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Abstract: ATRT is a highly aggressive and rare pediatric CNS tumor of very young children. Its genetic hallmark is bi-allelic 
inactivation of SMARCB1 encoding INI1. Rarely SMARCA4 encoding BRG1 is affected. Up to 30% are associated with constitutional 
heterozygous pathogenic variants in one of the two genes, giving rise to the Rhabdoid-Tumor-Predisposition-Syndromes (RTPS) 1 and 
2. Characteristic DNA methylation profiles distinguish ATRT from other SMARCB1-deficient entities. Three distinct subtypes ATRT- 
MYC, -TYR, and -SHH are on record. ATRT-SHH may be further divided into the subgroups ATRT-SHH1A, -SHH1B, and -SHH2. 
The cure of ATRT remains challenging, notwithstanding an increasing understanding of molecular pathomechanisms and genetic 
background. The implementation of multimodal institutional treatment protocols has improved prognosis. Regardless of treatment 
approaches, clinical risk factors such as age, metastases, and DNA methylation subtype affect survival probability. We provide a 
critical appraisal of current conventional multimodal regimens and emerging targeted treatment approaches investigated in clinical 
trials and entity-specific registries. Intense treatment approaches featuring radiotherapy (RT) and high-dose chemotherapy (HDCT) 
face the difficulty of balancing tumor control and treatment-related toxicity. Current approaches focus on minimizing radiation fields 
by proton beam therapy or to withhold RT in HDCT-only approaches. Still, a 40–75% relapse rate upon first-line treatment reveals the 
need for novel treatment strategies in primary and even more in recurrent/refractory (r/r) disease. Among targeted treatments, immune 
checkpoint inhibitors and epigenetically active agents appear most promising. Success remains limited in single agent approaches. We 
hypothesize that mechanism-informed combination therapy will enhance response, as the low mutational burden of ATRT may 
contribute to acquiring resistance to single targeted agents. As DNA methylation group-specific gene expression profiles appear to 
influence response to distinct agents, the future treatment of ATRT should respect clinical and biological heterogeneity in risk group 
adjusted treatment protocols. 
Keywords: SWI/SNF related matrix associated, actin dependent regulator of chromatin, subfamily b, member 1, SMARCB1, atypical 
teratoid rhabdoid tumor, ATRT, central nervous system, CNS, treatment, pediatric, cell cycle

The Burden of Atypical Teratoid Rhabdoid Tumors
ATRT – A Rare and Unique Entity
Atypical Teratoid Rhabdoid Tumors (ATRTs) are WHO grade 4 embryonal CNS tumors.1 They predominantly affect 
children and young adults with incidences ranging from 0.3/100,000 to 0.6/100,000 in the first year of life and 0.03/ 
100,000 to 0.26/100,000 for children between 5 and 9 years of age in the USA and Europe, respectively.2,3

Typically, ATRTs are located infratentorial (60%) and in 22% are located in the cerebral hemispheres, with the 
mesencephalon and the pineal region being less common locations (each 4%). Primary intraspinal ATRTs are a rarity (1– 
2%)4,5 and occasionally cannot be distinguished clearly from spinal extracranial, extrarenal malignant Rhabdoid Tumors 
(eMRT).6 Rhabdoid tumors tend to appear synchronously: In 6% of all cases, two or more rhabdoid tumors are detected 
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at different anatomic sites, with the CNS being one in most instances.4,7–11 Dissemination and metastases along the 
cerebrospinal fluid (CSF) compartment are common and initially diagnosed in 20−30% of cases.4,5,12

Diagnosis of ATRT can be confirmed immunohistochemically by the nuclear loss of SMARCB1 (INI1)-staining. In 
comparison to other SMARCB1-deficient CNS tumors, ATRT is presented with specific DNA methylation profiles. 
Histopathologic differential diagnoses in the scope of SMARCB1-deficient tumor entities are listed in Table 1 and 
comprise LGDIT,13 desmoplastic myxoid tumor, SMARB1-mutant,14,15 CRINET,16,17 PXA,18 or SMARCB1-deficient 
malignant tumors in the context of Li-Fraumeni syndrome.19

ATRT Exhibit Uniform Inactivation of SMARCB1 or SMARCA4 but Comprise Distinct 
Molecular Subgroups
Presenting rather stable copy number variation profiles, rhabdoid tumors demonstrate pathogenic variants in only a few 
genes with SMARCB1 or SMARCA4 consistently inactivated in tumor cells. SMARCB1 and SMARCA4 encode for 
subunits of the SWI/SNF chromatin remodeling complex. ATRT is, thus, a disease intimately linked to epigenetic 
deregulation.27,28 ATRT can be grouped into three distinct major molecular subtypes, ATRT-MYC, -SHH and -TYR. 
Each of these is associated with distinct DNA-methylation and gene expression profiles as well as anatomic and clinical 
characteristics.24,27 The level of immune cell infiltration and immune checkpoint expression also differ between ATRT 
subgroups.29 ATRT-MYC tumors exhibit similarities with the DNA methylation subgroups of extracranial rhabdoid 
tumors (group 3 = RTK like and group 4 = extra-renal MRT like).29 ATRT-SHH was found to cluster into further 
subgroups. Federico et al described three distinct subgroups with respect to DNA-methylation profile: ATRT-SHH1A, 
−1B, and SHH2. ATRT-SHH1B are located primarily supratentorial, affect older children (median age for -SHH1B 107 
months, -SHH1A 18 months, -SHH2 13 months), and are associated with a significantly improved survival probability 
compared to -SHH1A and -SHH2.30 By converging imaging and multi-omics analyses, Lobón-Iglesias et al detected two 
distinct ATRT-SHH subgroups: CAL SHH ATRT (cerebral anterior lobe, overexpression in EN2) and BG/IV SHH ATRT 
(basal ganglia, intra ventricular, overexpression in OLIG2), which may be correspond to ATRT-SHH2 and ATRT SHH- 
1A, respectively.31 Taken together, this strongly suggests the existence of distinct ATRT-SHH subgroups.

The relevance of DNA methylation subtypes as prognostic markers and therapeutic targets in an extremely rare 
disease remains currently unresolved. We could show that features of the ATRT-TYR group in combination with older 
age at diagnosis bear a favorable prognostic significance (5-year OS 0% and 70% in ATRT-non-TYR and <1 year and 
ATRT-TYR and ≥1 year, respectively; n=143). Upadhyaya et al confirmed this beneficial impact of ATRT-TYR but 
detected a diminished effect among ATRTs in M0 (n=22).32 For extracranial malignant rhabdoid tumors (eMRT), 
metastatic disease, GTR, and germ line mutation (GLM) distinguish high risk from standard risk groups.33 Future 
research will need to focus on evaluating potential confounders. Nevertheless, the fifth edition of the WHO classification 
of Tumors of the Central Nervous System (CNS 5) sheds light on the descriptive importance of the three distinct 
methylation subtypes of ATRT.1

Rhabdoid-Tumor-Predisposition Syndrome
SWI/SNF deficiency in rhabdoid tumors is a result of biallelic loss of SMARCB1 or SMARCA4. In approximately 
25–30%4,21–23 of the patients with ATRT the first hit is a constitutional event, ie, it is supposed to occur in the germline 
and leads to heterozygous inactivation of one allele of the respective gene in all cells of the body. Such constitutional 
inactivation (often also called germ line mutation, GLM) occurs de novo, as in most cases of constitutional inactivation 
of SMARCB1, or is inherited from a parent, as for most cases of SMARCA4. Constitutional inactivation of one copy of 
SMARCB1 or SMARCA4 gives rise to rhabdoid tumor predisposition syndrome (RTPS; RTPS1, GLM in SMARCB1; 
RTPS2, GLM in SMARCA4). Penetrance is considered high for RTPS1 but incomplete for RTPS2. Clinical features of 
RTPS include an earlier onset of disease and multiple synchronous tumor sites. Clustering of rhabdoid tumors and SWI/ 
SNF deficient tumors in families has been reported, and frequently due to de novo mutation.34–36 Despite an inferior 
prognostic outlook and severe clinical courses, a significant number of long-time survivors affected by RTPS are on 
record.37–40
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Table 1 Differential Diagnoses of SMARCB1 Deficient (Pediatric) CNS Tumors

Tumor 
Grade

Tumor Type Histopathology Localization Genomic Alterations DNA 
Methylation 
Profile

Age at 
Diagnosis

Prognosis

Low LGDIT, SMARCB1 

mutant13

Low to moderate cellularity, 

pleomorphic glial and neuronal cells, 
Ki67 8%

Supratentorial Homozygous SMARCB1- 
deletion

Similarity to 

ATRT-MYC

Median 16 

years

Good response to 

multimodal treatment, 
but potential to progress 

to ATRT

Low Desmoplastic myxoid 

tumor, SMARCB1- 

mutant15

Spindle and epithelioid cells embedded in 

a desmoplastic stroma, loose myxoid 

matrix; Ki67 3%

Pineal region Heterozygous or 

homozygous SMARCB1 
deletion

Distinct DNA 

methylation 

profile in 
proximity to 

ATRT-MYC

Median 40 

years (15–61 

years)

Stable disease without 

CT, RT following 

complete surgical 
resection

High ATRT Poorly differentiated, multi-lineage 

phenotype, glial, mesenchymal, epithelial 

components, rhabdoid cells, small round 
blue cells5,20

Supratentorial, 

infratentorial 

and (less 
common) 

spinal4

Biallelic alterations in 

SMARCB1/ SMARCA4, GLM 

in 30%4,21–23

ATRT
● TYR
● SHH
● MYC24

Median 18 

months25

5-year OS 0–71% 

dependent on risk 

factors4

High Cribriform neuroepithelial 

tumor (CRINET)16

Cribriform growth pattern with 

neuroepithelial tumor cells; Ki67/MIB1 

30%,

Often 

intraventricular

Large heterozygous 

deletions of 22q + 

SMARCB1 mutations, often 
affecting the C-terminus26

Similarity with 

ATRT-TYR

10–26 months Good response to 

multimodal treatment (1 

partial resection, CT, RT; 
1 GTR, CT)16

High ATRT with molecular 
features of PXA18

Rhabdoid cells, brisk mitotic activity, 
geographic necroses, Ki67 high 15–60%

Supratentorial, 
temporal lobe

Homozygous SMARCB1 
deletion, 

genetic features of PXA 

(homozygous CDKN2A/B 
deletion), gain of whole 

chromosome 7 

BRAF V600E mutations)

Similarity with 
PXA

10–18 years, 
(1 case report 

of a 62-year 

old female)

To be determined, BRAF 
mutation as novel 

therapeutic target?

High SMARCB1-deficient 

malignant brain tumors in 
the context of Li- 

Fraumeni syndrome19

Glial phenotype, pleomorphic nuclei, 

fibrillary process, no nuclear 
accumulation of p53 protein, scattered 

rhabdoid tumor cells4

Supratentorial, 

temporal lobe

Complex copy number 

alterations and TP53 
mutation

Similarity with 

ATRT or 
malignant 

gliomas.

5–19 years Depending on 

histopathological profile; 
to be determined
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Germline predisposition in SMARCB1/SMARCA4-deficient ATRT is associated with younger age at diagnosis, which 
is also a common feature of other well-known genetic tumor syndromes like BRCA-related cancer predisposition or 
retinoblastoma. Nevertheless, in contrast to other genetic tumor syndromes, younger age itself may explain inferior 
prognosis as the spectrum of age adjusted treatment approaches is extremely limited (ie, aggressive surgery or radio
therapy). Moreover, it might have to be taken into account that SMARCB1 and SMARCA4 are more or less ubiquitously 
expressed and play a major role in chromatin remodeling and epigenetic control in various cell compartments. As an 
example, expression levels of SMARCB1 have been linked to the immunoglobulin V-region mutational load in germinal 
center B-cells41 and somatic inactivation of SMARCA4 is common in germinal center B-cell derived lymphomas like 
Burkitt lymphoma.42 It is, thus, intriguing to speculate, that haploinsufficiency, eg, in cell compartments other than tumor 
cells, like in cells of immunological compartments, might contribute to the aggressive biological behavior of ATRT in 
patients with constitutional SMARCB1 alterations, eg, via contributing to immune escape.

Clinical Management of Atypical Teratoid Rhabdoid Tumors – Current 
Conventional Therapeutic Approaches
Reflecting the rarity of ATRT, international guidelines for clinical practice remain limited. The “Canadian Pediatric 
Neuro-Oncology Standards of Practice”, published in 2020, is one of the few detailed clinical practice guidelines publicly 
available.43

Lessons from Phase III Clinical Trials and Entity Specific Registries
The diversity of data sets and treatment approaches in small cohorts explain the complexity of meta-analyses on which to 
base recommendations for therapy. Treatment elements such as maximal safe resection, conventional or high-dose 
chemotherapy (CT vs HDCT), and radiotherapy (RT) represent the most important components of first-line treatment 
in clinical trials and consensus therapy recommendations (eg, EU-RHAB, ACNS0333, Medical University of Vienna, 
DFCI, Head Start, HIT-SKK92).44–50 Controversy exists about the role of the extent of surgery, as some investigators 
describe a gross total resection (GTR) as a favorable prognostic factor,4,12,45,51–55 while others cannot confirm any 
statistically significant influence44,56–58 The potential role of neoadjuvant chemotherapy in unresectable tumors awaits 
evaluation. A further, thus far unresolved, question is the role of radiotherapy in consolidation, ie, whether it may be 
postponed using intrathecal chemotherapy or at best replaced by HDCT.

Table 2 provides an overview of the results of inconsistently treated larger cohorts of ATRT such as phase III trials 
and demonstrates advantages and disadvantages. As results of these have been published several years ago, trial design 
and results are not the emphasis of this review. Instead, our aim is to focus on lessons learned from conventional 
treatment and to outline open tasks for future treatment approaches.

Multimodal Treatment Approaches in the Management of ATRT
Implementation of institutional multimodal approaches has remarkably improved the prognosis of selected cohorts of 
ATRT in 2-y and 5-year overall survival to almost 70%.4,56 It remains at 30–40% or less in unfavorable cohorts, 
including those with initial metastatic disease and age below 1 year.4,45,57

The role of radiotherapy has been the subject of much debate, as it has been shown to be effective,12,51,58,60 while 
adverse effects on the physical and cognitive development, as well as severe complications such as radiation necrosis,61– 

65 have raised the question of viable alternatives.
Current investigations suggest that radiotherapy in younger children (<3 years) may be beneficial for tumor control66 

but bears the risk of disastrous late effects at this vulnerable age.67 Sequencing RT to the end of treatment may be a 
solution to allow for further maturation of the CNS and thus reducing harm.65 Studies by Yamasaki et al and Yang et al 
indicate that early vs late RT does not affect the treatment success in children below 3 years.58,66,68–71 Current evidence 
indicates that proton beam therapy (PBT) with doses equivalent to photons may achieve comparable results in terms of 
local tumor control and overall survival while potentially saving patients from toxicities, ie, symptomatic radiation 
necrosis. Still, a significant risk of distant treatment failures remains, ie, outside the former field of radiotherapy.69,70,72,73
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Table 2 Overview of the Results of Clinical Phase III Trials and Consensus Regimens Exclusively in ATRT

Phase Title and Identifier PI Completion 
Date

Treatment Results Published Comments Reference Topic

III Children’s Oncology Group 
Trial ACNS0333 

(NCT00653068)

A. Reddy August, 2023 Maximal safe tumor 
resection 

2 cycles induction 

3 cycles 
consolidation plus 

RT 

(sequence 
dependent on age 

and tumor 

localization) 
4-year Follow up 

period

65 patients 
4-year EFS 37% 

4-year OS 43% 

< 36 months 
4-year EFS 35% (improved 

compared to historical 

cohort) 
3 toxic deaths 

≥ 36 months 

4-year EFS 48% 
4-year OS 57% 

1 toxic death 

4-year OS 49% for “RT 
before consolidation” 

4-year OS 48% for 

“consolidation before RT” 
50% treatment failure (16/ 

33 local failure)

Two treatment arms, but non- 
randomized 

Challenging cohort (83% younger than 

36 months, 30% younger than 12 
months, 37% with M+, 38% with GTR) 

Improved survival for patients younger 

than 36 months 
High amount of safety relevant toxicity 

No information on cognitive and 

psychological late effects

[45] Radiotherapy 
and HDCT

(Continued)
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Table 2 (Continued). 

Phase Title and Identifier PI Completion 
Date

Treatment Results Published Comments Reference Topic

II Multi-institutional Phase II 
clinical trial to test efficacy or 

aggressive multimodality 

approach for children with 
newly diagnosed ATRT 

(DFCI)

S N Chi May, 2008 Maximal safe tumor 
resection 

Modified IRS-III 

including intrathecal 
chemotherapy: 

Pre-RT 

chemotherapy 
Chemoradiation 

post-RT induction 

Maintenance therapy 
Continuation 

therapy

20 patients 
2-year PFS 53% (± 13%) 

2-year OS 70% (± 10%) 

5-year OS 49.6% 
10-year OS 44.7% 

Median survival 5.2 years 

58% objective response to 
induction therapy 

38% response to RT 

8 long-time survivors 
(median FU 14.7 years; 

median 1.9 years at 

diagnosis, localized 
disease, RT, 6/8 with 

upfront GTR/STR) 

Succumbed (10): 5/10 M+, 
7/10 with upfront biopsy/ 

partial resection 

40% refractory or 
recurrent disease (max 4 

years of data reporting) 

1 toxic death 
(pneumococcal sepsis)

Prospective multicenter trial, single arm, 
Beneficial cohort (Median age at 

diagnosis 26 months (60% younger than 

36 months, 20% younger than 12 
months), 30% with M+, 50% with GTR) 

Short follow up period 

Small cohort size

[56,59] Radiotherapy, 
intrathecal 

chemotherapy
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registry The Canadian Paediatric 

Brain Tumor Consortium 
experience (CBTC)

L. Lafay- 

Cousin

Maximal safe tumor 

resection 
10/50 in palliation 

22/40 conventional 

chemotherapy (baby 
brain, IRS III like, ICE 

regimens, 9/22 

anthracycline based) 
18/40 HDCT (Head 

start, Triple 
Carboplatin/ 

Thiotepa, MTX 

induction + Triple 
Carboplatin/ 

Thiotepa) 

9/40 intrathecal 
chemotherapy 

21/40 radiation

50 patients 

Projected 2-year OS 
36.4% ± 7.7 

Median time of survival 

13.5 months 
75% with progress/relapse 

(median time to 

progression 5.5 months) 
Significant prognostic risk 

factors: 
GTR: 

2-year OS (GTR) 60% 

±12.6) 
2-year OS (non GTR) 

21.7% ± 8.5, p = 0.03 

HDCT: 
2-year OS (HDCT) 47.9% 

±12.1 

2-year OS (non HDCT) 
27.3% ± 9.5, p= 0.036 

Not-significant factors: 

Age: median survival 
time: 

9.6 months in patients < 

12 months 
17.4 months in patients 

12–36 months: 

19.1 months in patients > 
36 months: 

Upfront radiation no 

survival benefit! 
6/12 survivors without 

radiation

Multicentric retrospective analysis 

Small cohort (n=50) 
Unfavorable cohort (median age at 

diagnosis 16.7 months, 76% younger 

than 36 months, 38% with M+, 30% with 
GTR, 2 synchronous MRT, 3 with 

diagnosed GLM) 

Best overall response not evaluated/not 
reported (radiographic CR, PR, SD etc) 

75% refractory/ recurrent disease (max. 
32 months) 

Multicenter 

Neuropsychological results in long-time 
survivors published three years later

(Continued)
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Table 2 (Continued). 

Phase Title and Identifier PI Completion 
Date

Treatment Results Published Comments Reference Topic

Registry EU-RHAB M C. 

Frühwald

May, 2023 Maximal safe tumor 

resection 

Anthracycline based 
chemotherapy (9 to 

12 courses) 

Age-dependent 
radiotherapy (no RT 

in < 18 months) 

HDCT (Carboplatin/ 
Thiotepa + ASCT) 

on physician’s choice

143 patients 

5-year OS 34.7 ± 4.5% 

5-year EFS 30.5 ± 4.2% 
Median follow up 49.9 

months 

64% relapse or 
progression (mainly 

locally) 

57% died due the time of 
analysis 

3 cases of secondary 

malignancies (AML) 
No toxic death 

Independent significant 

prognostic factors: 
Age at diagnosis (< 1 year 

vs ≥ 1 year) 

DNA methylation subtype 
(TYR vs non-TYR) 

Dependent significant 

prognostic factors: 
Synchronous tumor (yes 

vs no) 

Metastases (M0 vs M+) 
Radiotherapy (yes vs no) 

Complete remission (yes 

vs. no) 
GLM (yes vs no)

Multicentric retrospective analysis 

Unfavorable cohort (median age at 

diagnosis 29.5 months, 86% younger 
than 36 months (35% younger than 12 

months, 51% 12–35 months), 30% with 

M+, 34% with GTR) 
Large cohort 

Genetic and molecular information 

available

[4]
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Several international centers recommend the addition of intraventricular chemotherapy (IVCT) to conventional 
chemotherapy to avoid radiotherapy (EU-RHAB, DFCI-AT/RT, and MUV),46,50,56,74,75 as IVCT in metastatic ATRT 
has significantly improved 2-year OS (65% vs 17.3%) as suggested by a meta-analysis.50 The risk of severe encephalo
pathy, mainly leukoencephalopathy, due to accidental intraparenchymal methotrexate instillation76,77 or diapedesis of 
MTX in ventricular obstruction78 is a significant risk. There are no controlled or randomized phase III trials investigating 
the effect of IVCT in ATRT, thus evidence remains contentious. Currently recruiting clinical trials use the intrathecal 
route to administer experimental agents such as CAR-T cells, immunovirus, or immune-radiotherapy (see below).

Multimodal approaches including high-dose chemotherapy with autologous stem cell rescue (HDCT/ASCT) are 
associated with a significantly improved survival, especially in the first and second year from diagnosis.79 HDCT may be 
considered an efficient treatment approach in children, who need bridging therapy until RT is feasible.45 Reports from the 
Canadian Brain Tumor Consortium and the Head Start III trial describe encouraging success of radiotherapy-witholding 
HDCT in patients younger than 36 months (ie, prolonged survival even in patients with initial metastatic disease).47,54 As 
infants are an extremely challenging cohort,80 appropriate treatment regimens minimizing toxicity are urgently needed. 
The significant therapeutic successes of ACSN0333 and CCG99703 were unfortunately accompanied by substantial 
treatment-related toxicities and even toxic deaths (n=2 CNS necrosis) predominantly in patients below 36 months.45

The Canadian Pediatric Neuro-Oncology Standards of Practice features both CCG 99703 and ACNS0333 protocols 
as first-line therapy of ATRT, while radiotherapy instead serves as an additional option as a “physicians’-decision-only” 
approach. Recommendations reflect expert opinions and consensus statements rather than evidence-based data.43 Data 
proving the superiority of HDCT approaches versus conventional chemotherapy and radiotherapy-based approaches, ie, 
derived from randomized controlled clinical trials are missing. In the largest cohort of consistently treated ATRT (n=143, 
EU-RHAB) HDCT did not significantly improve survival. Here, 5-year OS and 5-year EFS of 35% and 30% were 
achieved by multimodality treatment approaches based on physicians’ choice, according to a European consensus 
strategy (based on DFCI and IRS III protocols). This consisted of surgery, anthracycline-based chemotherapy, and 
age-dependent administration of RT (no RT in children < 18 months) or HDCT instead. In total, 34 patients were treated 
with consolidation therapy in the form of HDCT/ASCT (carboplatin, thiotepa), only. However, multivariate analysis 
could not demonstrate any significant influence of RT-withholding approaches.4

As baseline conditions and survival in this cohort were comparable to those of the cohort within ACNS0333 (see 
Table 2), we suggest that the question whether HDCT featuring protocols (eg, ASCNS0333,45 Canadian Brain Tumor 
Consortium81) are preferable over those including radiotherapy (eg, DFCI56 and EU-RHAB4) deserves validation in a 
randomized setting in larger cohorts. The ongoing SIOPE ATRT01 trial (Eudra-CT 2018-003335-29) investigates the 
impact of isolated HDCT with autologous stem cell rescue as consolidation therapy.

Remaining High Risk for Relapse and Refractory Disease
Even though institutional multimodal treatment approaches have improved survival probability, a significant risk of 
recurrent or refractory disease remains. Progressive disease still occurs in 40–75%.4,45,57 There is no international 
consensus on how to treat patients with r/r ATRT. This situation is the focus of Phase I and II clinical trials. Very 
limited data exist on real word experience such as individual experimental treatment approaches.

Therapeutic Approaches Supported by Genetic Analyses:MAPPYACT, eSMART, 
INFORM
To overcome limitations of conventional therapy, “one size does not fit all”, targeted anti-cancer medicine studies incl. 
MAPPYACT, eSMART, MATCH, and INFORM attempt to identify genetic and molecular targets for individualized 
treatment approaches.

The evidence available from these approaches reveals two major problems: On the one hand, apart from SMARCB1 
no other repetitive cancer-specific genetic alterations have been detected (INFORM82 and MAPPYACT83). Identification 
of suitable genetic biomarkers to deduce specific treatment targets thus remains challenging.

On the other hand, albeit potential drug targets incl. CDKs, aurora kinase A, immune checkpoint receptors, and 
ligands are highly expressed in selected ATRT, targeting these induced significant treatment responses in very few ATRTs 
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only.83 Expression profiles alone are thus not sufficient to predict response to single agent targeted therapy. Deciphering 
pathomechanisms of resistance to the EZH2 inhibitor tazemetostat, Kazansky et al identified specific acquired mutations 
in resistant rhabdoid tumor cell lines that appear to be responsible for treatment failure. At the same time, these analyses 
demonstrated potential targets for synthetic lethality (in cell lines and xenograft mouse model).84 We discuss the use of 
synthetic lethality in the setting of clinical trials below.

Remaining Challenges in r/r ATRT
Randomized phase III trials may help consolidate evidence for risk factors and treatment elements. Future research will 
have to target the role of conventional compounds such as repurposed cytostatics (incl. IVCT) but also radiotherapy 
modalities, as well as smart combination elements.85 The concept of future clinical trials depends on international (drug) 
availability and the capacity to recruit suitable cohorts. The fortunately increasing number of long-time survivors 
highlights the need to attend to and study the physical and mental development as well as aspects of quality of life in 
survivors. Treatment approaches for the special cohort of infants necessitate the highest level of diligence in designing 
safe and efficient therapeutic trials.80

Potential Targeted Therapeutic Approaches to ATRT
Table 3 provides an overview of potential therapeutic targets investigated in ongoing clinical trials. These approaches 
target either cell cycle activating pathways and checkpoints, DNA-repair or histone modifications, the immune system– 
cancer interaction, or offer new options of radioimmunology. Figure 1 illustrates experimental agents and their targets 
within the cell cycle. Ongoing clinical trials using agents targeting the immune system-tumor cell interplay are displayed 
in Figure 2.

Targeting the Epigenome
Modifying DNA Methylation
Decitabine is a cytosine analogue and potent DNA-methyltransferase inhibitor that induces DNA hypomethylation, thus 
uncovering endogenous retroviral epitopes, which serve as targets for immune attack.87–89 This effect has been used in 
cancer with hypermethylated DNA profiles, including AML and MDS.90 As rhabdoid tumors are an epigenetically driven 
disease with DNA-methylation-based subtypes (ATRT-TYR and -SHH present DNA-hypermethylation24), the use of 
hypomethylating agents appears to be a promising approach. Retrospective analyses of decitabine in 22 patients with r/r 
rhabdoid tumors reported radiologic responses in 27% (total n=6, 4= ATRT).85 Complete remission was achieved in one 
patient, who received further conventional chemotherapy, while in most patients, response was detected in isolated foci, 
only. As radiographic response was associated with prolonged time to progression and overall survival,85 decitabine 
deserves further evaluation, eg, as bridging therapy in patients with r/r disease. Three current clinical trials employing 
decitabine in combination with a) immune checkpoint inhibitors (NCT05320640), b) gene-modified T Cells 
(NCT02650986), and c) a combination with pembrolizumab and hypofractionated radiotherapy (NCT03445858; primary 
CNS tumors not included) recruit children with solid tumors. Further approaches for children with neuroblastoma, 
rhabdomyosarcoma, Ewings sarcoma, and osteosarcoma combined decitabine with dendritic cell vaccination 
(NCT01241162).

Modifying Histone-Methylation
In SMARCB1 or SMARCA4 deficient tumors, overexpression of EZH2 leads to increased levels of H3K27me3 in 
promoter regions of tumor suppressor genes. It is thus a target for EZH2 inhibitors.91,92 In ATRT, targeted inhibition 
of EZH2 leads to repression of the Cyclin D1-E2F axis and thus reduced proliferation and apoptosis.92,93 Moreover, as 
recently reported, EZH2 deficiency correlates with increased origins of DNA replication in repressed motor regions via 
H3K27me3 loss.94

The orally applicable specific EZH2 inhibitor tazemetostat has been FDA approved for the treatment of inoperable, 
metastatic epithelioid sarcoma in patients > 16 years.95 Safety and efficacy have been shown in SMARCB1-negative 
tumors, including ATRT.96–98 Results from the MATCH study reported prolonged disease stabilization as the best overall 
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Table 3 Overview of Ongoing Clinical Trials Phases I and II Including Patients with ATRT

Inhibitor Group Inhibitor NCT Number Phase Study Completion

Immunotherapy CAR T cells B7-H3-specific NCT04185038 I 2041

C7R-GD2 NCT04099797 I 2039

HER2-specific NCT03500991 I 2039

EGFR806-specific NCT03638167 I 2040

Immunovirus therapy HSV G207 NCT03911388 I 2025

Immune-checkpoint inhibitors PD-1/CTLA4-Inhibitors Nivolumab + Ipilimumab + Tazemetostat NCT05407441* I/II 2029

PD-1/CTLA4-Inhibitors Nivolumab + Ipilimumab NCT04416568* II 2025

PD-L1-Inhibitors Atezolizumab + Tiragolumab NCT05286801* I/II 2025

PD-1/HDI Nivolumab + Entinostat NCT03838042 I/II 2025

Cell cycle inhibitors CDK4/6 inhibitor Ribociclib + Gemcitabine 

Ribociclib + trametinib

NCT03434262 I 2025

Ribociclib + TOTEM NCT05429502 I/II 2028

Abemaciclib (+RT) NCT02644460 I 2024

Abemaciclib (+ CTx) NCT04238819 I/II 2028

Palbociclib NCT03709680** I/II 2025

Targeted therapy BRD9-degrader FHD-609 NCT04965753** I 2025

Targeted tumor cell radiotherapy Phospholipid drug conjugate CLR 131 NCT03478462 I 2024

Radiolabeled monoclonal antibody Iodine I131 MOAB 8H9 NCT00089245 I 2025

Protein kinase inhibitor BCR-ABL tyrosine kinase inhibitor Dasatinib NCT00788125 I/II June 20, 2023

mTOR inhibitor Sirolimus NCT02574728 II 2024

Aurora Kinase A inhibitor Alisertib NCT02114229* II 2027

Replication Folic acid analogue Methotrexate NCT02905110 Early Phase I November 2023

Conventional therapy Conventional chemotherapy, radiotherapy Risk-adapted therapy NCT00602667 (infants) 

NCT00085202 (children)

II April 2026, December 2023

HDCT/ASCT, radiotherapy Controlled, randomized EudraCT 2018-003335-29* III June 2029

Notes: *ATRT exclusive (including rhabdoid tumors, SMARCB1-deficient tumors); **SMARCB1-deficient tumors focusing on soft tissue tumors. 
Abbreviations: AML, acute myeloid leukemia; ASCT, autologous stem cell transplantation; ATRT, atypical teratoid/rhabdoid tumor; CAR T cell, chimeric antigen receptor T cell; CD4T, CD4+ T cell; CDK, cyclin dependent kinase; cfDNA, 
cell free DNA; CNS, central nervous system; CNV, copy number variations; CRINET, cribriform neuroepithelial tumor; CSF, cerebrospinal fluid; CT, chemotherapy; ctDNA, circulating tumor DNA; CTLA4, cytotoxic T-lymphocyte associated 
protein 4; DFCI, Dana-Farber Cancer Institute; DIPG, diffuse intrinsic pontine glioma; DNA, desoxyribonucleic acid; DZNep, 3-Deazoplanocin; EED, embryonic ectoderm development; eMRT, extracranial, extrarenal malignant rhabdoid 
tumor; EU-RHAB, European Rhabdoid Registry; EZH2, enhancer of zeste homolog 2; FDA, Food and Drug Administration; GEMM, genetically engineered mouse model; GLM, germ line mutation; GTR, gross total resection; HDCT, high-dose 
chemotherapy; HDI, histone deacetylase inhibitor; INI1, integrase interactor 1; IVCT, intraventricular chemotherapy; LGDIT, low grade diffusely infiltrative tumor; M, metastatic; MDM2, murine double minute 2 homolog; MDS, 
myelodysplastic syndrome; MEK, mitogen-activated protein kinase kinase enzymes; MOAB, monoclonal antibody; MRD, minimal residual disease; MTX, methotrexate; MV-NIS, measles virus (MV) expressing human thyroidal sodium iodide 
symporter (NIS); oHSV, oncolytic herpes simplex virus; OS, overall survival; PARP, Poly (ADO-ribose) polymerase; PBT, proton beam therapy; PD-1, programmed death protein 1; PD-L1, programmed death ligand 1; PDOX, patient derived 
orthotopic xenograft; PFS, progression free survival; PR, partial remission; PRC2, polycomb repressive complex; PXA, pleomorphic xanthoastrocytoma; RB, retinoblastoma protein; r/r, recurrent or refractory; RT, radiotherapy; RTK, 
rhabdoid tumor of the kidney; RTPS, rhabdoid tumor predisposition syndrome; SD, stable disease; SMARCA4, SWI/SNF related matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; SMARCB1, SWI/SNF related 
matrix associated, actin dependent regulator of chromatin, subfamily b, member 1; SWI/SNF, switch/sucrose non-fermentable; TME, tumor microenvironment; TMB, tumor mutational burden.
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response in 1 of 8 ATRT (13.7 months PFS) with confirmed loss-of-function alterations in the SMARCB1 gene.99 

Ongoing clinical trials investigate the safety and efficacy of tazemetostat, as a single agent (NCT02601950) or in 
combinatorial approaches (NCT04537715, NCT05407441). NCT05407441 investigating the combination of tazemetostat 
with the immune-checkpoint inhibitors nivolumab (PD1 inhibitor) and ipilimumab (CTLA4 inhibitor) in INI1-negative/ 
SMARCA4-deficient tumors has recently opened recruitment (estimated study completion 02/2029). Prescribing tazeme
tostat needs to consider the risk of development of secondary lymphoma described by Chi et al96 as well as the 
development of drug resistance.100 Trying to explain underlying mechanisms, Shinohara et al reported an increased 
expression of the EZH2 homologue EZH1 by depletion or chemical inhibition of EZH2 in cell lines and mouse xenograft 
models of rhabdoid tumors. These authors suggested decreased or repressed EZH2 levels as a cause for overexpression of 
EZH1, which in turn compensates the loss of function of EZH2. Targeting both EZH1 and EZH2, reduced H3K27me3 
accumulation (in CDKN2A) as well as cell growth control.101 More recently, Kazansky et al proposed combined 
epigenetic therapy to overcome clinical resistance to EZH2 inhibition. The authors provide potential key requirements 
for the effective use of tazemetostat in SMARCB1-deficient tumors: (1) Intactness of drug binding sites of EZH2 and 
subsequent pathway components (including transcription factors and co-activators). This means that chromatin remodel
ing complexes must act on tumor suppressor loci that were aberrantly repressed by PRC2, and these must be upregulated 
for a response to tazemetostat. For example, mutations in CDKN2A and CDKN2B will lead to decreased RB1 activation 
and subsequent reduced cell cycle inhibition at G1/S transition. 2. Targeting the non-enzymatic core PRC2 subunit EED, 
as well as combining additional drugs affecting the cell cycle beyond the G1/S checkpoint, could help overcome 
tazemetostat resistance.84

Figure 1 Novel agents for ATRT therapy in clinical phase I and II trials - correlation to the tumor cell cycle. Arrows with even tips indicate “inhibition”, arrows with sharp 
tips indicate “activation”, fading arrows with sharp tips indicate “cell cycle exit into G0 phase”. Therapeutic approaches located in the center and surrounded by the grey 
circle affect more than one distinct phase of the cell cycle in the form of modified gene repression by epigenetically active drugs (decitabine (DNA-hypomethylation), 
tazemetostat (H3K27me3), entinostat and panobinostat (HDACI)), or DNA damage dependent cell cycle exit in G1 and G2 (radiotherapy induced double strand breaks). 
*Reaching and passing decision windows is driven by appropriate cyclin/CDK levels: G1/S transition is regulated by Cyclin D/CDK2/4/6, while Cyclin A/B/CDK1/2 affect G2/ 
M transition.86 A mitotic entry commitment point, a mitotic exit commitment point, or a S phase entry commitment point regulated by DNA damage, DNA replication 
stress, or spindle assessment are not shown in this figure. Created with Biorender.com.
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Intratumor heterogeneity may provide a further explanation for drug resistance, as Qi et al supposed when describing 
regions of repressed EZH2 in residual tumors. It cannot be determined whether this induces or is affected by therapy 
resistance.102

Modifying Histone Acetylation
Recent data indicate the effect of panobinostat on histone-H4 acetylation leading to encouraging treatment stabilization 
when used as maintenance therapy.103 Results of a current trial are pending, and the first-line pre-treatment is likely to 
substantially affect treatment response. INFORM 2 employs the histone-deacetylase inhibitor entinostat in combination 
with the immune checkpoint inhibitor nivolumab (NCT03838042, including ATRT).

Tyrosine Kinase Inhibition
Aurora Kinase A Inhibitors
The aurora kinase A inhibitor alisertib leads to impairment of mitotic spindle assembly (as reviewed in104). A phase II 
study (SJATRT) investigated a cohort of rhabdoid tumors. Results for stratum A1 (recurrent or progressive ATRT) were 
published in 2023: Intermittent objective responses to treatment were achieved in 9/30 patients (n=8 stable disease (SD), 
n=1 partial remission (PR) in the 12-week assessment). A total of 25 patients eventually developed progressive disease. 
Five patients achieved a follow-up time of more than 50 weeks (4/5 ATRT-TYR, 1/5 ATRT-MYC, all > 1 year of age at 
enrolment). It should be stressed that two of them received alisertib for less than 2 months and never responded to 
treatment. All survivors received further salvage therapy. The authors suggest a potential role of alisertib in bridging or 
palliative care, only.105 Anecdotally, long time remission for 3 years following alisertib was reported in an infant with 
ATRT-TYR in the treatment of its 2nd relapse.106

BCR-ABL Tyrosine Kinase Inhibitor
The BCR-ABL tyrosine kinase inhibitor dasatinib was developed for the treatment of Philadelphia-chromosome-positive 
leukaemia107 and investigated in a phase I/II clinical trial (NCT00788235) in children with metastatic or recurrent 

Figure 2 Novel targets affecting the interaction between ATRT tumor cells and the immune system. Structures investigated in clinical phase I and II trials targeting the 
interaction of T and ATRT tumor cells. Current clinical trials are provided for each agent in form of the NCT identifier. Trials including SMARCB1/SMARCA4-deficient entities 
only (focus on ATRT) are highlighted with *. Arrows with even tips indicate “inhibition”, arrows with sharp tips “uptake in”. Created with Biorender.com. 
Abbreviations: CTLA4, cytotoxic T-lymphocyte-associated protein 4; TCR, T cell receptor; MHC, major histocompatibility complex; PD-1, programmed death protein 1; 
PD-L1, programmed death ligand 1.
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malignant solid tumors including brain tumors as part of a combined anti-cancer treatment approach. According to the 
results published on clinicaltrials.gov, 6 out of 7 patients did not complete protocol treatment and succumbed due to 
disease (https://clinicaltrials.gov/study/NCT00788125?term=NCT00788125&rank=1andtab=results; no information on 
actually included tumor types, ATRT not an exclusion criterion).

Targeting the CDK4/6/Cyclin D/RB Pathway
During the early G1 phase, increased levels of Cyclin D as well as Cyclin-dependent Kinases (CDK) 4 and 6 are needed 
to maintain the cell cycle and to prevent cell cycle exit (as reviewed in86). Targeting CDK4/6 inhibitors aims at inducing 
cell cycle arrest in G0/G1 before reaching the G1/S decision window.

Ribociclib penetrates the blood–brain barrier and is thus an interesting drug in CNS tumors.108 Clinical phase I trials 
report weak therapeutic success. In 2017, a phase I trial demonstrated the safety of CDK4/6 inhibitors, but best overall 
response was stable disease in 2 of 13 patients with recurrent ATRT.109 Recently published data report no objective 
responses in 18 children with recurrent or refractory malignant CNS tumors (no ATRT included) treated with a 
combination of ribociclib and everolimus. All patients, who completed follow-up, experienced disease progression.110 

Investigating cell lines of adult CNS tumors, the combination of CDK4/6 inhibitors and other commonly used cytotoxic 
anti-neoplastic drugs could not provide any enhanced therapeutic success, as Jin et al reported in 2019.111 Disease 
stabilization over a period of 32 to 48 weeks, as described by Geoerger et al,109 still represents a remarkable achievement 
in the treatment of recurrent or relapsed ATRT.

The ongoing clinical trials NCT03434262 and NCT05429502 evaluate ribociclib as part of a combination therapy 
(combining with nucleoside analogues, inhibitors of the Hedgehog pathway, MEK inhibitors, or commonly used 
cytotoxic antineoplastic drugs such as topotecan and temozolomide (TOTEM)).

The phase I/II trial NCT02644460 evaluated abemaciclib as a single agent in children with CNS tumors and 
especially DIPG (ATRT not excluded) NCT04238819 (ATRT not excluded) looked into a combination with other anti- 
cancer treatment in pediatric patients with relapsed and refractory solid tumors.

Data from the Pediatric Brain Tumor Consortium study PBTC-042 investigating palbociclib as a single agent in patients 
with progressive CNS tumors showed limited treatment response, as none of the tumors responded and up to 90% 
progressed on treatment, although 80% of the tumors were tested positive for RB status before initiating treatment.112 A 
phase I/II study currently investigated palbociclib combined with chemotherapy (irinotecan, topotecan, temozolomide, or 
cyclophosphamide) in children with recurrent or refractory solid tumors including eMRT (NCT03709680).

PARP-Inhibitors and DNA-Repair
Poly(ADP-ribose) polymeraseS (PARPS) are multifunctional enzymes involved in DNA damage repair and maintaining 
genome stability. DNA damage leads to recruitment of PARP and DNA repair enzymes. PARP inhibitors prevent 
dissociation of the PARP-complex off the DNA strand thus inducing replication fork collapse.113,114

Preclinical trials found decreased cell growth, reduced colony formation, cell cycle arrest, and apoptosis due to 
accumulation of DNA damage in the ATRT cell lines BT16 and MAF37 following treatment with the PARP inhibitor 
rucaparib. Prolonged survival in xenografted mice and potential synergistic effects increasing radiosensitivity suggest a 
potential therapeutic use.113 Until this day, there is no clinical trial confirming the pre-clinical effect of PARP inhibitors 
in ATRT, or rhabdoid tumors in general. However, the safety of the PARP inhibitors niraparib, talazoparib, and olaparib 
is under investigation in clinical trials NCT04544995 (no CNS-Tumors, eMRT not excluded), NCT023492793 (pub
lished for Ewing sarcoma, no objective response),115 and NCT01858168 (Ewing sarcoma and rhabdomyosarcoma), 
respectively. Despite dismal treatment responses upon single agent use, recent investigations in pediatric solid tumors 
provide information on beneficial effects of PARP inhibitors combined with conventional chemotherapy, ie, alkylating 
agents or topoisomerase inhibitors.116

Immunotherapy Approaches
Tumor immune microenvironment (TME) modulation is a successful approach in cancer treatment.117 Grabovska et al 
described immune cell infiltration in multiple pediatric brain tumors, including 229 ATRT and demonstrated distinct 
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immune cell infiltration profiles in the three ATRT subtypes (ATRT-MYC: CD8T, monocytes, Treg, B-cells, eosinophils; 
ATRT-SHH: CD8T, Treg, B-cells, monocytes, eosinophils; ATRT-TYR: Treg, B-cells, monocytes, eosinophils, NK cells, 
CD4T, neutrophils). The ATRT-TYR subgroup demonstrated infiltrations with NK- and CD4T-cells, which were neither 
found in ATRT-MYC nor -SHH.118 Several approaches integrating modulation of the TME in ATRT management have 
been developed (see Table 3).

Immune Checkpoint Inhibitors
Programmed death protein-1 (PD-1), programmed death ligand 1 (PD-L1) and cytotoxic T-lymphocyte associated protein 
4 (CTLA4) are part of the tumor cell immune escape, as T cell mediated immune response is downregulated by PD-1- 
PD-L1 interaction117 or by activating CTLA4 (reviewed in119). Immune Checkpoint inhibitors block PD-1, PD-L1, or 
CTLA4 to sustain T cell mediated immune response against tumor cells.

The PD-1 inhibitor pembrolizumab has shown encouraging responses (partial response) in patients with confirmed 
PD-L1 expression in the tumor tissue, including 1 eMRT. Albeit PD-1 expression was confirmed in 95% of cases, 72% 
experienced progressive disease while on treatment. ATRT was not included in this investigation (NCT02332668).120 

Similar results were described for the PD-1 inhibitor nivolumab in a cohort of recurrent or refractory pediatric CNS 
tumors: transient radiographic responses were seen in 30%. Disease progression was found in all patients but occurred 
earlier in patients with negative PD-L1 expression compared to patients with positive PD-L1 expression (not statistically 
significant). The investigators suggest there might be a correlation between tumor mutation burden (TMB) and response 
to immune checkpoint inhibitors since nivolumab reached best efficacy in the patient with highest TMB.121

In a phase I/II study, the PD-L1 inhibitor atezolizumab elicited an objective response in 1 of 6 patients with relapsed 
extracranial malignant rhabdoid tumors. This patient exhibited high PD-L1 expression and experienced several months 
without tumor progression. eMRT with no or low PD-L1 expression did not respond to atezolizumab treatment.122 This 
effect has yet to be confirmed in ATRT and is under investigation in an ongoing clinical trial (NCT05286801, including 
ATRT) in a combined drug approach including tiragolumab.

Ongoing clinical trials in r/r high-risk pediatric cancer investigating immune checkpoint inhibitors in pediatric 
SMARCB1-deficient tumors mainly focus on the PD-1 inhibitor nivolumab in combination with the CLTA4 inhibitor 
ipilimumab with or without tazemetostat (NCT05407441, NCT04416568, both including ATRT), as well as in combina
tion with the HDI entinostat (NCT03838042, including ATRT).

CAR T-Cells
Chimeric antigen receptor (CAR) T cells may target the epitopes of B7-H3, C7R-GD2, HER2, and EGFR806, which are 
specifically or highly overexpressed on CNS tumor cell surfaces.123 Target selection has been predominantly driven by 
expression in adult glioblastoma.124

Safety and feasibility of locoregional infusion of HER2-specific CAR T cells have been demonstrated in recurrent or 
refractory adult and pediatric CNS tumors (NCT03500991, including ATRT). Repeated administration of HER2-specific 
CAR T cells either into the tumor cavity or the ventricular system was safe in the first three patients enrolled. Immune 
activation was measured in the form of elevated cytokine (eg, CXCL10 and CCL2) levels in the cerebrospinal fluid 
(CSF).125 However, assessment of treatment response and further safety profiles are not yet available.

B7-H3 is elevated in ATRT.123 Following CAR T cell treatment, ATRT xenografted mice revealed a tumor cell 
purging effect.126 Safety and efficacy of B7-H3-specific CAR T cells in children are currently being investigated in a 
phase I clinical trial (NCT04185038, including ATRT). Published results of three patients with DIPG showed the 
feasibility and safety of intraventricular B7-H3-specific CAR T cell administration in children with CNS tumors, with 
one patient providing a radiographic response for more than 12 months.127

Glioblastomas mainly express EGFR806128 and has been employed as a target in clinical phase I trial NCT03638167 
for recurrent or relapsed pediatric brain tumors, including ATRT.

Radioimmunotherapy
In addition to being a target for CAR-T-cells B7H3 serves as a target for immunolabeled radioligands. Employing the 
radiolabeled monoclonal antibody 131I-omburtamab, a radiation source can be directed at B7H3 expressing cells. A phase 
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I trial in children with recurrent CNS malignancies including one ATRT infused 131I-omburtamab into the ventricles. The 
radioactive compound barely passed the blood–brain barrier and exposure to organs at risk was low. Patients suffering 
from neuroblastomas experienced improved survival, while neither tumor remission nor prolonged disease stabilization 
was reached for the only patient with ATRT.129 Ongoing clinical phase I trials such as NCT03478462 and NCT00089245 
investigate the I-131 monoclonal antibody 8H9 and CLR 131 in children with recurrent CNS malignancies (ATRT not 
excluded).

Immunovirus Therapy
Modified oncolytic Herpes simplex virus-1 (oHSV-1) is capable of selectively infecting tumor cells with lasting 
responses. Antiviral treatment is employed as a safety insurance for healthy tissue. Anti-tumor effects are based on 
virus-induced oncolysis and stimulated anti-tumor immune responses. Cell surface structures including nectin (CD-111), 
expressed on CNS tumor cells, enable oHSV to attach to and enter tumor cells specifically.130 It has been shown that the 
oHSV subtype G207 is able to switch the tumor microenvironment from immunological “cold” to “hot” by increasing 
lymphocyte infiltration. A phase I study of genetically engineered herpes simplex virus (HSV G207) has started in 2020 
(NCT03911388). Due to a biallelic deletion of the neurovirulent gene γ134.5 and insertion of the reporter lacZ into the 
Ul39 gene, which encodes ribonucleotide reductase inactivating ICP6,131 G207 is assumed to be non-neurovirulent, 
replication competent and selectively oncolytic. Safety of G207 was investigated in animal models and clinical trials 
recruiting adult patients. Importantly, a phase I trial, investigating G207 in pediatric malignant supratentorial tumors 
(glioblastoma, anaplastic astrocytoma; NCT02457845) showed convincing safety profiles and radiographic, neuropatho
logical, or clinical response in 11 of 12 patients.132 An ongoing phase I trial investigates G207 in pediatric cerebellar 
tumors (not excluding ATRT).133

Modified Oncolytic reovirus and measles virus have been investigated in recently completed clinical trials in ATRT 
(NCT02444546, NCT02962167). Wild-type reovirus was administered in combination with sargramostim in young 
patients with high-grade r/r CNS tumors (NCT0244546). In this trial, all patients (no ATRT thus far) experienced 
tumor progression and death of disease.134 In the clinical phase I trial NCT02962167, modified measles virus (MV-NIS) 
was administered in patients with recurrent medulloblastoma or ATRT, either directly into the tumor bed during standard 
of care tumor resection or via lumbar puncture depending on tumor dissemination (results are pending). Oncolytic 
measles virus selectively infects cells with high CD46 surface expression, eg, tumor cells. CD46 is part of the 
complement inactivation system and therefore involved in tumor immune escape.130,135–137 The oncolytic effect of 
reoviruses is caused by tumor cell overexpression of Ras enabling active viral dsRNA translation, which is blocked in 
normal tissue cells.130,138

Synthetic Lethality
Most novel therapeutic approaches in ATRT aim to inhibit overexpressed gene products. Due to the pronounced stability 
of the ATRT genome, the number of potential targets is limited. Identification of additional crucial gene products, eg, in 
the context of synthetic lethality, may present another approach to overcome therapeutic limitations. Synthetic lethality 
can be defined as lethality of cells or organisms caused by combined alterations of gene pairs, with single alterations in 
both maintaining viability.139 CRISPR-Cas-9 screens identified BRD9, a subunit of the non-canonical SWI/SNF complex, 
as a potential target for synthetic lethality. In SMARCB1-deficient rhabdoid tumor cell lines BRD9 knock-out decreased 
cell proliferation and viability.140,141 Clinical approaches evaluate the feasibility of the molecular BRD9 degrader FHD- 
609 in adult and older pediatric (>16 years) patients with SMARCB1-deficient tumors (NCT04965753).

Preclinical Approaches to Increase Radiosensitivity
Histone Modifications Increase Radiosensitivity
Preclinical experiments attempt to induce radiation sensitivity by inhibition of histone modifying enzymes. EZH2 
inhibition and treatment with the unspecific inhibitor of histone methylation DZNep increased the vulnerability of 
ATRT cell lines to radiotherapy. This finding is likely due to a general restriction of DNA synthesis and cell cycle 
progression by affecting EF2/c-Myc and Cyclin D1/CDK6/c-Myc/RB pathways caused by targeted molecular inhibition 
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(shRNA) of EZH2 and the S-adenosylhomocysteine hydrolase inhibitor DZNep, which induces apoptosis and cell cycle 
arrest in ATRT cell lines.92 We would like to point out that EZH2 inhibition by tazemetostat cannot match inhibition 
using CRISPR CAS9 or shRNA, as the latter is much more efficient. In patient-derived orthotopic xenograft mouse 
models, it was demonstrated that tazemetostat significantly prolonged survival compared to non-tazemetostat, but did not 
improve responses to RT.102 Therefore, in vivo effects were less obvious than anticipated from experimental 
investigations.

Histone deacetylase inhibitors (HDI) effects on apoptosis and cell cycle arrest may be explained by induction of p21 
transcription by HDI SNDX-275.142 The HDI entinostat (SNDX-275), was safe in a recently completed phase I trial 
(NCT02780804), which included refractory primary CNS tumors (no ATRT), while response to treatment was weak, as 
20 of 21 patients experienced progression within the first 3 courses. Only one patient with ependymoma reached a stable 
disease following 28 courses.143 The currently recruiting INFORM2 (NivEnt) trial for refractory malignancies including 
primary CNS tumors combines entinostat and the PD-1 inhibitor nivolumab. An arm for patients with ATRT below 6 
years of age is anticipated to open once an orally available formulation for entinostat can be provided.

Induction of Proapoptotic Pathways
Small-molecule MDM2 inhibitors such as nutlin 3 and idasanutlin activate the proapoptotic TP53 pathway and increase 
the effect of radiation-induced DNA damage in ATRT in vitro.

Consistently combining idasanutlin with irradiation significantly reduced proliferation in ATRT cell lines.144 A 
corresponding radiographic response was shown in orthotopic xenograft mouse models treated with idasanutlin including 
intratumor necrosis.144 Further studies are needed to assess therapeutic success in clinical settings.

Future Directions – Discussion and Outlook
Within this review, we have given examples of the biological and clinical heterogeneity of ATRT and the associated 
challenges in therapy. Despite crucial improvements in therapeutic modalities and understanding of the molecular 
biology of ATRT results from clinical trials suggest that prognosis depends mainly on clinical characteristics such as 
age, metastatic disease, GLM, and extent of surgery. First attempts to classify risk groups, eg, ATRT-TYR as a positive 
predictor deserve further validation in a prospective fashion.

Treatment of relapsed and refractory ATRT remains an enormous challenge as single agents have not yet yielded any 
convincing responses in the limited number of phase I/II trials. We thus suggest that innovative, personalized treatment 
strategies need to include aspects of intra- and intertumoral heterogeneity. Such approaches, especially in r/r ATRT, need 
to respect clinical aspects including age at diagnosis and metastatic status. These will likely significantly influence the 
intensity and extent of conventional treatment elements (eg, fields of re-radiotherapy). Furthermore, molecular features 
such as genetic or epigenetic characteristics will guide individualized treatment approaches.

Rational drug combinations bear the potential to potentiate the therapeutic effects of single agents. Combinatorial 
approaches are currently investigated, eg, for immune checkpoint inhibitors and EZH2 inhibitors but also HDI 
(NCT05407441, NCT04416568, NCT05286801, and NCT03838042).

A potential model for therapeutic decision is given in Figure 3. As knowledge increases rapidly, every model certainly 
warrants constant re-evaluation and adaptation.

The Challenge of Treating r/r ATRT
Despite first data that methylation subgroups may have prognostic significance, there remains a dearth of validated, 
reliable, and potent biomarkers predicting treatment response in general but also to specific targeting agents.

Several attempts have been made to correlate clinical and molecular characteristics with clinical outcome.4,30,32 First 
steps involving machine learning and artificial intelligence methods to generate prognostic algorithms have been 
initiated.145 As this has identified prognostic treatment elements such as the extent of surgery, radiotherapy, and 
chemotherapy, it reproduces more or less the current knowledge obtained from retrospective analyses. We need to 
acknowledge these attempts as proof-of-principle approaches, which build the basis for improved and more complex AI 
models. These are anxiously awaited.
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Treatment Adjustments – The Role of Molecular Subgroups
In 2020 we agreed on a consensus classification of ATRT into three separate molecular groups, each characterized by 
distinct clinical, molecular, and genetic characteristics. We suggest that divergent gene expression profiles27 may be 
responsible for the heterogeneous response to conventional but also potential targeted therapy approaches. Recently, 
Johann and Altendorf elucidated distinct gene expression profiles in primary vs relapsed ATRT. For ATRT-MYC, 
differences were seen in the expression of cell cycle-dependent genes (eg, HDAC), while gene coding for components 
of the immune system was more likely to be downregulated in relapse compared to primaries. Tyrosine kinase receptor 
genes were overexpressed in relapse in ATRT-TYR tumors, while ATRT-SHH relapse displayed higher expression of 
genes associated with metastases.146

Paassen et al developed a series of ATRT tumoroids and performed extensive drug screening. In contrast to 
suggestions by Altendorf et al, tyrosine kinase inhibitors were significantly more effective in ATRT-MYC tumoroids 
when compared to ATRT-SHH. For ATRT-SHH, gamma-secretase inhibitors affecting the NOTCH-pathway were most 
successful, even though differences between the different ATRT-SHH models were detected.147 We would like to stress 
that different gene expression profiles of the distinct DNA methylation groups will likely play a crucial role for targeted 

Figure 3 Risk factor-based model for treatment decision in ATRT. For standard risk patients, multimodal conventional therapy is the first line choice. Patients not achieving 
an objective response (SD, stable disease) and non-responders (PD, progressive disease) will be re-stratified into an intermediate risk group. Treatment of intermediate risk 
patients may add individual or combined novel targeting agents to conventional therapy. Delayed (SD) and non-responders (PD) will drop to a high-risk stratum. Treatment in 
the high-risk stratum will be individualized based on genetic and molecular profiling, and/or patients will be included in phase I/II clinical basket trials. Black characters 
represent responders, grey characters non-responders to current or previous treatment. Exemplary risk factors are provided for potential stratification and have to be 
defined by further research in form of international meta-analysis. Created with Biorender.com. 
Abbreviations: GLM, germ line mutation; GTR, gross total resection; M, metastasis; y, year of age at diagnosis.
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treatment approaches. Results from current studies will need to be confirmed in larger cohorts. Eventually clinical trials 
investigating novel therapeutic agents should correlate specifics of molecular subgroups with clinical data.

Improvements in the Diagnostic Workup
It remains to be determined whether our diagnostic portfolio is efficient enough to define treatment responses and, even 
more importantly, to detect relapse early. Standard of care surveillance methods mainly comprise MRI screens and 
occasionally CSF cytology, both demonstrating significant inter-examiner variability.

Ideally, diagnostic methods with a high specificity and sensitivity will enhance the screening for minimal residual 
disease (MRD) currently invisible to the human eye. Detecting cell free DNA (cfDNA) in body fluids reflects current 
attempts to gather diagnostic information by a non- or minimally invasive and technically standardizable system. These 
liquid biopsies will complement future diagnostic surveillance and initial workup. Such approaches have been investi
gated in different specimens. Sample volume and amount of DNA per volume have to be considered when designing 
experimental analyses. In the CSF of patients with CNS tumors, the amount of cfDNA is generally low. It appears to be 
significantly higher compared to serum/plasma, even though the absolute amount of DNA remains limited.148 Nanopore 
sequencing has recently been shown to be an easy-to-use and reliable method to detect even small amounts of DNA in 
limited sample volumes.149–151 Nanopore provides a membrane-based whole sequencing approach without the need for 
polymerase-based amplification.149–153 Copy number variations (CNV) and DNA methylation profiles may be generated 
at the same time from the same sample.153 Data by Afflerbach et al demonstrated encouraging success in detecting 
amounts of 5 ng of circulating cell free DNA in CSF volumes as little as 1 mL. These investigators were able to show 
that cfDNA was indeed circulating tumor DNA (ctDNA), as they presented identical CNV and DNA methylation patterns 
as in the tumor tissue. This was validated in eight patients suffering from ATRT. These methods were considered 
appropriate for the detection of ctDNA in pre-operatively collected CSF as well as in the longitudinal disease 
monitoring.153

In summary, several lines of evidence demonstrate that liquid biopsy may be a suitable tool for MRD detection 
especially in high grade (embryonal) CNS tumors as 1) the amount of ctDNA is higher than in CNS tumors of lower 
grade and 2) a CSF access device (eg, Ommaya or Rickham) will be placed for intraventricular therapy in the first-line 
treatment.148,153 We anticipate a high potential for the establishment of liquid biopsies from ventricular reservoir CSF in 
patients with ATRT. Collecting samples within the scope of clinical trials may further be considered but requires a 
standardized procedure for both specimen collection and storage as well as laboratory analyses.

Preclinical Evaluation of Potential Novel Therapies
Traditionally, animal models have been an important tool for drug testing. ATRT animal models, most commonly 
immune-incompetent mice for xenografts or genetically engineered mouse models (GEMM), appear to be rather 
limited.154,155 Currently available models do not exactly recapitulate ATRT biology, eg, the models published by 
Roberts et al demonstrate rather long generation times and CNS tumors are rarely seen,156 xenograft tumors exhibit 
an incomplete tumor immune infiltration due to the generation in nude mice and even the GEMM such as the one 
published by Han or Melcher do not give a perfect representation of the established methylation subtypes.155,157

As an alternative to animal models, attempts have been made to create tumoroids based on patient-derived tumor 
samples or patient-derived orthotopic xenografts (PDOX). Paassen et al developed such tumoroid models and demon
strated the potential use in pre-clinical research, as these models are presented with stable genetic and epigenetic 
characteristics despite several cycles of tumor cell passage and expansion in cell culture.147 Even if these authors used 
minced tumor tissue,147 consisting of tumor cells and tumor microenvironment, these tumoroids are still not a perfect 
representation of the primary tissue. This may be explained by the lack of our knowledge on how to produce the 3- 
dimensional architecture within tumoroid models. Developing innovative tumor models will have to respect the spatial 
geometry of ATRT.
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Outlook
Future research needs to focus on a correlation of molecular and genetic structures with response to treatment. This will 
be crucial to provide the best possible treatment for each patient, to design meaningful clinical trials, and to eventually 
improve survival.

Trial designs face the challenge of requirements for randomized controlled clinical trials to gather as much evidence 
as possible on the one hand, and individual genetic and molecular findings on the other small subcohorts of patients. 
International knowledge must be merged in common databases to overcome limited cohort sizes and to achieve 
maximum possible evidence.

Conclusion
Conventional, multimodal therapy in ATRT deserves further optimization. Regardless of the treatment approach, risk 
factors such as age, metastatic disease, and GLM affect survival probability. The clinical benefit and the risk of severe 
acute and late effects, especially in young children, stress the necessity to modify radiotherapy approaches. Proton beam 
therapy may cause less severe late effects and may therefore be an option in children younger than 18 months. It has been 
proposed that HDCT may replace radiotherapy; this issue remains unresolved.

While specific, mostly institutional approaches for the treatment of primary ATRT exist, the management of refractory 
and relapsed ATRT in general follows clinical phase I/II trials or individual treatment attempts. Agents under investiga
tion include CDK4/6, PARP, or aurora kinase a inhibitors. Others belong to the group of epigenome modifying 
compounds (such as decitabine, or histone modifying agents). Inhibition of the PD-1/PD-L1 interaction or T cell 
activation via CTLA4 blockade targets the tumor cell directed immune responses. CAR-T-cells or oncolytic viruses 
are additional immune modulating agents. Recent basket trials to individualize targeted therapy based on expression 
profiles still face the difficulty of identifying reliable and targetable structures.

We suggest that a research-informed combinations of agents will improve treatment response in primary as well as r/r 
ATRT. Crucially, merging global knowledge in the form of internationally recruiting trials or meta-analyses is an 
important approach to reach significant numbers by building efficient collaborative networks.
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