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Purpose: Acute pancreatitis is a common gastrointestinal emergency. Approximately 20% of patients with acute pancreatitis develop 
organ failure, which is significantly associated with adverse outcomes. This study aimed to establish an early prediction model for 
persistent organ failure in acute pancreatitis patients using 24-hour admission indicators.
Patients and Methods: Clinical data and 24-h laboratory indicators of patients diagnosed with acute pancreatitis from January 1, 
2017 to January 1, 2022 in Shanxi Bethune Hospital were collected. Patients from 2017 to 2021 were used as the training cohort to 
establish the prediction model, and patients from 2021 to 2022 were used as the validation cohort. Univariate logistic regression and 
LASSO regression were used to establish prediction models. The performance of the model was evaluated using area under the curve 
(AUC), calibration curves, and decision curve analysis (DCA), and subsequently validated in the validation group.
Results: A total of 1166 patients with acute pancreatitis were included, a total of 145 patients suffered from persistent organ failure 
from 2017 to 2021. Data were initially selected for 100 variables, and after inclusion and exclusion, 46 variables were used for further 
analysis. Two prediction models were established and nomogram was drawn respectively. After comparison, the prediction values of 
the two models were similar (The univariate model AUC was 0.867, 95% CI (0.834–0.9). The LASSO model AUC was 0.864, 95% CI 
(0.828–0.895)), and the model established by LASSO regression was more parsimonious. A web calculator was developed using the 
model established by LASSO.
Conclusion: Predictive model including 6 risk indicators can be used to predict the risk of persistent organ failure in patients with 
acute pancreatitis.
Keywords: prediction model, LASSO regression, acute pancreatitis, nomogram, organ failure

Introduction
Acute Pancreatitis (AP) is a commonly encountered gastrointestinal emergency in the clinical setting. It refers to an acute 
abdominal condition caused by the abnormal activation of pancreatic enzymes, leading to self-digestion of the pancreas. 
Its primary feature is a localized inflammatory response within the pancreas. In severe cases, it can result in the 
dysfunction of other organs. Its hallmark clinical symptom is a sudden onset of persistent upper abdominal pain, 
which may radiate to the back.1 With the rise in living standards in recent years, the incidence of AP has been steadily 
increasing. Globally, the incidence of AP ranges from 4.9 to 73.4 per 100,000,1 and it’s rising at an annual rate of 3.07%.2 

AP is progressively becoming a significant disease threatening human health and deserves attention. Studies have shown 
that approximately 20% of AP patients can develop Organ Failure (OF), with respiratory, renal, and cardiac dysfunctions 
being most common.3 OF is a critical determinant of the prognosis of AP and, to a large extent, dictates the outcome for 
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AP patients. OF lasting ≤48 hours typically carries a lower risk of complications and mortality. However, patients with 
Persistent Organ Failure (POF) (lasting >48 hours) face a mortality rate as high as 50%.4 Therefore, early prediction and 
assessment of the potential development of POF in AP patients and providing timely treatment are crucial in reducing 
mortality from AP.

In 1974, Ranson proposed the Ranson scoring system after studying 100 patients with AP who were admitted to 
hospital for 48 hours.5 The scoring system included 5 clinical indicators on admission and 1 point for each of the 6 
indicators for 48 hours, totaling 11 points, and the score of 3 and above was considered as severe pancreatitis, and the 
morbidity and mortality rate of less than 3 points was 0.9%, 3–4 points was 16%, 5–6 points was 40%, and 6 points or 
more points is 100%, and its scoring system is considered a milestone in the estimation of the severity of AP. However, 
this scoring system is limited in its clinical application for predicting POF, with non-ICU patients not routinely collecting 
all data points at the time of data collection and calculating a score that takes at least 48h with an accuracy of 
approximately 75%.6 The APACHE II score is a patient prognostic prediction score proposed by Knaus et al.7 This 
score is not an exclusive scoring system for AP and it can be applied to almost all ICU patients, where a score of ≥8 on 
the APACHE II scale indicates the possible presence of severe pancreatitis. The APACHE score is highly sensitive, but 
many of its parameters require the ICU setting to be measured and the scoring system is too examinative, cumbersome, 
and expensive, and is also time-delayed, with deficiencies in the prediction of POF.8 The CTSI is also a useful scoring 
system for accurately diagnosing the severity pancreatitis. However, CT may underestimate or misclassify the severity of 
the disease if performed within 72 hours of symptom onset.9 All of these scores are either delayed for POF or lack 
sufficient research evidence and are inadequate. A recent systematic review and meta-analysis concluded that current 
early predictors of POF, infected pancreatic necrosis and mortality are not sufficiently accurate for individualized patient 
prediction, and that ideal predictors should be applied to patients on admission or within 24 hours of symptom onset, with 
an accuracy of between 95% - 100%.10

In recent years, there has been a keen interest in identifying predictive factors for diseases to recognize clinical 
indicators that threaten human health as early as possible. Statisticians are focused on developing and refining modern 
statistical methods to ensure the selection of rigorous methods for estimating the impact of predictive factors on 
outcomes. However, most variable selection processes rely on more traditional statistical methods, such as univariate 
and multivariate regression analyses. These methods sometimes yield contradictory hazard ratios between univariate and 
multivariate COX regressions. This contradiction arises from multicollinearity among variables, leading to biased 
results.11 In 1996, Robert Tibshirani introduced a novel method for estimating linear models, known as the Least 
Absolute Shrinkage and Selection Operator (LASSO).12 This approach accommodates a plethora of covariates in the 
model and addresses overfitting by constructing a penalty function.13 It also resolves issues of multicollinearity, yielding 
more relevant predictive factors, thus compensating for the shortcomings of traditional methods.14 However, the 
application of LASSO regression in the realm of AP remains limited. In this paper, we employ LASSO regression to 
select predictive factors and integrate it with multivariate logistic regression to mitigate the interference of confounding 
factors, ensuring the acquisition of precise predictive variables. The results are visualized in the form of a nomogram.

The aim of this study is to establish a prediction model based on LASSO-logistic regression for predicting POF in AP 
patients. This will enable early identification of high-risk individuals for POF using patient indicators within the first 24 
hours of admission, guiding clinicians to tailor timely and individualized therapeutic measures for high-risk patients, 
thereby enhancing their prognosis.

Materials and Methods
Patients
We collected patients with a first diagnosis of AP from January 1, 2017, to January 1, 2022, at Shanxi Bethune Hospital. 
Patients from 1/1/2017 to 1/1/2021 were used to build the model and patients from 1/1/2021 to 1/1/2022 were used to 
validate the model.
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The diagnostic criteria for AP include the followings: ① continuous upper abdominal pain; ② serum amylase and/or 
lipase levels more than 3 times the upper limit of normal; ③ abdominal imaging findings consistent with acute 
pancreatitis. A diagnosis of AP can be made if any two of these three criteria are met.15

The diagnostic criteria for OF are based on the modified Marshall scoring system,16 where a score of ≥2 for any organ 
indicates the presence of OF. OF that persists beyond 48 hours is defined as POF.

Inclusion and Exclusion Criteria
Inclusion criteria: ① meeting the diagnostic criteria for AP; ② aged ≥18 years; ③ admitted within 48 hours of symptom 
onset; ④ hospitalized at Shanxi Bethune Hospital and initially diagnosed with AP.

Exclusion criteria: ① incomplete clinical data or missing medical records; ② chronic pancreatitis, trauma, or 
pregnancy-associated pancreatitis; ③ patients with diagnosed chronic diseases of the heart, lungs, kidneys, etc.; ④ 
patients with prior immunological disorders or hematological diseases.

Data Collection
General Information includes: sex, age, height (cm), weight (kg), body mass index (BMI), etiology, triggering factors, 
smoking history, medical history, and presence or absence of POF. Vital signs upon admission, as well as laboratory 
indices within 24 hours of admission (covering liver and kidney function tests, pancreatic function, blood cell analysis, 
serum electrolytes, coagulation function) are also recorded. Data were initially selected for 100 variables, and after 
inclusion and exclusion, 46 variables were used for further analysis.

Data Processing and Statistical Analysis
Data cleaning was conducted using STATA (Version 17). Variables with more than 20% missing values were excluded. 
Variables with missing values between 5% and 20% were imputed using multiple imputations to select the optimal 
dataset to fill in missing values. Variables with less than 5% missing values were replaced by their mean. Outliers were 
treated using the winsorize method.17

In the clinic, AP patients with POF represent a small percentage of all AP patients, which leads to unbalanced data. In 
order to solve this problem, simple random sampling was applied and this study was conducted according to 1:3. Simple 
random sampling using SPSS (Version 26.0). Bar charts are drawn using GraphPad prism 9.

Predictive model was conducted using R (Version 4.2.0). Baseline data analysis was performed using the “compare 
groups” package. A complete predictive model requires three steps: variable selection, model establishment, and model 
evaluation.①Variable selection: “glmnet” package for LASSO regression to screen predictive variables; ② Model 
establishment: To further control confounding factors, the results of the LASSO regression were subjected to multivariate 
logistic regression analysis using the “glm” package; ③ Model evaluation: The “pROC” package was used to draw ROC 
curves to evaluate the model’s ability to distinguish different outcome events, the “rms” package for calibration plots to 
assess the discrepancy between predicted and actual outcomes, and the “rmda” package for DCA to evaluate the model’s 
clinical utility. P-value < 0.05 was considered statistically significant. Web calculator using “DynNom” package.

Results
Characteristics of Patients
Between January 1, 2017, and January 1, 2022, a total of 1489 patients were diagnosed with AP at Shanxi Bethune 
Hospital. Out of these, 1166 patients met the inclusion criteria (Figure 1). A total of 933 patients were enrolled from 
January 1, 2017 to January 1, 2021, according to the modified Marshall scoring criteria, 145 patients had concomitant 
POF, and 788 patients had no POF. We sampled 435 patients without POF in a ratio of 1:3, which was used as a modeling 
group together with the patients with POF.

Table 1 provides a summary of the baseline characteristics of the AP patients. Among them, 377 were males and 208 
were females, with an average age of 48 years. The mean age of patients with POF was 56 years, which was significantly 
higher than that of the group without POF.
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Bar charts of outcome events in the two groups were plotted to understand whether POF predicted patients’ poor 
outcomes. As shown in the Figure 2, compared with patients without POF, patients with POF stayed in the hospital 
longer, had higher rates of bacterial infection, developed walled-off necrosis in pancreas, accumulated pancreatic fluid 
collections, were more likely to be admitted to the ICU, and were even more likely to die in the hospital. Thus, screen 
high-risk groups and give timely intervention is essential. Establishing a predictive model for early diagnosis of POF in 
AP patients addresses this need.

Building Predictive Models
The model was established using training set, we used univariate logistic regression and LASSO regression to select 
predictors. Then, independent predictors were screened by excluding confounding factors using multifactor logistic 
regression.

Supplementary Table 1 describes the results of univariate and multivariate logistic regression screening for predictors 
in the training set. Ultimately, seven variables were selected, which were age, heart rate, direct bilirubin, serum 
creatinine, serum calcium, lymphocytes count and d-dimer.

The results of the LASSO regression are shown in Figure 3, when the model error is the smallest, 14 independent 
variables are screened out, and when the model error is one standard error, 8 independent variables are selected. In order 
to be more convenient for clinical application, we select the independent variables screened out when log(λ) is one 
standard error, namely Age, Heart Rate, Albumin, Urea, Serum Creatinine, Ca (Calcium), Lymphocytes and D-dimer. To 
further eliminate the effects of confounding factors, the factors screened out by LASSO regression were incorporated into 
a multivariate logistic regression. This resulted in the identification of five independent predictive factors. The results of 

Figure 1 Flowchart of patient enrollment.
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Table 1 Differences Between the Two Groups in AP Patients with or Without POF

Characteristics Total  
(n=580)

Without POF  
(n=435)

With POF  
(n=145)

P-value

Sex: 0.194

Male 372 (64.1%) 286 (65.7%) 86 (59.3%)

Female 208 (35.9%) 149 (34.3%) 59 (40.7%)

Age (years) 48.0 [36.0;60.2] 46.0 [35.0;57.0] 56.0 [41.0;70.0] <0.001*

BMI (kg/m2) 25.9 [23.5;27.8] 25.9 [23.5;27.8] 26.0 [23.7;27.6] 0.785

Temperature (°C) 36.8 [36.5;37.0] 36.8 [36.5;37.0] 36.9 [36.6;37.4] <0.001*

Heart Rate (beats/mins) 88.0 [78.0;104] 85.0 [77.0;98.0] 102 [85.0;124] <0.001*

Respiratory Rate (beats/mins) 20.0 [20.0;21.0] 20.0 [20.0;21.0] 20.0 [20.0;23.0] <0.001*

Systolic Blood Pressure (mmHg) 128 [118;142] 128 [118;140] 130 [117;144] 0.267

Diastolic Blood Pressure (mmHg) 78.0 [70.8;87.0] 78.0 [71.0;86.0] 78.0 [70.0;87.0] 0.969

Smoking: 0.355

No 339 (58.4%) 249 (57.2%) 90 (62.1%)

Yes 241 (41.6%) 186 (42.8%) 55 (37.9%)

Diabetes: 0.949

No 483 (83.3%) 363 (83.4%) 120 (82.8%)

Yes 97 (16.7%) 72 (16.6%) 25 (17.2%)

Hypertension: 0.012*

No 417 (71.9%) 325 (74.7%) 92 (63.4%)

Yes 163 (28.1%) 110 (25.3%) 53 (36.6%)

Hyperlipemia: 1.000

No 474 (81.7%) 356 (81.8%) 118 (81.4%)

Yes 106 (18.3%) 79 (18.2%) 27 (18.6%)

Fatty Liver: 0.086

No 435 (75.0%) 318 (73.1%) 117 (80.7%)

Yes 145 (25.0%) 117 (26.9%) 28 (19.3%)

ALT (IU/L) 40.0 [21.3;130] 41.6 [21.4;131] 35.0 [19.5;104] 0.307

AST (IU/L) 33.2 [21.7;110] 32.2 [20.5;111] 43.7 [27.0;92.0] 0.022*

Albumin (g/L) 36.6 [32.1;40.9] 37.5 [34.2;41.7] 32.2 [29.0;37.3] <0.001*

Total Bilirubin (μmol/L) 24.1 [15.6;36.5] 23.8 [14.9;36.8] 25.3 [17.5;35.1] 0.376

Direct Bilirubin (μmol/L) 5.60 [3.27;12.9] 5.20 [3.00;12.2] 7.30 [4.30;13.2] 0.003*

Total Cholesterol (mmol/L) 4.11 [3.24;5.15] 4.23 [3.45;5.24] 3.77 [2.69;4.90] <0.001*

Triglyceride (mmol/L) 1.33 [0.83;3.38] 1.34 [0.82;3.25] 1.30 [0.86;3.64] 0.863

Urea (mmol/L) 5.20 [4.00;6.90] 5.00 [4.00;6.30] 6.60 [4.70;10.0] <0.001*

(Continued)
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multivariate logistic regression are shown in Table 2, Age, Heart Rate, Serum Creatinine, Ca (Calcium), Lymphocytes 
and D-dimer are independent predictors of POF.

Model Visualization
To provide a more intuitive display of the model and to facilitate its clinical application, we constructed nomograms and 
calculated scores for each observational indicator. Figure 4 illustrates the nomogram that predicts whether or not a patient 
with AP will develop POF. Figure 4A shows the nomogram created by univariate logistic regression and Figure 4B 

Table 1 (Continued). 

Characteristics Total  
(n=580)

Without POF  
(n=435)

With POF  
(n=145)

P-value

Serum Creatinine (μmol/L) 75.0 [61.4;89.1] 73.3 [60.3;85.9] 84.7 [66.3;109] <0.001*

Amylase (IU/L) 189 [75.9;649] 153 [69.8;550] 329 [98.3;945] 0.001*

Lipase (IU/L) 233 [86.1;772] 213 [85.7;739] 386 [120;808] 0.044*

Serum Potassium (mmol/L) 3.93 [3.63;4.22] 3.93 [3.64;4.20] 3.92 [3.61;4.28] 0.947

Serum Sodium (mmol/L) 136 [134;139] 137 [134;139] 136 [133;139] 0.034*

Serum Chlorine (mmol/L) 103 [99.8;105] 103 [99.9;105] 103 [99.5;107] 0.058

Serum phosphorus (mmol/L) 0.97 [0.72;1.16] 1.01 [0.79;1.17] 0.82 [0.55;1.10] <0.001*

Serum Magnesium (mmol/L) 0.82 [0.75;0.89] 0.82 [0.76;0.89] 0.80 [0.73;0.87] 0.027*

Serum Calcium (mmol/L) 2.15 [2.02;2.27] 2.18 [2.08;2.28] 2.03 [1.82;2.18] <0.001*

WBC (×109/L) 11.2 [8.07;14.6] 10.7 [7.70;13.8] 13.2 [9.60;16.4] <0.001*

Neutrophil count (×109/L) 82.2 [73.6;88.0] 80.6 [70.8;86.2] 87.2 [82.0;90.8] <0.001*

Lymphocyte count (×109/L) 10.6 [6.30;17.0] 12.0 [7.70;19.4] 6.70 [4.70;10.9] <0.001*

Monocyte count (×109/L) 5.70 [4.00;7.30] 5.90 [4.20;7.30] 5.00 [3.20;7.00] 0.001*

Eosinophils count (×109/L) 0.40 [0.10;1.00] 0.60 [0.10;1.10] 0.10 [0.00;0.60] <0.001*

Basophils count (×109/L) 0.30 [0.10;0.50] 0.30 [0.20;0.50] 0.20 [0.10;0.40] <0.001*

RBC (×1012/L) 4.53 [4.07;5.01] 4.53 [4.10;4.97] 4.57 [4.03;5.15] 0.776

Hemoglobin (g/L) 143 (22.2) 142 (20.9) 144 (25.7) 0.437

Red cell distribution width (%) 13.3 [12.1;14.1] 13.2 [11.9;14.0] 13.7 [12.7;14.4] 0.001*

Platelet count (×109/L) 0.18 [0.14;0.22] 0.18 [0.15;0.22] 0.16 [0.13;0.21] 0.004*

Platelet distribution width (%) 16.6 [16.1;17.3] 16.6 [16.0;17.2] 16.9 [16.3;17.4] 0.004*

Mean platelet volume (fL) 8.60 [7.90;9.50] 8.50 [7.85;9.40] 8.80 [7.90;9.60] 0.049*

Prothrombin time (seconds) 12.6 [11.9;13.9] 12.6 [11.8;13.6] 13.2 [12.1;14.6] <0.001*

International normalized ratio 1.17 [1.10;1.28] 1.16 [1.09;1.26] 1.22 [1.12;1.34] <0.001*

D dimer (ng/mL) 490 [214;1254] 378 [177;866] 1269 [487;2813] <0.001*

Activated partial thromboplastin time (seconds) 29.8 [28.1;32.3] 29.7 [28.1;32.2] 30.1 [27.9;33.4] 0.296

Notes: Value are presented as number (%), mean±standard deviation or IQR, 50 (25, 75). Normally distributed data were tested using 
independent samples t-tests, and nonparametric tests were used for nonnormal data. *P<0.05. 
Abbreviations: IQR, interquartile range. BMI, body mass index; ALT, alanine aminotransferase, AST, aspartate aminotransferase; WBC, 
White Blood Cell Count; RBC, red blood cell.
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shows the nomogram created by LASSO regression. Each index on the graph corresponds to its test result, and one can 
determine the corresponding prediction score (as denoted by the scale at the top) based on the test result. By summing up 
the scores for each index, the predicted total score can be determined, and the value corresponding to this total score 
provides the probability of POF.

Evaluation of Model Predictive Performance
The validation dataset was utilized to access the prediction performance of the model. As depicted in Figure 5A and B (in 
Figure 5, Mod A is the nomogram built by univariate logistic regression and model B is the nomogram built by LASSO), 
the ROC curves for both the training and validation cohorts demonstrate the model’s capacity to differentiate outcome 
events: the AUC were 0.867 and 0.864 for the training cohort, 0.838 and 0.835 for the validation group. Further supporting 
the model’s efficacy, Figure 5C and D show that the predicted outcome events closely align with the actual ones.

To further elucidate the model’s clinical utility, we plotted the Decision Curve Analysis (DCA) in Figure 5E and F. 
This analysis reveals that our model provides significant net clinical benefits. When compared to other metrics, our 
nomogram consistently delivers greater net benefits.

For a comprehensive validation, we internally evaluated our model on three fronts: discriminative ability, calibration, 
and clinical utility. The outcomes confirm that our model is proficient at predicting whether AP patients will develop POF 
and underscores its positive implications for clinical application.

By comparison, the predictive value of the predictive models created by the two statistical methods was similar. The 
model of LASSO regression was more streamlined and more conducive to rapid clinical triage.

Web Calculator
While the nomogram is convenient and low cost, it cannot provide exact values in its calculation. Therefore, we 
developed a web calculator based on nomogram to simplify the calculation process and yield more precise prediction 
values (https://acute-pancreatitis-with-pof.shinyapps.io/Gx-AP-POF-Dymnomo/). Drag the numerical strip on the left to 
input the test result, and then click “Predict” to obtain the precise predicted value (Figure 6).

Figure 2 Comparison of clinical outcomes based on whether there are complicated with POF. Length of stay. For non-normal distributed data, Mann–Whitney test was 
used. P<0.001. ****P<0.001. (B) ICU stay. (C) Bacterial Infection. (D) Death. (E) Walled-off necrosis. (F) Pancreatic fluid collections. (B and D) Fisher’s exact test. P<0.001. 
(C, E and F) Chi-square test. P <0.001.
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Discussion
POF is a complex physiological process, influenced by various factors. Early identification of risk factors associated with 
POF in patients is vital for stratified management of AP. In this study, 46 clinical data of the patients were collected, with 
the laboratory test indicators being comprehensive. Importantly, these indicators were obtained from the initial examina-
tion of patients within the first 24 hours after admission, minimizing the interference from subsequent clinical treatments. 
From the statistical point of view, we established 2 kinds of prediction models, the two models differ by one indicator, 
but the predictive value is similar, the statistical model established by LASSO regression seems to be more streamlined, 

Figure 3 Selection of predictive variables using LASSO regression. (A) Characteristics of variable coefficient changes. The horizontal coordinates represent the value of the 
parameter log(λ), ordinate represents the coefficient of the independent variable. Finally, the coefficients of all independent variables are compressed to 0, and the later the 
independent variable becomes 0, the greater the contribution to the model. The dashed line on the left indicates the value of the parameter log(λ) when the model error is 
minimal, the dashed line on the right represents the value of the parameter log(λ) when the model error is amplified by one standard error. (B) Ten-fold cross-validation for 
adjusting parameters. The horizontal coordinates represent the value of the parameter log(λ), ordinate represents the mean squared error of the model.
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in addition, LASSO regression can effectively solve the problem of data multicollinearity. Furthermore, we present two 
visualization models for clinicians to choose from: the Nomogram and a web calculator. While the Nomogram offers 
simplicity and clarity, the web calculator boasts convenience and accuracy. Upon validation, our model demonstrated 
great predictive capabilities, holding potential benefits for clinical application.

This research indicates that an increase in age is one of the predictor for POF. This could be attributed to the relative 
decline in physiological functions in the elderly, rendering them less resilient to diseases. Previous studies have 
demonstrated that age is not only closely associated with the incidence of AP but also serves as an independent risk 
factor for AP mortality.18,19

The present study considered vital signs of patients upon admission and identified heart rate as an independent 
predictor of POF in AP patients, which is consistent with the findings of Pan et al.20 Rapid heart rate is primarily 
regulated by the sympathetic nerve.21 Some studies suggest that the inflammatory response and lung injury in rats with 
AP are significantly reduced when the drugs inhibiting the sympathetic nerve are administered.22 This offers a novel 
perspective for the clinical treatment of AP.

Serum creatinine is a well-recognized indicator of renal function and is incorporated into several scoring systems, 
such as the modified Marshall score and the APACHE II score. Our study suggests that serum creatinine can 
independently predict the onset of POF, aligning with the findings of many other studies.23,24 Inflammatory events in 
the body lead to systemic fluid redistribution allowing a surge of toxins, cytokines, and inflammatory mediators into the 
circulation, which subsequently causes renal injury and an associated rise in creatinine.25 Studies indicate that acute 
kidney injury often follows organ failure in AP patients, and the mortality rate for patients with acute kidney injury 
combined with AP is over 25%.26

The progression of pancreatitis requires the activation of pancreatic enzymes by calcium ions, which constantly 
initiates their self-digestion.27 On the other hand, exudation of pancreatic fluid degrades pancreatic adipose tissue, and 
free fatty acids combine with calcium ions to form calcium saponification, leading to a decrease in blood calcium level.28 

In this study, we observed that the lower the blood calcium level, the higher the probability of POF. Serum calcium is 
a pivotal predictor for POF in AP patients.

D-dimer is commonly used to assess thrombosis and is also a risk factor for predicting both AP severity and 
thrombosis.29–31 Coagulation and inflammation are known to influence each other reciprocally: the onset of inflammation 
can activate coagulation, and in turn, coagulation can stimulate inflammation.32 An increasing body of studies confirms 
the correlation between D-dimer levels at the time of admission and AP severity. For instance, in a study by Zhang et al, 
it was observed that patients with elevated D-dimer levels were more likely to experience severe AP.33,34

AP is an inflammatory disease. There is an important relationship between the role of inflammatory cells and the 
severity of AP. The activation of T lymphocytes and B lymphocytes is significantly related to the pathogenesis of AP, and 
may be an important factor leading to the progression of AP.35 Our study is consistent with existing findings that 
lymphocytes can independently predict whether or not AP patients develop POF. Nowadays, researchers are no longer 

Table 2 Multivariate Logistic Regression Results

Variable β CI P

Age 0.0482 1.049 (1.033–1.066) <0.001

Heart Rate 0.0368 1.037 (1.025–1.050) <0.001

Serum Creatinine 0.0076 1.007 (1.002–1.013) 0.008

Lymphocytes −0.0480 0.953 (0.919–0.985) 0.007

Serum Calcium −2.0034 0.134 (0.044–0.388) <0.001

D dimer 0.0002 1.000 (1.000–1.000) 0.010
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limited to the analysis of the cellular level, and the predictive value of cytokines is widely used. Some studies have 
shown that CD4+T lymphocytes and CD19+B lymphocytes can predict the occurrence of organ failure.36

Most of the existing AP prediction models are based on univariate logistic regression, and a few researchers have 
applied machine learning to predict the severity of AP. Some researchers developed an EASY-APP based on machine 
learning to predict the severity of AP. The study used patients from multiple countries to build a prediction model. 
Respiratory rate, abdominal guarding, axillary body temperature, serum amylase, gender and serum glucose level are 
more related to the severity of AP. However, the data were highly imbalanced, with only 70 of 1184 patients enrolled 
having severe pancreatitis (AUC score was 0.803 ± 0.010).37 The study by Mikolasevic et al pointed out that the presence 
of nonalcoholic fatty liver disease was associated with severe acute pancreatitis, but this result was not obtained in our 

Figure 4 Nomogram for predicting whether patients with AP will develop POF. The nomogram created by univariate logistic regression (A). The nomogram created by 
LASSO (B).
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Figure 5 Nomogram performance. ROC curves of the model for predicting POF probabilities in the training cohort (A) and validation cohort (B). Calibration plots for 
predicting POF probabilities in the training cohort (C) and validation cohort (D). The gray slash represents the ideal reference line, and the black curve represents the 
predictive performance of the model. The closer the black curve is to the gray slash, the closer the predicted outcome event is to the actual event. Decision curves for the 
training cohort (E) and validation cohort (F). The abscissa is the threshold probability, and the ordinate is the net benefit rate, when the black dashed line is above the two 
solid lines, it indicates that the model provides a net benefit.
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study.38 Hong et al studied 700 patients with acute pancreatitis, biliary etiology, chronic concomitant diseases, hemato-
crit, blood urea nitrogen, and the serum albumin level were independently associated with POF.39

In the prediction model established by univariate logistic regression, direct bilirubin was the pair predictor of POF in 
AP patients, which was different from the model established by LASSO regression. According to previous statistics, 
nearly half of AP patients were diagnosed with biliary pancreatitis or cholecystitis and gallstones, although we have tried 
to adjust the imbalance of the data.

In this study, the six selected predictors were combined to create both visual Nomogram and an online calculator. 
These tools are designed to be more conducive to clinical application and to provide valuable guidance for clinical 
decision-making. However, there are some limitations to consider. This study originates from a single center and employs 
a retrospective approach, which may introduce biases. In addition, of the total sample, only 145 AP patients exhibited 
complications with POF, representing just 25% of all patients. This distribution may reduce our models sensitivity. In the 
future, validation from multiple centers with larger datasets will be essential to corroborate our findings.

Conclusion
Heart Rate, Serum Creatinine, Ca (Calcium), Lymphocytes and D-dimer are independent predictors of POFwere 
independently associated with persistent organ failure in acute pancreatitis. Using 6 clinical risk indicators, we developed 
nomogram and web calculator.

Abbreviations
AP, acute pancreatitis; OF, organ failure; POF, persistent organ failure; LASSO, least absolute shrinkage and selection 
operator; AUC, area under the curve; DCA, decision curve analysis; BMI, body mass index; ALT, alanine aminotrans-
ferase, AST, aspartate aminotransferase; WBC, White Blood Cell Count; RBC, red blood cell.

Figure 6 Dynamic web calculator to predict whether patients with AP will develop POF. The left band inputs variable values, Graphical Summary shows the probability and 
confidence interval of POF occurrence in the form of pictures.
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