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Abstract: CD4+ T cells play a critical role in the pathogenesis of viral diseases, which are activated by the internal metabolic 
pathways encountering with viral antigens. Glutaminolysis converts glutamine into tricarboxylic acid (TCA) circulating metabolites by 
α-ketoglutaric acid, which is essential for the proliferation and differentiation of CD4+ T cells and plays a central role in providing the 
energy and structural components needed for viral replication after the virus hijacks the host cell. Changes in glutaminolysis in CD4+ 

T cells are accompanied by changes in the viral status of the host cell due to competition for glutamine between immune cells and host 
cells. More recently, attempts have been made to treat tumours, autoimmune diseases, and viral diseases by altering the breakdown of 
glutamine in T cells. In this review, we will discuss the current knowledge of glutaminolysis in the CD4+ T cell subsets from viral 
diseases, not only increasing our understanding of immunometabolism but also providing a new perspective for therapeutic target in 
viral diseases. 
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Introduction
In viral diseases, metabolic reprogramming of the host’s cell occurs in response to viral infection. First, the virus hijacks 
the metabolic pathways and protein synthesis mechanisms of host cells to provide the energy and viral structural 
components required for viral replication. Subsequently, in the maintenance of immune homeostasis and response to 
antigenic challenges, CD4+ T cells and other immune cells undergo metabolic reprogramming to address the needs of 
clonal expansion, as well as cytokine synthesis and secretion.1–3 Glutaminolysis is one of the most important hallmarks 
of metabolic reprogramming.4,5 Several studies, including those on various tumours and Mycobacterium tuberculosis 
infections,6–9 have reported that the immunomodulatory effects of glutaminolysis are driven by their impact on T cells, 
and glutaminolysis mediates viral latency or reactivation and alters viral susceptibility to host cells.10,11 However, the 
mechanisms by which metabolic-mediated CD4+ T cells influence virulence development are still poorly understood. 
Infectious viruses such as HIV, herpes and hepatitis remain major global public health concerns due to their latent or 
carcinogenic nature. Therefore, a better understanding of the biological regulation of glutaminolysis in CD4+ T cells 
would provide new options for the treatment of viral diseases.

In this study, we summarize the understanding of glutaminolysis in host CD4+ T cell subsets after viral infection and 
discuss potential therapeutic approaches that target glutaminolysis for patients affected by viral diseases.

Glutamine Metabolism
Glutamine (Gln) is the most abundant amino acid in the human body and is a nonessential amino acid, but it becomes 
“conditionally” essential in extreme catabolic conditions, such as cancer and inflammation.12 Glutaminolysis is the 
process by which cells convert Gln to TCA cycle metabolites to support biosynthesis and provide energy for T cell 
activation through the activity of multiple enzymes.12,13 Two key transporters for Gln uptake into cells are solute carrier 
family 1 member 5 (SLC1A5) and solute carrier family 7 member 5 (SLC7A5). SLC1A5 mediates the influx of Gln and 
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is considered to be the primary transporter for Gln in CD4+ T cells.12,14 SLC7A5 covalent binding with the solute carrier 
family 3 member 2 (SLC3A2) heavy chain and mediates intracellular exchange of Gln and essential amino acids 
(EAAs).15 Cytoplasmic Gln is transported into the mitochondria via the SLC1A5 variant (var), a mitochondrial glutamine 
transporter. Next, Gln is converted into glutamate (Glu) by mitochondrial glutaminase (GLS). Glu is converted to α- 
Ketoglutaric acid (α-KG) in mitochondria by glutamate dehydrogenase 1 (GLUD1), glutamate oxaloacetic acid amino
transferase 2 (GOT2) and glutamate pyruvate aminotransferase 2 (GPT2) to α-KG, which subsequently participates in the 
TCA cycle, supporting the oxidative phosphorylation (OXPHOS) pathway and Adenosine 5’-triphosphate (ATP) 
generation.16 Cytosolic glutamate is involved in the biosynthesis of glutathione (GSH) and non-essential amino acids 
and transported out of the cell via SLC7A11 (Figure 1). Glutaminolysis generates fuel to maintain the primary energy 
electron transport chain (ETC) and provide carbon to support redox homeostasis, and also produces citrate to safeguard 
lipid biosynthesis processes.17 Gln plays an important role both in the process of viral infection and in the antiviral 
process of immune cells (Figure 1).

Glutaminolysis Determines Cytokine Signalling and T Helper Cell Subset 
Differentiation
Naïve CD4+ T cells subsequently differentiate into various subtypes under the influence of various cytokines. Different 
CD4+ T cell subsets often do not share the same metabolic program. Only when activated T cells induce the appropriate 
metabolic pathways can effector function and the ability to induce inflammatory disease in vivo be fully realized13 

(Figure 2). Gln has been reported to be essential for the biological process of differentiation and survival of CD4+ 

T cells,3 and even moderate reductions within the normal physiological range could impair T-cell function; moreover, 
other amino acids, including direct biosynthetic precursors, cannot substitute for glutamine.18 The metabolites α-KG 
from glutaminolysis also influence mTOR pathway signalling and play an important role in histone and DNA 

Figure 1 The biological process of glutamine metabolism in CD4+ T cells. Glutamine enters the cytoplasm with the help of several membrane transport proteins. 
Intracellular glutamine is transported into the mitochondrial matrix via the SLC1A5 variant (var) and subsequently converted to glutamate with the help of GLS. Then, by 
catalysis of GLUD1 or several aminotransferases, Glu was converted to α-KG, then participates in the TCA cycle and supports the OXPHOS pathway, which provides 
energy for CD4+ T cells activation and exerts antiviral functions. 
Abbreviations: APC, antigen presenting cell; MHC-II, major histocompatibility complex-II; Gln, glutamine; GLS, glutaminases; Glu, glutamate; GLUD1, glutamate 
dehydrogenase 1; GOT2, glutamic-oxaloacetic transaminase 2; GPT2, glutamic-pyruvic transaminase 2; α-KG, alpha-ketoglutarate; Cys, cysteine; AA, Amino Acid; TCA 
cycle, tricarboxylic acid cycle; OXPHOS, oxidative phosphorylation; ATP, Adenosine 5’-triphosphate.
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methylation and affect chromatin status as a whole to determine gene expression and influence T-cell differentiation.19 

The importance of glutaminolysis for immune cell function has become apparent, we next summarize the current 
understanding of glutaminolysis in CD4+ T cell subsets.

TFH Cells
CD4+ T follicular helper (TFH) cells are a specialized subset of CD4+ T cells that are localized in the germinal center 
region and stimulate B cells to produce long-lived and class-switched antibodies against pathogenic antigens. TFH cells 
are characterized by the expression of surface markers, such as programmed cell death protein 1 (PD-1), C-X-C Motif 
Chemokine Receptor 5 (CXCR5), inducible Co-Stimulator (ICOS), and the master transcriptional regulator BCL-6 
(B-cell lymphoma 6 protein), and secrete effector cytokines, such as IL-21 (Interleukin 21) and CXCL-13 (C-X-C motif 
chemokine ligand 13) (Figure 2).

Glutamine is essential for TFH cells, especially those induced by exogenous antigens TFH.12,20 Inhibition of 
glutaminolysis decreased the number of TFH cells in MRL/lpr mice (an autoimmune disease resembling systemic 
lupus erythematosus).13 Positive correlation between SLC7A11 expression and TFH cells in liver hepatocellular 
carcinoma with poor survival.17 However, glutaminolysis is utilised differently by TFH cells in the older adults. 
Sustained activation of the mechanistic target of mammalian target of rapamycin 1 (mTORC1), which depends on 
SLC7A5 as an amino acid source, leads to loss of cell differentiation, such as TFH and memory precursor cells, in the 

Figure 2 Glutaminolysis determines T helper cell subset differentiation and effects of viral infection on glutamine metabolism. The key cytokines are produced by CD4+ 

T cells with different states. Following viral infection, the virus hijacks host cells for metabolic reprogramming, seizing more glutamine from the environment and forcing 
immune cells to convert to non-effector cells, resulting in reduced antiviral immunity. 
Abbreviations: Th1, T helper 1; Th2, T helper 2; TFH, T follicular helper; Th17, T helper 17; Treg, regulatory T; CXCL-13, C-X-C motif ligand 13; TNF-α, Tumor necrosis 
factor-α; IFN-γ, Interferon -γ; TGF-β, Transforming growth factor-β.
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CD4+ T cell response of older adults.21 Inhibition of SLC7A5 reduced mTORC1 activities in T cells from older 
individuals, which restored TFH generation in aged T cells.18 SLC3A2 deficiency has been reported to reduce B-cell 
proliferation, plasma cells formation, and antibody production,22 which may be related to TFH function.

Treg Cells
Regulatory T (Treg) cells, a subset of helper T cells, are pivotal in supporting immune tolerance and preventing 
autoimmunity.23,24 Forkhead box protein P3 (Foxp3) is a master transcription factor for Tregs. Conventional CD4+ 

T cells activated during immune responses may acquire Foxp3 expression under adequate conditions and become 
peripherally induced Treg (pTreg) cells, which can be further differentiated into peripherally induced Tregs (iTregs), 
IL-10-producing Tregs and TGF-β-producing Th3 cells25,26 (Figure 2). And the level of self-reactivity is thought to 
support differentiation into thymus-derived Treg (tTreg) cells, which particularly important in the prevention of 
autoimmunity.27 In tTreg cells, Foxp3 has been shown to be induced by strong TCR signals after the recognition of self- 
antigen–MHC complexes present on thymic antigen-presenting cells (APCs) with relatively high avidity. And glutamine 
deprivation, deletion of SLC1A5 or suppression of glutamate oxaloacetic acid aminotransferase 1 (GOT1) was shown to 
promote Foxp3 expression and Treg differentiation.28–30 SlC3A2 is not involved in the Treg cell differentiation process 
but controls Treg cell functions, and the branched-chain amino acid (BCAA)/SLC3A2 axis might be useful for the 
treatment of autoimmune diseases with decreased numbers of Treg cells.15,31 The Treg cell proliferative response was 
dependent on the induction of SLC7A11, whose expression was controlled by nuclear factor erythroid 2-related Factor 2 
(NRF2).32 Glutamine affects posttranslational modification after T cell receptor (TCR) activation by affecting substrate 
for the O-linked β-N-acetylglucosamine (O-GlcNAc)-mediated posttranslational modification levels, enhancing the 
stability and effector function of Treg lineages.33 However, the increased level of glutamate in the tumour microenvir
onment (TME) promoted Treg infiltration and attenuated antitumour immunity.34,35

Th1 Cells
Th1 (T helper 1) cells are characterized by the release of interferon-γ (IFN-γ) and tumor necrosis factor-α(TNF-α), which 
stimulate innate immune cells, such as neutrophils and macrophages,36,37 and intervene in cell-mediated immunity and 
delayed-type hypersensitivity reactions38 (Figure 2).

Th1 cells are dependent on glutaminolysis for proliferation and survival. Glutaminolysis leads to the production of α- 
KG, which directs the expression of T-bet, which regulates Th1 cell differentiation.29 IFN-γ production by Th1 T cells 
increases with the concentration of glutamine in a dose-dependent manner, indicating that Th1 differentiation is promoted 
by glutaminolysis at all glutamine concentrations. Inhibition of glutamine metabolism can decrease the proportion of Th1 
cells in the spleen of B6 mice.20 The absence of glutamine or deficiency of the glutamine transporter SLC1A5 prevented 
cytokine production and proliferation of both Th1 cells and instead promoted Treg generation.28 SlC7A5-null CD4+ 

T cells cannot respond to antigen receptor ligation and the appropriate polarizing cytokines to effectively produce Th1 or 
Th17 cells.39 Slc3a2 deficiency in T cells impairs T-cell proliferation and Th1 and Th17 differentiation at the cell 
population level in mice.40 The markers of Th1 cells, such as T-Box Transcription Factor 21 (TBX21), interleukin 12 
receptor subunit beta 2 (IL12RB2), signal transducer and activator of transcription 1 (STAT1), and interferon gamma 
(IFNG), were strongly correlated with solute carrier family 7 member 11 (SLC7A11) expression.41 In particular, 
glutaminase (GLS) deficiency selectively promotes Th1 cells while not affecting Tregs because Th1 cells can adapt to 
GLS inhibition and increase glucose uptake for anaplerotic reactions to maintain cell phenotypes.16

Th2 Cells
Th2 is mainly responsible for the host’s defense against extracellular pathogens, producing IL-4, IL-5, and IL-13 that promote 
humoral immunity.42 STAT6 activation by IL-4 results in the expression of the Th2 master transcription factor GATA3. And 
Th2 cells also play a crucial role in allergic responses, as they encourage B cell activation, differentiation, proliferation, and 
class switch recombination, leading to the production of allergen-specific IgE antibodies. Understanding the metabolic 
changes linked to Th2 differentiation and effector function may be beneficial in allergy treatment.43,44
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In mice sensitized to Alternaria alternate extract, enhanced glutamine metabolism was observed in both Th2 and Th17 
cells.44 Inhibition of glutaminolysis reduces Th2 cytokine production and cell infiltration, enhances the conversion of naive 
CD4+ T cells into regulatory T cells (Tregs). In breast cancer patients, according to The Cancer Genome Atlas (TCGA) plotter 
data, Th2 cells were strongly correlated with SLC7A family genes.45 SLC7A5 inhibitor treatment suppressed allergen- 
induced skin inflammation in both ovalbumin (OVA)-immunized and OVA-specific Th2 cell-transferred mice and effectively 
suppressed allergen-induced airway and nasal hyperresponsiveness in immunized and/or Th2-transferred mice.46–49

It is noteworthy that in CD4+ T cell differentiation models, glutamine restriction in the presence of all types of 
exogenous cytokine mixtures induces polarization toward Th2, whereas in the absence of Th2-induced cytokines, 
glutamine restriction promotes polarization toward Treg.13 This model suggests that cytokine storm caused by viral 
infection may cause Th1 to tilt to Th2 phenotype when host cells ingest glutamine in large quantities.

Th17 Cells
T helper cell 17 (Th17) cells have been classified into pathogenic phenotypes associated with tissue inflammation and 
autoimmune disease and non-pathogenic phenotypes with immunomodulatory functions.37,50,51 Pathogenic Th17 cells 
are characterized by the production of proinflammatory cytokines, including interleukin-17A (IL-17A), interleukin-17F 
(IL-17F), and interleukin 22 (IL-22)52,53 (Figure 2). In contrast, nonpathogenic Th17 cells negatively regulate immune 
responses by secreting immunosuppressive factors, such as IL-10.54 Metabolomic analysis showed that glutamine 
critically supports TCA cycling and bioenergetic activity in Oxidative phosphorylation (OXPHOS) TH17 cells.55 

Glutamine metabolism blockade inhibits the activation of mTOR signalling and suppresses the differentiation of Th1/ 
Th17 cells,56,57 and deficiency of the glutamine transporter Slc1a5 and inhibition of GOT1 both impair Th17 
proliferation.30 All these conditions simultaneously lead to enhanced Treg production. In contrast, deletion of GLS 
selectively impairs Th17 differentiation without affecting Tregs. SLC7A5 and SLC1A5 are positively (+) associated with 
the differentiation of Th17 cells,58 the addition of excessive amounts of glutamine can rescue the defect of the SLC1A5 
−/− T cells in differentiation into Th17 cells,28 GLS promotes differentiation and immune function of Th17 cells,16,59 and 
GLS inhibition may inhibit the activation of mTOR signalling and differentiation of T cells through suppressing the 
production of polyamines60 or glutathione or downregulating Th17-promoting transcription factor, IL-2 release down
stream of mTORC1 signal is reduced.16 Increased reactive oxygen species (ROS) caused by GLS inhibition promote 
closed chromatin to prevent Th17 cell differentiation, which cannot be rescued by IL2, and its inhibition suppresses 
autoimmune disease in animals.61,62

CD4+ T Cell Plasticity
Although cell plasticity has been found in almost all CD4+ T cell subsets, Th17 cells are the most flexible in altering their 
phenotypes.30,63,64 GLS deficiency impaired Th17 cells and promoted the transdifferentiation of Th17 cells into ex- Th17 
TH1 cells, which is implicated in the pathogenicity of autoimmune diseases.16,65,66 Manipulating the glutamate metabolic 
pathway could change Th17 cell fate by affecting methylation of the FOXP3 gene locus and ameliorate experimental 
autoimmune encephalomyelitis (EAE) in mice by regulating the Th17/iTreg balance.30 Glutamine metabolism supports 
Th17 cell differentiation through the production of 2-hydroxyglutarate (2-HG), an intermediate of the TCA cycle.67

Overall, the metabolism of CD4+ T cells and glutamine catabolism are interdependent and inseparable from each other. 
The discovery has made it possible to treat diseases by manipulating or targeting regulation of glutamine metabolism.

Glutaminolysis of CD4+ T Cells as a Potential Antiviral Target
Metabolic reprogramming has proven to be critical in viral infections. Viruses impose metabolic reprogramming of the 
host cells to increase biomass to fuel viral genome replication and production of new virions.14,68 Several studies have 
reported that viruses preferentially manipulate central carbon metabolism pathways in host cells to increase available 
energy by altering glycolysis and glutaminolysis.69,70

CD4+ T cells participate in antiviral immunity mainly through the production of the cytokines IFN-γ and TNF and 
direct cytolytic effects.71,72 On the one hand, competition for glutamine exists between immune cells and host cells,73 and 
postinfection viral manipulation of host cells increases glutaminolysis, forcing immune cells to switch to noneffector 
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cells (Figure 2); at the same time, sustained activation of CD4+ T cell checkpoint/suppressor receptor expression leads to 
effector cell exhaustion, weakening the immune response. On the other hand, uncontrolled immune cell homeostasis 
within the microenvironment after viral infection produces cytokine storms that adversely affect the organism. We 
selected three distinct diseases to understand the role of glutaminolysis in host cells and CD4+ T cells under different 
viral infections that may provide better therapeutic targets for antiviral drugs (Table 1).70

Herpesvirus
Herpes viruses are double-stranded DNA viruses classified as alpha-, beta- and gamma-herpes viruses. Some herpes 
viruses have been directly linked to cancer. All herpes viruses contain two phases of the life cycle: latency and lytic 
replication.74,75 Metabolic events during latency and lytic replication are certain to be different since latency involves 
minimal or even no synthesis of new viral proteins. Glutaminolysis can be a changing event, causing a latently infected 
cell to reenter the productive cycle.76,77

Herpesvirus infection increases glutaminolysis in host cells to supplement the TCA cycle, a hallmark of metabolic 
reprogramming. Increased glutamine anaplerosis and production of oxaloacetate by the TCA cycle were detected in 
herpes simplex virus-1 (HSV-1) infected cells;78 at the same time, the decrease in viral replication associated with GLS 
inhibitors suggests that HSV-1 uses glutaminolysis in host cells to produce virions.79,80 Similarly, Kaposi’s Sarcoma- 
Associated Herpesvirus (KSHV) mediates host cell glutaminolysis to promote the proliferation of KSHV-transformed 

Table 1 Effect of Glutamine Metabolism on Host Cells and CD4+ T Cells in Viral Infections

Virus Effects on Host Cells Effects on CD4+T Cell Effects of Altering Glutamine 
Metabolism

Herpes 
viruses

Bringing latently infected cell to reenter 
the productive cycle; HSV-1 uses 

glutaminolysis in host cells to produce 

virions; Promote the proliferation of 
Kaposi’s Sarcoma-Associated Herpesvirus 

(KSHV)-transformed cells

The response to latency-associated 
antigens becomes inhibitory to maintain 

latent viral carriage in vivo; TFH cells 

increase in number during the early phase 
of cytomegalovirus (CMV) infection; In 

severe herpes zoster patients, the 

proportion of CD4+ T cells were 
negatively correlated, while Tregs were 

positively correlated; In Epstein-Barr Virus 

(EBV) latent cells, inhibition of recognition 
and activation of EBV-specific CD4 

cytotoxic T lymphocytes (CTLs) leads to 

EBV-associated malignancies

Increasing glutamine uptake by CD4+ 
T cells can alter CD4+ T cell subset 

differentiation and improve viral 

progression; Intraperitoneal 
administration of Gln and Leucine 

following mucosal infection with HSV-1 

increased Th1-type CD4+ T cell activity 
and improved immune protection

HIV Higher levels of metabolic activity are 

more susceptible to HIV infection; The 

early steps of HIV infection are supported 
by the entry of glutamine carbon into the 

TCA cycle; Upon entry into host cells, 

HIV replication further causes an increase 
in glutaminolysis, which promotes gene 

transcription and HIV replication, 

supporting completion of the HIV life cycle 
and facilitating latency

Proliferate poorly, low cytotoxicity and 

polyfunctionality; CD4+ T cell exhaustion

The use of mTOR inhibitors and related 

glutamine metabolic process inhibitors has 

been shown to inhibit the HIV-1 
replication step of provirus establishment

Hepatitis 

virus

Cytokines and chemokines produced by 

hepatocytes after infection can affect the 
differentiation and function of 

lymphocytes; Glutamine anaplerosis are 

metabolic features of dysfunctional 
hepatocytes in patients with acute-on- 

chronic liver failure

The demand for glutamine by cells of the 

immune system and host cells, which 
together compete to cause glutamine 

deficiency; TGF-β secreted by HCV- 

infected hepatocytes recruits Treg to the 
inflamed liver, limiting the amplification of 

virus-specific T cell responses

Altering glutamine metabolism in hepatitis 

patients can alter the phenotype and 
function of CD4+ T cells, modulate 

cytokine differentiation and reverse T-cell 

exhaustion following hepatitis virus 
infection
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cells, and profile analysis of high-throughput RNA sequencing has revealed that the expression levels of many enzymes 
(such as GLS2 and GOT2) in the glutamine pathway are upregulated by KSHV infection (Table 1).81–84

As there is competition for glutamine between immune and host cells, viral infection leads to an upregulation of glutamine 
catabolism in host cells, resulting in a downregulation of glutamine uptake by immune cells and causing changes in the 
distribution of CD4+ T cell subtypes. The heterogeneity and potential functions of herpesvirus-reactivated CD4+ T cell subsets 
isolated from human peripheral blood were analysed by single-cell RNA-seq and TCR sequencing. Th1 phenotype Tregs 
comprised the largest population of these reactivated cells, with expression of IFNG and TNF.85 TFH cells increase in number 
during the early phase of cytomegalovirus (CMV) infection, resulting in a rise in neutralizing antibodies. Once the virus is 
cleared, TFH numbers decrease, but glycoprotein-specific TFH CD4+ T cells are maintained over time.86 In severe herpes 
zoster patients, the proportion of CD4+ T cells from peripheral blood mononuclear cells (PBMCs) were negatively correlated, 
while Tregs were positively correlated.87 Herpesvirus skews the CD4+ T cell responses to latency-associated antigens 
following herpesvirus infection to one that is overall suppressive to sustain latent carriage in vivo (Table 1).88,89

However, when the subtype distribution of CD4+ T cells changes, the latent or activated state of the virus also 
changes. Immune escape of CMV regulates IFN-γ by affecting the function of Th1.90

Interferon regulatory factor 1 (IRF-1) expressed by TFH cells controls chronic infection and reactivation of 
herpesviruses.91 Half of the CMV-specific Th1, Th2, and Th17 cells are in a state of exhaustion that can be reverted 
by IL-7.92 CMV reactivation drives posttransplant T-cell reconstitution, causes dramatic effector memory T-cell (Tem)- 
specific amplification and results in a linked contraction of all naive T cells.93 Some of the above alterations in CD4+ 

T cell subsets could account for pathogenesis changes, including contributing to neoplasia. In Epstein-Barr Virus (EBV) 
latent cells, inhibition of recognition and activation of EBV-specific CD4 cytotoxic T lymphocytes (CTLs) leads to EBV- 
associated malignancies, if induced to activate Th1 and/or Th2 cells that are cross-reactive to self-antigens, which would 
form an autoimmune disease.94,95 Increasing glutamine uptake by CD4+ T cells can alter CD4+ T cell subset differentia
tion and improve viral progression. Intraperitoneal administration of Gln and Leucine following mucosal infection with 
HSV-1 increased Th1-type CD4+ T cell activity and improved immune protection.96 In another study in mice, glutamine 
acted through the T-cell-IFN-γ pathway to reduce HSV-1 reactivation (Table 1).97

HIV
Human immune deficiency virus (HIV) belongs to the retroviridae family and attacks the immune system by targeting 
CD4+ T lymphocytes. Combination antiretroviral treatment (cART) blocks HIV replication but does not eliminate 
infected cells. Replication-competent HIV persists in cellular reservoirs that are the origin of rapid viral rebound when 
treatment is interrupted. The composition of CD4+ T cells that remain infected is mainly determined by the susceptibility 
of CD4+ T cell subsets to HIV infection, their resistance to HIV-induced apoptosis, and their lifespan and turnover 
potential.98,99 CD4+ T cells with higher levels of metabolic activity are more susceptible to HIV infection, independent of 
the type of CD4+ T cell differentiation (Table 1).98 Glutaminolysis is the major factor regulating human CD4+ T cell 
proliferation and early steps in HIV infection.10 The early steps of HIV infection are supported by the entry of glucose 
and glutamine carbon into the TCA cycle, respectively, glutamine catabolism is necessary for the induction of glucose 
transporter type 1 (GLUT1), and glutamine antagonists can reduce HIV infection without inducing cell death.98,100 Upon 
entry into CD4+ T cells, HIV replication further causes an increase in glutaminolysis, which promotes gene transcription 
and HIV replication, supporting completion of the HIV life cycle and facilitating latency.101,102 With chronic antigen 
stimulation and the onset of T-cell exhaustion, the suppression of the glycolysis pathway ensues with reduced cellular 
glucose uptake and signs of dysregulated mitochondrial function.103 T cells during untreated chronic infection proliferate 
poorly, have low cytotoxicity, and low polyfunctionality. Early initiation of cART results in rapid and near-complete 
normalization of T-cell subsets and preservation of T-cell function,104,105 but epigenetic features of HIV-induced T-cell 
depletion persist.106 T-cell function and exhaustion are intimately linked to metabolic changes within cells, and 
dysfunctional OXPHOS leads to increased ROS generation, which damages mitochondrial DNA, membrane lipids, 
and proteins. Furthermore, reduced levels of OXPHOS protein were associated with an increased frequency of CD4+ 

T cell exhaustion.107 The use of immune checkpoint inhibitors can rescue T cells from a state of failure, and partially 
mitigates the progression of cellular failure by enhancing OXPHOS, glycolysis, IL-2 signalling pathways and T-cell 
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effector functions. Combination therapy including metabolic and immune checkpoint inhibitors may be the solution to 
achieve HIV remission.108,109 It is noteworthy that metabolic changes in T cells in HIV-infected individuals can influence 
HIV control. Elite HIV controllers represent <1% of people living with HIV/AIDS (PLWH) who can naturally suppress 
viral infection in the absence of cART, and also showed higher Th17 cell frequencies in the gut and peripheral blood.110 

In contrast to HIV progressors, elite HIV controllers showed intact mitochondrial function and greater metabolic 
plasticity of T cells, and the mTOR pathway was upregulated. mTOR signalling is regulated by glutaminolysis, the 
increased uptake of glutamine supplies key nucleotide precursors used by multiple mTOR-dependent rate-limiting 
nucleotide biosynthetic enzymes that facilitate the expansion of all deoxy-ribonucleoside triphosphate (dNTPs) necessary 
for reverse transcription.111 The use of mTOR inhibitors and glutamine metabolism inhibitors has been shown to inhibit 
the HIV-1 replication step of provirus establishment,112 and it also explores the administration of combination metabolic 
drugs during early-stage ART to help suppress residual HIV replication and “starving the HIV reservoir” in patients to 
potentially delay HIV rebound for more extended periods off ART (Table 1).113

Hepatitis Virus
The human liver is the target organ of five hepatotropic viruses, specifically hepatitis viruses A–E. Hepatitis B (HBV) or 
C (HCV) virus causes an acute-resolving infection in only a minority of patients, while the majority of those infected will 
develop a chronic infection.114,115 Chronic viral hepatitis is a major global health problem because it can lead to 
progressive liver disease, including acute (including fulminant hepatic failure) to chronic hepatitis, cirrhosis, and 
hepatocellular carcinoma. Despite the availability of an effective prophylactic HBV vaccine, approximately 
290 million people are chronically infected with HBV worldwide. Curative treatment for HBV does not exist.116 In 
contrast, chronic HCV, which affects approximately 58 million people worldwide, is associated with advanced liver 
disease and can induce hepatocellular carcinoma, which causes many extrahepatic manifestations.79,117,118

In the hepatic microenvironment, hepatocytes interact with intrahepatic immune cells due to the open window structure of 
the hepatic sinusoids combined with the lack of basement membrane and low blood flow. Cytokines and chemokines produced 
by hepatocytes after infection can affect the differentiation and function of lymphocytes. In vitro hepatocyte cell lines are able 
to produce IL-7, IL-15, TGF-β, macrophage inflammatory protein-1 alpha (MIP-1α) and IL-8d following HCV 
infection.119,120 Many of these cytokines and chemokines are important for the survival and differentiation of CD4+ T cells; 
for example, TGF-β secreted by HCV-infected hepatocytes recruits Treg to the inflamed liver, antagonising effector CD8+ 

T cells and thus limiting the amplification of virus-specific T cell responses (Table 1). On the other hand, the demand for 
glutamine by cells of the immune system and host cells, which together compete to cause glutamine deficiency in humans.76 

By analysing metabolomics data at different stages in patients with chronic hepatitis B (CHB), glutamine and glutamate 
metabolism and disorders of the tricarboxylic acid cycle were found to be influencing factors in the progression of patients 
with CHB.77,121 Enhanced fatty acid oxidation (FAO) and glutamine anaplerosis are metabolic features of dysfunctional 
hepatocytes in patients with acute-on-chronic liver failure,122 and high plasma levels of glutamine can be predictive of an 
unfavourable outcome in critically ill patients.123 Unbalanced metabolism of amino acids plays an important role in the 
development and progression of hepatocellular carcinoma following hepatitis virus infection.121 Glutamine metabolism in 
hepatocytes and/or intrahepatic immune cells may serve as a novel biomarker for diagnosis and prognosis, as well as 
a therapeutic target for screening viral hepatitis and different disease processes (Table 1).

Sustained expression of PD-1 on CD4+ T cells in chronic HBV patients is accompanied by low expression of other 
inhibitory receptors, including cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), TIM-3 and killer cell lectin-like 
receptor subfamily G member 1 (KLRG1).124 PD-1 and CTLA-4 can regulate the expansion and restoration of HCV- 
specific CD4+ T cells in patients with chronic HCV infection.125 Neutralization of PD-L1/2 was able to improve the 
ability of CD4+ T cells to produce Th1 cytokines, including IFN-γ, IL-2 and TNF-α, with enhanced T-cell proliferation in 
treated patients with successful viral control.126 The glutamine metabolism inhibitor JHU083h was found to exhibit 
superior tumour growth inhibition in concert with PD-1 blockers. In an immune microenvironment where glutamine 
metabolism is blocked, cancer cell growth is inhibited, but CD4+ T cell proliferation is enhanced.117 This phenomenon is 
due to the presence of a flexible metabolic compensation mechanism in T cells, which is absent in tumour cells.7 

A sufficient number of immune cells is a prerequisite for the sustained action of PD-1 blockers. Thus, modulation of 
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glutamine metabolism may be a synergistic strategy for anti-hepatitis virus therapy because altering glutamine metabo
lism in hepatitis patients can alter the phenotype and function of CD4+ T cells, modulate cytokine differentiation and 
reverse T-cell exhaustion following hepatitis virus infection (Table 1).

Here, we describe how glutaminolysis regulates the immune metabolism of CD4+T cell immune responses in 
different viral disease conditions (Figure 2). Metabolic pathways are complex and fine-grained networks, and the 
potential therapeutic effects of targeting this pathway are attracting increasing attention.

Development of Glutaminolysis-Related Drugs in Viral Diseases
The antiviral effect of glutamine catabolism against CD4+ T cells is mainly in two aspects (Table 2). The first is to reduce 
the inflammatory response caused by the release of large amounts of cytokines in acute infections by downregulating 
glutamine catabolism. Glutamine blockade can be divided into glutamine uptake inhibitors, glutamine antagonists and 
glutaminase inhibitors. Extensive inhibition of glutamine metabolism by the drugs 6-diazo-5-oxo-L-leucine (DON), such 
as JHU083 and Sirpiglenastat (DRP-104), is heavily used in the treatment of solid tumours.127,128 In viral diseases, 
treatment of nonfatal alphavirus encephalomyelitis infection in mice with DON reduced lymphocyte metabolism can 
reduce the inflammatory response caused by the release of large amounts of cytokines in acute infections by reducing 
CD4+ Th1 and Th17 T cells, reducing the severity of acute stromal keratitis lesions and pathological angiogenesis in the 
corneas of HSV ocularly infected mice.79 In another study, the novel glutamine inhibitor C19 was characterized by high- 
throughput screening. C19 inhibits GLS1 activity and reduces proliferation and cytokine secretion from activated CD4+ 

T cells.129 However, in the presence of latent infection, reduced levels of CD4+ Th1 and Th17 T cells may mean that 
delayed reactivation of the virus may become more frequent.130

The second is to improve antiviral capacity in chronic infections by increasing glutamine metabolism in CD4+ T cells 
(Table 2). On the one hand, glutamine supplementation may increase CD4+ T cell proliferation and cytokine production 
following viral infection or vaccination.131 Intraperitoneal injection of Gln showed enhanced protective immunity of Th1- 
type CD4+ T cells against herpes simplex virus type 1 mucosal infection.96 As previously shown, it may benefit the 
differentiation of proinflammatory CD4+ T cell subtypes and modulate CD4+ T cell plasticity. On the other hand, similar to 
the tumour environment, viruses replicate and proliferate heavily in host cells and, like tumour cells, reduce the anti- 
infective effects of glutamine-dependent CD4+ T cells by competing for and depleting glutamine available to immune cells. 
It is known that a unique metabolic compensation mechanism exists in T cells and in a microenvironment where inhibition 
of glutamine metabolism leads to suppression of cancer cell growth without a compensatory mechanism,117 and CD4+ 

T cells maintain some proliferative efficiency through compensation.7 T cells express very low levels of SLC7A11.132 

Furthermore, this transporter has been described to be nonfunctional in T cells.133 In line with this, an approach to block 
SLC7A11 impairs glutamate/cystine exchange in tumour cells but has only a moderate influence on T-cell function.134

Table 2 Targets of Glutamine Metabolism in the Regulation of Viral Diseases

Process Role Category Drugs Target Reference

Glutamine Blockade Reduce the Inflammatory 
Response

Glutamine Uptake 
Inhibitors

Glutamine Antagonists Drugs 
6-diazo-5-oxo-L-leucine 

(DON)

Th1 ↓ 
Th17 ↓

1,19,120

Glutaminase Inhibitors C19 CD4+ T cells ↓ 97

Glutamine Supplementation in CD4+ 
T cells

Improve Antiviral Capacity Intraperitoneal 
injection of Gln

Th1 ↑ 86

Glutamine 
Supplementation

CD4+ T cells↑ 122

Improving the Metabolic Competition of  
CD4+ T cells

Improve Anti-infective Effects of Glutamine-dependent  
CD4+ T cells

Block SLC7A11 CD4+ T cells↑ 23,124

Notes: ↓ Reduced number. ↑ Increased number.
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Therefore, using this mechanism to specifically inhibit glutamine catabolism in host cells would provide a new 
mechanism for CD4+ T cells to provide new insights into the antiviral mechanisms of CD4+ T cells.

Conclusions and Future Perspectives
Viral infections and transmission remain a major global health problem that can lead to chronic, latent and even fatal 
consequences, although the current development of antiviral drugs and vaccines has improved the survival rate of viral 
infections. The increased demand for glutamine by CD4+ T cells to perform their immune functions coincides with the 
high utilization of glutamine by host cells in patients with viral infections (Figure 2), and this competitive relationship 
suggests that the use of glutaminolysis for the diagnosis and treatment of viral diseases is an area for future research 
(Table 2). However, the development of antiviral drugs that modulate glutamine metabolism must balance the various 
demands on glutamine metabolism by different components of the immune system, and the methods to precisely 
promote/inhibit glutamine catabolism in different cell types remain to be investigated.
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