takes 10 minutes. Anucleate neutrophils are still 
chemotactic, and this is manifested by hyperpolarization and poly pseudopodia crawling. They still have the function 
of degranulation and engulfing NETs released by bacteria. It is worth mentioning that according to the research, process 
of rapid release of NETs did not require the participation of NOX.127–129

On the other hand, mechanistic target of rapamycin (mTOR) signaling pathway is not solely included in the NOX- 
independent and NOX-dependent pathway, as it can potentially play a role in both pathways. mTOR is a serine/threonine 
protein kinase that regulates cellular growth, proliferation, and survival.130,131 mTOR signaling plays an important role in 
the regulation of autophagy, which is a conserved catabolic process that degrades cellular components and organelles, 
leading to NETs formation.132 Neutrophils are highly metabolically active cells that require significant amounts of energy 
to perform their functions.133

It has been reported that inhibiting the mTOR signaling pathway with rapamycin enhanced both autophagy and NETs 
formation, while activating the mTOR signaling pathway with insulin suppressed both processes in neutrophils isolated 
from health donors. And blocking autophagy with 3-MA or chloroquine showed a decrease in spontaneous NETs 
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formation.134 It is suggested that spontaneous NETs formation is negatively regulated by the mTOR signaling pathway. 
However, a different trend in the relationship among mTOR, autophagy and NETs formation was found. Two β-lactam 
antibiotics, meropenem and ceftazidime/tazobactam, induced the activation of mTOR signaling pathway and inhibited 
autophagy in neutrophils and HL-60 cells. Moreover, they showed that blocking the mTOR signaling pathway with 
rapamycin or inhibiting β-lactamase with clavulanic acid attenuated the NETs formation induced by the antibiotics.135 

Another study displayed that inhibiting mTOR pathway with rapamycin or Torin 1 enhanced autophagy and reduced 
NETs formation in PMA-stimulated neutrophils, while activating the mTOR pathway with insulin-suppressed autophagy 
and increased NETs formation in LPS-stimulated neutrophils. Also, blocking autophagy with 3-MA or bafilomycin A1 
increased NETs formation in PMA-stimulated neutrophils, while enhancing autophagy with trehalose decreased NETs 
formation in LPS-stimulated neutrophils.136 Based on the aforementioned evidence, mTOR signaling may regulate NET 
formation by modulating autophagy, although the underlying mechanism appears to depend on the specific stimuli. 
Nonetheless, the exact mechanisms and implications of this regulation remain elusive and warrant further investigation.

In summary, various mechanisms do exist to achieve the purpose of NETs formation through specifical stimuli. It is 
supposed to be note that some pathways mentioned above possess the interaction with each other, rather than being 
independent, suggesting an objective and noticeable view that the classification used to distinguish either NOX- 
dependent pathway or NOX-independent pathway is relative.

Regulatory Role of NETs in GA Inflammation
GA is a common disease associated with inflammation. The main cause of GA can be attributable to a disorder of purine 
metabolism leading to excessive production or insufficient excretion of UA. GA attack usually occurs late at night 
accompanied by joint pain, swelling, redness and fever. Symptoms can cause discomfort or tingling in the joints and can 
get worse within 24 hours.5,137 In most cases, the acute manifestations of inflammation tend to subside spontaneously 
within a few days to weeks, without any notable residual effects. This observation suggests the existence of efficacious 
mechanisms that effectively mitigate acute inflammation.138

According to the pathogenesis of gout, there are 4 stages of gout, including asymptomatic hyperuricemia, acute gouty 
arthritis, intercritical gout and chronic tophaceous gout.139 GA is typically associated with the acute stage of gout. 
Nonetheless, there is a significant information that not all patients with gout will experience GA, and GA attacks will not 
only occur in the acute gouty arthritis stage but also in the chronic tophaceous gout stage.137,140 As reported that GA was 
the most commonly associated with the acute stage of gout and was the most common presenting symptom of gout 
causing inflammatory symptoms.141,142 Also, the chronic tophaceous gout stage is the most advanced stage of the disease 
and is characterized by the presence of tophi, which are deposits of urate crystals in the soft tissues with the less severe 
inflammation compared to the early stage.139 It is implied that there must be some physiological and pathological activity 
that acts as a regulator of inflammation.

Among different targets, NET is a crucial role in regulating inflammation.92,143 As is mentioned above, neutrophils 
can be activated through various mechanisms and pathways leading to the releasing of NETs. During the process of GA, 
stimuli like MSU crystals are beneficial for the recruitment of neutrophils and the generation of NETs, which is 
accompanied by the release of DAMPs such as histones, activate the immune system to release pro-inflammatory 
cytokines around joints resulting in an inflammatory environment.74,144,145 Herein, it is necessary to figure out the 
regulatory role of NETs in GA inflammation.

Inflammatory Initiation
GA is caused by the deposition of monosodium urate (MSU) crystals in joints, which triggers a strong inflammatory 
response. The MSU crystals are recognized by the innate immune system, which activates resident macrophages and 
recruits neutrophils to the joint resulting in the accompanying inflammation.146 When the crystals accumulate in the joint, 
they trigger an inflammatory response by activating the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) 
inflammasome, a large protein complex that regulates the immune response. The activation of the NLRP3 inflammasome 
leads to the secretion of pro-inflammatory cytokines such as interleukin-1 beta (IL-1β) and IL-18, which causes the 
characteristic pain, redness, and swelling associated with gout. The activation of the NLRP3 inflammasome and 
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subsequent release of IL-1β and IL-18 are triggered by innate immune cells like macrophages and dendritic cells, which 
recognize danger signals and respond by initiating the inflammatory response.147,148 During the process of GA, it is 
widely regarded that MSU stimulate macrophages to produce IL-1β and IL-18 via the NLRP3 inflammasome, which in 
turn leads to the recruitment of neutrophils and subsequent release of NETs. Meanwhile, neutrophils then undergo 
a process of activation and degranulation, leading to the release of their intracellular contents, including ROS, 
citrullinated histones, and granule enzymes, which together promote the formation of NETs.149 Also, neutrophils can 
release NLRP3 inflammasomes through a process called phagocytosis, which is the ingestion of foreign particles such as 
urate crystals.95,150 The urate crystals are recognized by the neutrophils and internalized through the formation of 
phagosomes. The phagosomes then fuse with lysosomes to form phagolysosomes, which contain enzymes and ROS that 
can degrade the urate crystals.151–154 This process results in the release of DAMPs, such as mitochondrial DNA and ATP, 
which can activate the NLRP3 inflammasome and bring about the generation of IL-1β and IL-18, ultimately promoting 
NET formation.18,155,156

NETs are deemed to be a vital role in initiating GA inflammation. Excessive formation of NETs is a sign of increased 
GA flare and a critical factor that contributes to GA pathology.157 NETs can cause tissue damage and trigger inflamma
tion in GA in multiple ways. First, the histones and granular proteins from NETs are capable of activating the 
complement system and promoting the recruitment of other immune cells, such as monocytes and macrophages, to the 
site of inflammation.34,158,159 The recruited immune cells further propagate the inflammation by secreting pro- 
inflammatory cytokines, such as IL-1β, TNF-α, and IL-6.15,137,160 What’s more, NETs can directly foster inflammation 
by various pro-inflammatory molecules such as histones, DNA, and granule proteins that can activate the NLRP3 
inflammasome.84,161 (Figure 3) For example, histones from NETs directly activate the NLRP3 inflammasome by 
disrupting lysosomal membranes and releasing cathepsins into the cytosol, which in turn activates the NLRP3 inflam
masome that assembles with ASC and pro-caspase-1 followed by the step to cleave the pro-caspase-1 into caspase-1 and 
finally the release of IL-1β (Figure 3).33 Last but not least, NETs can cause mitochondrial damage, resulting in the release 
of mtDNA, which can activate the NLRP3 inflammasome in the diabetic wound.162,163 In the recent years, NETs have 
been treated as a potential target for the treatment of gout. Compelling evidence suggests that loganin exerts its inhibitory 
effects on NLRP3 inflammasomes by repressing mitochondrial stress in macrophages.164 However, similar finding has 
not been seen in studies of MSU crystals induced NETosis, leading to a valuable direction that needed explored. An 
interaction between macrophages and neutrophils has been used as a method for the treatment of gout. Ji Hye Jeong and 
his colleges proposed that synovial fluid macrophages were capable of clearing NETs by means of enhancing engulfment 
of MSU crystals without inducing any immunological response.15 Taken together, it is believed that NETs function as an 
intrinsic alarming that mainly initiates the inflammasome activation and elicits the inflammatory response in GA.

Inflammatory Resolution
In the chronic stage of gout, the symptoms that occurring at the beginning of gout are relieved and the inflammation 
around the joints is reduced.165 Inflammation during GA can expand without limitation, leading to joint necrosis and even 
death if there is no regulatory mechanism.166,167 There is no doubt that multiple mechanisms are utilized to prevent 
endless inflammation from happening. Evidence has showed that several key mechanisms are involved in inflammatory 
regression during gouty arthritis.157,168–170 Among them, NETs serve as a vital role in inflammation resolution in the 
form of aggregation, referred to as aggNETs. Here, we describe an inflammatory resolution that is regulated by NET.

The process of aggNETs formation begins when neutrophils are exposed to uric acid crystals. The crystals stimulate 
neutrophils to release NETs, which then aggregate and entrap the crystals within the web-like structure of the NETs.149 The 
aggregation of NETs and uric acid crystals leads to the formation of aggNETs that is capable of entrapping and degrading MSU 
crystals.149,171 In the research from Christine et al, neutrophils recruited to the site of inflammation and underwent oxidative burst 
caused by MSU crystals, which led to the formation of NETs.171 As neutrophils recruited to the site of inflammation, aggregation 
of NETs occurred under a high density of neutrophils and then resulted in the degradation of cytokines and chemokines. In another 
study, aggNETs displayed it anti-inflammation via the protection from antiproteases in vivo and in vitro.172 Actually, the process of 
manifesting anti-inflammatory function by aggNETs needs the involvement of neutrophil serine proteases (NSPs). As a kind of 
neutrophils granule, NSPs contain NE, proteinase 3 (PR3) and cathepsin G. In the context of gouty arthritis, NSPs are believed to 
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Figure 3 Regulatory role of neutrophil extracellular traps in gouty arthritis. MSU crystal deposition is formed at the joints due to high serum uric acid concentration, 
leading to the appearance of inflammatory response of neutrophils. During the early period of gouty arthritis, the NLRP3 inflammasome, which is activated by MSU 
crystals directly or indirectly, is responsible for turning pro-caspase-1 into the mature form of caspase-1 after the assembly of NLRP3. Pro-IL-1β and pro-IL-18 are 
transformed into IL-1β and IL-18 with the help of caspase-1, exhibiting pro-inflammatory effects and promoting the generation of NETs, which are accompanied by 
adherence to neutrophil elastases, myeloperoxidases and citrullinated histone 3. Additionally, macrophages and monocytes recruited by MSU crystals contribute to 
the generation of IL-1β and IL-18. With the recruitment of neutrophils, increasing numbers of neutrophils cause the aggregation of NETs, as referred to aggNETs. 
aggNETs manifest anti-inflammatory function by neutrophils serine proteases including NE, proteinase 3, cathepsin G and neutrophil serine proteases. At the same 
time, anti-inflammation is associated with the process of aggNETs engulfing and degrading MSU crystals.
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contribute to the resolution of inflammation. It has been shown that neutrophils release elastase and PR3 together with aggNETs, 
which can then engulf and degrade MSU crystals, thus preventing further activation of the NLRP3 inflammasome and subsequent 
release of pro-inflammatory cytokines like IL-1β and IL-18 (Figure 3).173–175 Moreover, NSPs have been found to directly 
degrade and inactivate a range of pro-inflammatory cytokines, including TNF-α, IL-1β, IL-6, and chemokines such as IL-8.171 

Other than that, a report from Jasmin et al showed that the cytotoxic effect of histones on epithelial cells could be weakened by 
aggNETs’s function of sequestering and degrading histones, and the process of which required the participation of serine 
proteases, NE and PR3.176 The research suggested that the resolution of inflammation induced by histones resulted from 
degradation and detoxification of aggNETs. Collectively, aggNETs with the effector NSPs can exert anti-inflammatory effects 
through various mechanisms, including the degradation and inactivation of pro-inflammatory cytokines and chemokines. In 
recent times, the concept of NSP has received limited attention in the context of gout treatment. Researchers have instead directed 
their focus towards investigating distinct components of NSP for in-depth study and exploration. This shift in research emphasis 
signifies a renewed interest in understanding the intricate roles played by individual NSP constituents and their potential 
implications for therapeutic interventions in the management of gout and related inflammatory disorders.

Subsequently, the focus of attention falls on the formation of aggNETs, as its formation is currently viewed differently. It is 
believed that the release and degradation of inflammatory mediators is a dynamic balance.177 NSPs bonding to aggNETs cause 
the resolution of inflammation, which implies that the ability to degrade inflammatory mediators is greater than the ability to 
release them. According to the research by Jonas et al,172 peak generation and maximum supernatant concentrations of 
cytokines and chemokines appeared at a neutrophil density of 20–40×106/mL during the stimulation of MSU crystals. The 
study also found that the contents of inflammatory cytokines and chemokines began decreasing at higher densities of 
neutrophils with the help of NSPs. Moreover, maximum release of inflammatory mediators and chemokines occurred at 
a neutrophil density of 20–40×107/cm3 in arthritis mice model induced by MSU crystals, whereas the contents of the mediator 
reduced at higher density of neutrophils.172 The evidence mentioned above suggests the neutrophil induced inflammation is 
a self-limiting condition containing a dynamic process of releasing and degrading inflammatory mediator and chemokines, 
and more importantly, the formation of aggNETs seems to depend on the density of neutrophils. While in another study, the 
authors held the opinion that aggNETs formation depended on ROS in vivo and in vitro. In this study, it turned out that 
neutrophils had a weaker ability to degrade inflammatory mediators and generate aggNETs when compared to normal.171 In 
line with this, ROS-deficient Ncf1**mice which was characterized by the inability to produce ROS and represent mice model 
of CGD, showed a reduction in NETs aggregation and an increase in inflammatory mediators during the stimulation by MSU 
crystals when compared to air pouches of wild-type mice. It is assumed that the number of neutrophils only determines the size 
of the aggregates and then the aggNETs formation starts at 50 μg/mL of MSU crystals in a dose-dependent manner. Moreover, 
the level of neutrophils does not appear to be a critical factor, as NETs aggregation can still be induced by other stimuli such as 
ATP or lactoferrin, even at low neutrophil concentrations (5×106/mL).171 There exists uncertainty regarding the underlying 
mechanism for the formation of aggNETs that requires clarification.

NETs as Therapeutic Target for GA Treatment
The evidence we mentioned above strongly illustrates the close connection between GA and NETs. With the increasing research 
on GA in recent years, well-established anti-GA drugs and decoction have been widely used in the gout population.178–181 In 
addition to this, raising number of pharmaceutical agents are presently undergoing development to counteract GA in accordance 
with its pathogenesis. NETs have emerged as a pivotal target in the context of GA, and their inhibition has garnered considerable 
interest as an attractive therapeutic strategy for managing this condition. Consequently, an increasing array of drugs aimed at 
modulating NETs formation are currently under exploration and development, signifying the potential for novel and promising 
therapeutic avenues in GA treatment.

Clinical Approaches for GA
Prevalent Drugs
According to the American College of Rheumatology Guideline for the Management of Gout182 published in 2020, first-line 
drugs commonly used in clinical practice for GA attack involve colchicine, non-steroidal anti-inflammatory drugs (NSAID) and 
glucocorticoid. Colchicine has been a medicine widely used in GA for a long history.183,184 The incidence of adverse reactions is 
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high since the therapeutic dose of colchicine is close to the toxic dose.185 For patients with acute gout attacks, it is recommended 
to accept colchicine treatment in the first dose of 1 mg, 0.5 mg after 1 h, and 0.5 mg after 12 h, with a frequency of once a day or 
twice a day.186 Small doses of colchicine combined with NSAID also are strategies recommended to cure acute GA attacks.187,188 

Glucocorticoids are appropriate for the patients suffering GA attacks while having trouble with drug administration orally.182 In 
addition, lowering uric acid drugs, including allopurinol, benzbromarone and febuxostat are also vital treatments for gout. 
However, both advantages and disadvantages exist in drug administration. Studies have shown that side effects, including liver 
functional disorder and leukopenia, occur after taking allopurinol for a long time.189 Seriously, allopurinol could cause severe 
hypersensitivity in patients with a positive HLA-B*5801 allele.190 Benzbromarone is suitable for alleviating GA and hyperur
icemia combined with acute GA, however, its unsatisfactory clinical efficacy limits its application.191 And clinical data suggested 
that a small number of patients might also be intolerable due to severe gastrointestinal adverse reactions, liver and kidney damage 
after benzbromarone administration.191,192 The use of febuxostat remains controversial because cardiovascular or all-cause 
mortality increased after long-term administration in adults over the age of 65, while the opposite result was proposed according 
to long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout.193,194 Surgery presents 
a comparatively lower occurrence of adverse effects on organs when contrasted with pharmacological interventions, rendering 
it a viable option that patients with gout are willing to consider. Also, surgical therapy is an effective approach to improve the 
quality of life of patients.195 The principal objective of minimally invasive arthroscopic surgery is to carefully insert a needle into 
the high-pressure region of the tophi, allowing for precise and closed cutting. This procedure facilitates the removal of excessive 
metabolites from the affected tissue and subsequently clears out the accumulated metabolites, resulting in the effective alleviation 
of joint cavity pressure. This meticulous approach accomplishes the immediate treatment goal with a focus on preserving tissue 
integrity and promoting patient recovery.196 Indeed, the widespread adoption and promotion of minimally invasive arthroscopic 
surgery are warranted due to its pronounced efficacy in facilitating rapid joint function recovery, minimizing trauma, and 
alleviating inflammation and pain. Consequently, patients experience a notable enhancement in their quality of life following the 
surgical intervention. Nevertheless, it is essential to acknowledge the inherent limitations of this surgical approach, particularly 
concerning the rehabilitation and overall quality of life of elderly patients. Exploring and addressing these limitations will be 
crucial in optimizing patient outcomes and ensuring the successful application of this surgical technique in the broader context of 
clinical practice.

Uric Acid Lowering Drugs
Uric acid-lowering drugs are a class of pharmaceutical agents specifically designed to mitigate elevated levels of uric 
acid in the bloodstream, a condition commonly associated with hyperuricemia and gout. Xanthine oxidase (XO) 
inhibitors represent a prominent class of pharmaceutical agents extensively employed as anti-gout drugs. XO is an 
enzyme that plays a critical role in the generation of uric acid, the end product of purine metabolism.197 Purines are 
nitrogenous bases found in DNA, RNA, and many cellular metabolites, and they can also be obtained from dietary 
sources such as meat and seafood.198–201 Purines are broken down into uric acid through a series of enzymatic reactions, 
with XO being the final enzyme involved in this process. XO catalyzes the oxidation of hypoxanthine to xanthine and 
then the oxidation of xanthine to uric acid, using molecular oxygen as the electron acceptor. This process leads to the 
ROS generation such as superoxide and hydrogen peroxide as byproducts, which can contribute to oxidative stress and 
damage in the body.202–204 Actually, XO inhibitors can be divided into three subsets including purines (such as 
allopurinol), non-purines (such as febuxostat) and natural inhibitors (such as quercetin).205 Allopurinol is a purine analog 
that acts as a suicide inhibitor of XO, meaning it irreversibly binds to the enzyme and prevents it from generating uric 
acid.206,207 Febuxostat, on the other hand, is a non-purine XO inhibitor that selectively targets the enzyme and has 
a longer half-life than allopurinol. Both drugs have been shown to effectively lower uric acid levels and prevent gout 
attacks.205 Nevertheless, the research of non-purine part of XO inhibitors attracts most attention because it possesses an 
interaction with several amino acids in the important domain called Mo-Pt that is a crucial domain for generating uric 
acid from substrates catalyzed by XO.208 It is necessary to note that a survey of the recent patent literature reveals that 
the predominant focus of research has been on the development of non-purine and natural XO inhibitors.205 To be added, 
different kinds of side effects like hypersensitivity can be caused by purines part of XO inhibitors.209–211 Besides, natural 
inhibitors have been a hot point of research for the gout treatment. Quercetin acts early on as a natural polyphenolic 
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flavonoid compound and was first reported for its XO inhibitory effect in 1999.212 Recently, 1,4-dicaffeoylquinic acid, as 
a novel ingredient, is isolated from the leaves of Artemisia selengensis and is found to possess better XO inhibitory 
potential than allopurinol.213 Song and his companion proposed the davallialactone extracted from Sanghuangporus 
vaninii potently inhibited XO and possessed the potential to be developed into a medicine for gout.214 At the same time, 
another similar research raised the finding that the anti-gouty arthritis effect could be proved in vivo through an important 
medicinal and edible fungus in China, Phellinus igniarius which was constituted of davallialactone.215 Up to now, 
various kind of natural product exhibiting XO inhibitory activity have been found, leading to attract more and more 
attention from their potential for gout treatment.

Uricosuric agents can reduce serum uric acid levels in patients with hyperuricemia and gout by improving the clearance of 
uric acid in the kidneys. They achieved this by blocking the reabsorption of uric acid at the proximal tubule of the kidney via 
the inhibition of the urate transporter 1 (URAT1). The two main classes of uricosuric agents can be divided into probenecid 
and benzbromarone. Probenecid exerts its pharmacological action through competitive inhibition of URAT1, a urate trans
porter responsible for the reabsorption of uric acid in the proximal renal tubules. In contrast, benzbromarone exhibits dual 
inhibitory effects by targeting both URAT1 and xanthine oxidase, an enzyme crucially involved in the biosynthesis of uric 
acid. The distinct mechanisms of action of these two drugs hold significance in the context of hyperuricemia management and 
gout treatment, offering clinicians versatile options to modulate uric acid levels and mitigate the risk of gout-related 
complications. The suitable initial dose of probenecid was recommended for 250 mg for twice a day and the maximum 
dose could reach up to 1 mg twice a day.216,217 And benzbromarone’s administration had been specified at a dose of 100– 
200 mg/day for once a day.218–220 Other uricosuric agents are under investigation include sulfinpyrazone, losartan, and 
topiroxostat. There is possibility that association between each other may exist, such as aspirin and diuretics, which can reduce 
their effectiveness.221,222 In clinical practice, uricosuric agents are often used in combination with xanthine oxidase inhibitors, 
such as allopurinol or febuxostat, to achieve optimal control of serum uric acid levels.223,224 The selection of an appropriate 
therapeutic approach is contingent upon various factors, including the severity of hyperuricemia, the presence of comorbid
ities, and the individual patient’s response to treatment. These critical considerations underscore the necessity for personalized 
and tailored management strategies to optimize patient outcomes and ensure effective control of hyperuricemia and its 
associated complications.225,226 While uricosuric agents are generally well-tolerated, it is crucial to acknowledge that 
benzbromarone and probenecid may be associated with certain adverse effects. Benzbromarone has been linked to potential 
hepatic toxicity and cardiovascular risk, whereas probenecid may exhibit significant central nervous system toxicity and 
hypersensitivity syndrome, particularly when administered at higher dosages.227–231 These observations highlight the 
importance of vigilant monitoring and cautious dose adjustments to mitigate the risk of adverse reactions, ensuring the safe 
and effective utilization of these agents in the management of hyperuricemia and gout. As such, a balanced assessment of risks 
and benefits is essential to optimize patient outcomes and uphold safety in clinical practice.

Gut Microbiota
Due to the fact that the intestine is responsible for one third of uric acid excretion, gut microbiota possesses an important 
role in gout and hyperuricemia treatment because the function of eliminating uric acid cannot be ignored.232,233 The gut 
microbiota refers to the complex ecosystem of microorganisms that reside in the human gut, including bacteria, viruses, 
fungi, and protozoa. It plays a crucial role in regulating the immune system and maintaining host health. Several studies 
have shown that alterations in the gut microbiota may contribute to the development of gouty arthritis. For example, 
dysbiosis of gut microbiota has been associated with increased production of uric acid and inflammation, which are the 
key features of the disease.234,235 Modulating the gut microbiota through dietary interventions or probiotics has emerged 
as a potential therapeutic strategy for gouty arthritis. It has been reported that fisetin possessed the ability to decrease the 
content of uric acid through modulating the changes in the gut microbiota Bacteroides, and Firmicutes in hyperuricemia 
mice model.236 According to several cohort studies, evidence showed a higher risk of suffering from gout occurred to the 
people having western diet when compared to those of having Mediterranean diet.237 Prebiotic fiber and probiotics have 
been shown to increase the abundance of beneficial gut bacteria, such as Bifidobacterium and Lactobacillus, and decrease 
the abundance of pathogenic bacteria.238 These changes can be utilized for restoring a healthy gut microbiota and 
reducing inflammation as well as uric acid production.
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In addition to dietary interventions, fecal microbiota transplantation (FMT) has been explored as a potential treatment for 
gouty arthritis. FMT involves the transfer of fecal material from a healthy donor to a recipient, with the aim of restoring 
a healthy gut microbiota. According to the reported findings, the administration of Qu-Zhuo-Tong-Bi decoction exhibited 
a notable impact on the gut microbiota composition, leading to a significant increase in the abundance of Allobaculum and 
Candidatus sacchairmonas. Concurrently, FMT from mice subjected to Qu-Zhuo-Tong-Bi decoction treatment demonstrated 
a beneficial effect in alleviating the hyperuricemia and gout-like condition in the Uox-KO mouse model.239 Similarly, another 
classic Chinese herbal medicine, Si-Miao decoction, exerted an improvement in repairing intestinal pathology and restored the 
abundance of phylum Proteobacteria and genus Helicobacter via FMT.240 A preliminary pilot study investigating the 
application of FMT in patients with gouty arthritis demonstrated encouraging findings. Notably, the study revealed noteworthy 
reductions in serum uric acid levels alongside evident improvements in clinical symptoms.241 These initial results warrant 
further investigation in larger-scale clinical trials to validate the therapeutic potential of FMT as a potential intervention in the 
management of hyperuricemia and gout-related manifestations. The observed positive outcomes underscore the need for more 
comprehensive and rigorous research to explore the potential role of FMT in ameliorating gouty arthritis and its associated 
metabolic abnormalities.

NETs-Targeted Inhibitors
Conventional Drugs
Even though the prevailing drugs used for the treatment of gout were not originally designed to specifically target NETs, 
advancements in comprehending their mechanisms of action have revealed their capacity to partially inhibit NETs 
formation. This emerging insight highlights an ancillary effect of these drugs and raising the importance of considering 
their broader impacts on neutrophil biology and inflammation, augmenting the potential for repurposing existing 
medications for the management of gout and related conditions. DNase (deoxyribonuclease) is an enzyme that occurs 
naturally in the body and is involved in the breakdown of DNA.242,243 It is produced by a variety of organisms, including 
bacteria, fungi, and animals, and still draws plenty of attraction even though it has been investigated in NETs study for 
years. Regarding the suppression of NETs, DNase is quite different from other NETs inhibitors since the focus of DNase 
is managed to extrude NETs instead of participating in the formation of NETs. The extracellular exposure of DNA in 
NETs makes them susceptible to degradation by DNase, which enzymatically cleaves the DNA backbone, resulting in the 
disassembly of the intricate web-like structures. This process facilitates the efficient clearance of NETs and their 
associated microorganisms, effectively curbing excessive inflammation and mitigating potential tissue damage. The 
breakdown of NETs by DNase plays a vital role in maintaining immune homeostasis and averting inflammatory 
overactivation, highlighting its significance as a regulatory mechanism in immune responses.244 The mechanism by 
which DNase degrades NETs involves the cleavage of the phosphodiester bonds that link the nucleotides in DNA. DNase 
complexes, composed of three enzymes including DNase I, DNase II, and DNase1L3, are able to bind to DNA molecules 
and cut the phosphodiester bonds between the nucleotides, leading to the degradation of the DNA backbone and the 
disassembly of the NETs.245 It’s worth noting that DNase is specific to extracellular DNA resulting in the expose of 
residual histones and neutrophils serine protease to host, possibly causing local inflammation and further tissue injury.246

Colchicine is a first-line drug highly recommended for the management of acute gout attacks, primarily owing to its 
exceptional therapeutic efficacy.182 Although colchicine was not originally intended to target NETs as a gout treatment, 
study had shown that colchicine impeded the production of NETs via reducing NOX2/ROS production and calcium 
influx.247 As early as 2018, scientific reports indicated that colchicine exerted an inhibitory effect on the ability of 
circulating neutrophils in the bloodstream of Behçet’s disease patients to form NETs.248 A recent study claimed that 
colchicine suppressed the production of NETs in patients with acute coronary syndrome post-percutaneous coronary 
intervention by restoring cytoskeletal dynamics.249 In addition, Apostolidou et al found that colchicine was capable of 
inhibiting the release of IL-1β in neutrophils and IL-1β activity in NETs.250 The evidence mentioned above suggest that 
the curative effect of colchicine on GA treatment may be targeting NETs.

As another member of first-line drug NSAIDs, ibuprofen is mainly used to treat rheumatic and rheumatoid 
arthritis.21,251 Victoria et al demonstrated that ibuprofen was able to alleviate the illness and inhibit NETs formation in 
bovine respiratory syncytial virus infection,252 which indicated the potential of ibuprofen in GA treatment by targeting 

https://doi.org/10.2147/JIR.S460333                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 1750

Li et al                                                                                                                                                                 Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


NETs. At present, there are very few studies on the association between NSAIDs and NETs. It may be due to the clear 
pharmacological effects of NSAIDs and the lack of development potential.

Glucocorticoids are a class of medications that have potent anti-inflammatory and immunosuppressive effects.253,254 

They have been used for many years for treating acute GA flares, as they can rapidly reduce pain and inflammation in 
affected joints.255 Glucocorticoids exert their therapeutic effects by modulating the immune response, leading to the 
suppression of inflammatory cytokine production, such as IL-1 and TNF-α, both of which play pivotal roles in the 
pathogenesis of GA. Additionally, glucocorticoids have been observed to impact NETs formation, further contributing to 
their anti-inflammatory properties and potential relevance in the management of GA. According to Amandine et al, 
glucocorticoids could reduce the formation of NETs in the lungs of the asthmatic horses either in vivo or in vitro.256 

Despite the absence of specific literature reports on the effect of glucocorticoids in inhibiting NETs formation in the 
context of GA, the available evidence suggests that this mechanism holds the most plausible potential.

Natural Products
Natural products have been employed for medicinal applications spanning centuries, and their significance persists as 
a cornerstone in contemporary medicine. These biologically derived substances hold substantial therapeutic potential, 
contributing to the development of pharmaceutical agents and serving as a valuable resource for drug discovery and 
medical intervention. The enduring utilization of natural products underscores their enduring relevance and ongoing 
impact in addressing a diverse array of health conditions, highlighting their continued importance as an invaluable asset 
in the realm of modern healthcare practices.257

Resveratrol is a natural polyphenolic compound found in a variety of plant species, including grapes, peanuts, and berries. 
It contains numerous potential health benefits, including anti-inflammatory, antioxidant, and anti-aging properties.258 

Resveratrol has been extensively studied for its potential effects on cardiovascular disease, diabetes, neurological disorders, 
and aging.258,259 According to the precious study, resveratrol showed the potential to cleave DNA in NETs and reduce the 
production of pro-inflammatory cytokines by neutrophils, suggesting its inhibitory effect on NETs formation.260 Additionally, 
evidence displayed that the patients with severe COVID-19 had an increased number of activated neutrophils that released 
NETs spontaneously, whereas the situation was improved by resveratrol by suppressing the formation of NETs.261 Recently, it 
is reported that resveratrol could improve GA in vitro and in vivo by inhibiting the activation of NLRP3 inflammasomes by 
triggering the Pink1/Parkin pathway to promote mitophagy.262 While the exact mechanisms linking resveratrol to gout and 
NETs are still under investigation, the cumulative evidence suggests that this natural compound holds therapeutic potential in 
managing both gout-related inflammation and the complex interplay of NETs in the pathogenesis of the disease.

Quercetin is a natural polyphenolic flavonoid and a kind of plant pigment found in various fruits, vegetables, grains 
and food sources, including onions, apples, berries, grapes, tea, and red wine.263 It is also available in supplement form. 
Pharmacologically, it has potent antioxidant and has anti-inflammatory properties.264,265 Clinical studies for the treatment 
of hyperuricemia showed that the growing content of plasma uric acid in healthy males could be significantly reduced by 
daily supplementation of quercetin (500 mg), for 4 weeks.266 Further study has shown the anti-GA effect of quercetin 
in vivo by suppressing the activation of the nuclear factor-κB (NF-κB) pathway and inflammasome.267 Moreover, recent 
study has revealed that quercetin exerted its ability to inhibit the activation and infiltration of neutrophils and suppress 
autophagy, thus led to the restrain of NETs formation in rheumatoid arthritis.268 The available evidence discussed above 
provides compelling indications of the inhibitory effect of quercetin on the process of GA. Therefore, conducting in- 
depth investigations into the use of quercetin as a treatment modality for GA represents a valuable avenue of study, with 
the potential to shed light on its clinical efficacy and mechanistic underpinnings.

Curcumin is a naturally occurring polyphenolic compound found in the rhizome of the turmeric plant, which has been used 
for centuries in traditional medicine for its anti-inflammatory, antioxidant, and anticancer properties. It is a bright yellow- 
orange pigment with a characteristic taste and odor, commonly used as a spice and food coloring agent.269 In recent years, 
curcumin has been investigated for its potential anti-GA properties. Study showed that curcumin was capable of improving the 
GA characteristics induced by MSU crystals, including joint swelling, inflammatory cell infiltration and MPO activity, and 
had influence on suppressing the NLRP3 activity and the activation NF-κB signaling pathway.270 Meanwhile, curcumin 
demonstrated its ability to inhibit the release of NETs induced by polybrominated diphenyl ethers. The underlying mechanism 
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involved the modulation of ROS burst by interfering with Nrf2, a transcription factor central to the regulation of oxidative 
stress responses.271 Curcumin also can alleviate hepatic ischemia-reperfusion injury by inhibiting the formation of NETs 
resulting from the inhibition of MEK/ERK pathway.272 Therefore, targeting NETs may be one of the possible mechanisms of 
curcumin on the GA treatment. It should be also noted the fact that the application of curcumin is limited due to its rapid 
degradation, poor aqueous solubility, and low bioavailability.273,274 Modifying curcumin to strengthen the therapeutic effect 
becomes a strategy. For instance, curcumin-loaded tetrahedral framework nucleic acids were synthesized to deliver curcumin, 
which exhibited better drug stability, biocompatibility, ease of uptake, higher tissue utilization and a better anti-inflammatory 
effect when compared to free curcumin in vitro and in vivo.275 This is a worthwhile approach for other natural products that are 
not well bioavailable and thus limit their application.

Besides, another natural product from Andrographis paniculate called andrographolide possesses the potential to be a clinical 
drug for GA treatment. Recent research has proposed that andrographolide could attenuate the symptoms of rheumatoid arthritis 
by reducing the infiltration of neutrophils and NETosis in vivo. What’s more, andrographolide exhibited the ability in balancing 
NETosis and apoptosis. The NETosis induced by autophagy could be suppressed and the apoptosis induced by lipopolysacchar
ide-activated neutrophils was enhanced within the administration of andrographolide in vitro. These findings imply that 
andrographolide has considerable potential for being NETs inhibitor and further a strategy for GA treatment.276

In conclusion, utilizing natural products for the treatment of gouty arthritis by targeting NETs shows promising potential. 
The research and studies conducted in this area suggest that certain natural compounds possess anti-inflammatory and NETs- 
modulating properties, which could help alleviate the symptoms and progression of gouty arthritis. By targeting NETs, these 
natural products may disrupt the inflammatory cascade, reduce tissue damage, and decrease the frequency and intensity of 
gout flares. Furthermore, the use of natural products in gout treatment could offer a more holistic and potentially safer 
approach, as they are often associated with fewer side effects compared to conventional medications. However, it is important 
to acknowledge that more extensive research is needed to establish the efficacy, safety, and long-term benefits of these natural 
products in treating gouty arthritis via NETs targeting. Additionally, personalized treatment plans considering individual 
variations in response to natural compounds should be explored. Despite the promising results, natural products should not 
replace standard medical treatments for gouty arthritis. Instead, they can be considered as complementary therapies or adjuncts 
to conventional medications to enhance overall treatment outcomes.

Synthetic Products
Purinoceptor, also called P2 purinoceptor, is a category of nucleotide receptor. Among the families of purinergic 
receptors, the metabotropic receptors (P2Y) family is strongly associated with immune cell pathology and physiological 
activity. Under normal conditions,277 several P2Y receptors such as P2Y2, P2Y4 and P2Y6 receptors are involved in 
regulating the level of Ca2+, K+, Cl− and Na+. Whereas P2Y receptors act a vital role in immune cell recruitment, 
proliferation and differentiation.278 A specific inhibitor of the P2Y6 receptor called MRS2578 was used to verify the 
influence on neutrophil activation and aggNETs formation induced by gout associated MSU crystals. According to this 
research, the study revealed that suramin and PPADS, both recognized as general P2Y receptor blockers, as well as 
MRS2578, effectively inhibited the formation of NETs induced by MSU crystals. Attractively, even though it is the main 
receptors expressed in neutrophils, the P2Y2 receptor is barely involved in NETs generation due to the finding that the 
P2Y2 receptor antagonist called AR-C25118925XX had no influence on NETs release. On the other hand, the formation 
of aggNETs could be attributed to the P2Y6/store-operated calcium entry/IL-8 axis that plays a role in neutrophil 
migration.279 This mechanism was further elucidated in another study, Su-Hyun et al proposed that during the 
intracellular endosomal trafficking of the P2Y6 receptor induced by MSU crystals, neutrophil recruitment was enhanced 
on the basis of the IL-8 expression supported by endosome-dependent signaling.280 Numerous studies also reported the 
significant role of P2Y6 receptor expression on cells such as microglial and macrophage in different diseases.281,282 

These evidences suggest a strong potential for MRS2578 to be further developed by targeting P2Y6 receptors for GA 
treatment. By selectively inhibiting or activating the P2Y6 receptor, at the same time, it may be possible to influence 
NET release and subsequently mitigate the inflammatory response and tissue damage characteristic of gout flares. This 
novel therapeutic strategy holds the potential to offer a more targeted and precise treatment option for gout patients, 
possibly leading to improved symptom management and disease outcomes.
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LDC7559 is a newly discovered small molecule that has mighty potential to be developed. In accordance with Gabriel et al, 
LDC7559 was chosen through a chemical screening and had the ability to combined with gasdermin D (GSDMD) with rarely 
effect on the activity of MPO, NE and NOX. Besides, LDC7559 binding to GSDMS N terminus thus causing decrease in NETs 
formation suggested the specificity of LDC7559 to GSDMD. GSDMD, a pore-forming protein, serves as a crucial mediator of 
pyroptosis and plays a significant role in the process of NETosis. Its involvement in NETosis stems from its essential function in 
the release of chromatin structures into the extracellular space. GSDMD influences cell membrane stability and nuclear 
expansion, facilitating the extracellular release of chromatin and contributing to the formation of NETs.283 Also, inhibition of 
GSDMD became a therapeutical target to block NETs formation during sepsis.284 It has been reported that GSDMD-dependent 
NETs formation was associated with various stimuli such as LPS or cytosolic Gram-negative bacteria (Salmonella ΔsifA and 
Citrobacter rodentium)285 and PMA. To date, comprehensive research on the involvement of GSDMD in MSU-induced 
NETosis is yet to be established, presenting an area that significant attention. The current lack of evidence necessitates focused 
investigations to elucidate the potential role of GSDMD in the process of NETosis triggered by MSU.

Metformin is a synthetic product having a close connection with GA. While its chemical structure is based on a natural 
compound called guanidine, the compound itself is synthesized in a laboratory setting rather than being extracted from natural 
sources.286 Growing studies have found the effect of metformin on different diseases such as Covid-19 and gout.287,288 In various 
pathological conditions, metformin has been shown to directly impede the activity of the mitochondrial respiratory chain 
complex I. This specific inhibition results in a reduction of adenosine triphosphate (ATP) levels, concomitant with an elevation in 
adenosine monophosphate (AMP) concentrations. The altered AMP/ATP ratio subsequently activates adenosine monopho
sphate-activated protein kinase (AMPK), a pivotal metabolic regulator. This cascade of events, involving the inhibition of 
complex I and subsequent AMPK activation, constitutes a fundamental mechanism underlying Metformin’s therapeutic effects 
across diverse disease contexts.289,290 As an inhibitor of mTOR signaling, metformin resulted in the reduction of cell death and 
pro-inflammatory cytokines, which might be the main reason for the lower frequency of gout attacks occurred to patients with 
gout.291 Despite being discovered over fifty years ago, metformin still holds significant research value because metformin owns 
immunoregulating effects through suppressive effects on NETosis and NETs formation.292 In summary, the use of metformin as 
a potential inhibitor of NETs formation and NETosis shows promise in the treatment of GA. further research and clinical trials are 
necessary to fully understand the effectiveness and safety of metformin in targeting NETs during the GA process, paving the way 
for a more targeted and personalized treatment for individuals suffering from this debilitating condition.

Conclusions and Future Perspectives
In short, NET is a web like structure based on DNA accompanied with components such as NE, PAD4 and MPO. NETs can be 
stimulated and formed by various pathways in different diseases and perform distinct functions in response to immune system 
and inflammatory environment. During the process of GA, NETs exert both pro- and anti-inflammatory effects. With the 
stimulation of MSU crystals, inflammation onset caused by NETs is mainly induced by the activation of NLRP3 inflammasomes, 
leading to the release of mature inflammatory cytokines (IL-1β and IL-18). With increased inflammation and neutrophil 
recruitment, aggregation of NETs occurs causing the formation of aggNETs that contributes to the anti-inflammatory effect by 
engulfing and degrading MSU crystals together with the components such as NSPs. At the same time, we summarize the 
prevalent drugs for GA and describe NETs-targeted inhibitors naturally and synthetically that possess potential for development 
into clinical applications.

Neutrophil is a type of white blood cell with short lifespan and unable to expand or frozen in vitro. According to the research, 
neutrophils are more fragile than other blood cells and can only survive in vitro for up to 5 days maximum under certain 
condition.293,294 It is of great difficulty to conduct the research of NETs in-depth, and growing studies replace neutrophils with 
differentiated HL-60 cells via dimethyl sulfoxide or all-trans retinoic acid.295–297 HL-60 cells are differentiated human 
promyelocytic leukemia cells that can be used for laboratory research on blood cell formation and physiology. Nevertheless, it 
is of inefficiency for dHL-60 to generate NETs compared to neutrophils, and differences including the dynamics pattern of the 
cytoskeleton, endomembrane, phagocytosis abilities and calcium influx exist between dHL-60 and neutrophils.298–300 

Considering current research, there exists an urgent need to optimize the in vitro conditions for neutrophil survival to extend 
their lifespan, or to develop a dHL-60 cell model that accurately mimics the physiological environment of neutrophils.
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Even though the natural and synthetic products have their own advantages on inhibiting NETs, it is necessary to solve the 
challenges before being applied in the clinic. The integration of natural products in drug discovery has encountered difficulties 
in the form of practical hurdles for screening, isolation, characterization, and optimization. As a result, their utilization has 
decreased over time. In addition, natural products may possess a multiplicity of targets, which can lead to low bioavailability, 
poor pharmacokinetics, or toxic effects.257,301 On the other hand, synthetic products exhibit drawbacks including but not 
limited to high expense, instability, and potential immunogenicity. Synthetic compounds may also lack specificity and 
biological relevance toward NET-targeted inhibition. Moreover, they may elicit undesirable side effects or resistance 
mechanisms because of their interactions with other pathways or molecules.302 The evidence mentioned above lead to the 
attraction should be given to investigate more thoroughly the context-dependent functions and mechanisms of NETs in GA 
and different stages of gout, as well as their interactions with other immune cells or molecules. Additionally, future research on 
NETs-targeted inhibitors is also supposed to focus on evaluate more carefully the safety and efficacy of natural and synthetic 
products as NET-targeted inhibitors in preclinical and clinical studies, as well as their potential adverse effects on normal 
neutrophil functions and immune responses.
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