
R E V I E W

Profile of Capmatinib for the Treatment of Metastatic 
Non-Small Cell Lung Cancer (NSCLC): Patient 
Selection and Perspectives
Madison Fraser1, Nagashree Seetharamu 2, Matthew Diamond2, Chung-Shien Lee 2,3

1Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA; 2Division of Medical Oncology and 
Hematology, Northwell Health Cancer Institute, Lake Success, NY, USA; 3Department of Clinical Health Professions, St. John’s University, Queens, NY, USA

Correspondence: Chung-Shien Lee, Email leec3@stjohns.edu 

Abstract: Aberrant c-MET (Mesenchymal–Epithelial Transition) signaling contributes to cancer cell development, proliferation, and 
metastases of non-small cell lung cancer (NSCLC). MET exon 14 (METex14) skipping mutation is noted in approximately 4% of NSCLC 
cases and is targetable with the recently approved tyrosine kinase inhibitors capmatinib and tepotinib. Capmatinib, the focus of this review 
article, is a highly selective MET inhibitor approved for use in patients with METex14 mutated NSCLC. In this review, we discuss cMET as 
a target, the pharmacology of capmatinib, key trials of capmatinib in MET-altered lung cancer, and toxicity profile. We highlight some ongoing 
capmatinib clinical trials that expand their role to other subsets of patients, especially those with EGFR mutations, who develop MET alterations 
as a resistance pathway. We further provide our perspective on the management of METex14 NSCLC, strategies for sequencing agents, and 
toxicity management. 
Keywords: non-small cell lung cancer, Mesenchymal–Epithelial Transition gene, MET exon 14 skipping mutation, tyrosine kinase 
inhibitor, capmatinib

Introduction
Among both men and women, lung cancer remains the leading cause of cancer-related deaths, with death rates of 44.5% and 
30.7%, respectively.1–3 Fortunately, lung cancer mortality has also been decreasing steadily. From 2015 to 2019, lung cancer, on 
average showed one of the steepest declines (>4% per year) in annual death rate.1 This is especially true for non-small cell lung 
cancers (NSCLC), which make up over 82% of diagnosed lung cancers.2 These improvements are likely due to a combination of 
advances in lung cancer diagnostics and therapeutics. Survival has improved across all stages of lung cancer, including stage IV, 
which still accounts for the majority of patients diagnosed with lung cancer today. Major advances in the treatment of advanced 
lung cancer have been made in the domains of targeted and immune-directed therapies. Targeted drugs have expanded 
exponentially since their introduction in the late 1990s and the early 2000s. These include angiogenesis inhibitors and therapies 
that target molecular alterations in specific genes, such as epidermal growth factor receptor (EGFR), anaplastic lymphoma 
kinase (ALK), Kirsten rat sarcoma (KRAS), c-ros oncogene 1 (ROS1), v-raf murine sarcoma viral oncogene homolog B1 
(BRAF), rearranged during transfection (RET), Mesenchymal–Epithelial Transition (MET), neurotrophic tyrosine receptor 
kinase (NTRK) and human epidermal growth factor receptor 2 (HER2). With the advancement of sequencing technologies, the 
list of targetable genomic alterations and approved targeted therapies is increasing expeditiously over time. This review focuses 
on the more promising recent developments of targeted therapies for MET gene alterations in NSCLC.

Met Gene
The MET gene is located on the human chromosome 7q21-31 and encodes the tyrosine kinase hepatocyte growth factor 
receptor (HGFR). c-MET is a transmembrane glycoprotein consisting of an extracellular alpha chain and an intracellular 
beta chain connected by a disulfide bridge. Three domains form the extracellular portion: the Sema domain, PSI domain, 
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and four immunoglobulin-plexin transcriptional (IPT) repeats (Figure 1). The intracellular region consists of the tyrosine 
kinase domain, which is bordered by the juxta membrane (JM) domain and the carboxyl-terminal sequences/docking 
site.4,5 In NSCLC, mutations have been found in the Sema, JM, and tyrosine kinase domains. The well-known exon 14 
skipping mutation (METex14) is located within the JM domain.4

When hepatocyte growth factor (HGF) or its splicing isoforms (NK1 and NK2), which are the only known ligands of 
the MET receptor, bind to c-MET/HGFR, it results in receptor homodimerization and two tyrosine residues become 
phosphorylated.5 This subsequently leads to the activation of many signaling pathways, including but not limited to 
P13K-AKT, Ras-RAF ERK/MAPK, and STAT-JNK.4

c-MET, also called HGFR is found pervasively throughout the body, starting at embryogenesis, and lasting through 
adulthood, with the highest levels found in epithelial cells and placental cells.6 The actions of c-MET signaling leads to 
cell proliferation, differentiation, cytoskeletal restructuring, and cellular movement.4 As a result, c-MET is highly 
expressed in epithelial and placental cells, and c-MET is a major player in the processes of embryogenesis and wound 
and organ repair.4,7 However, when MET is mutated or overexpressed, it can serve as an oncogene and is associated with 
poor prognosis, where it triggers tumor growth, angiogenesis, and metastasis. MET is dysregulated in a multitude of 
malignancies including lung cancer.

Met Oncogenesis
As a protooncogene, MET was initially identified in 1984 in human osteosarcoma, but has been connected to numerous 
solid tumors since then, including NSCLC.8 Aberrant c-MET signaling is thought to contribute both to cancer cell 
development and proliferation in early stages, and later to metastasis and invasion via changes in cytoskeletal 
functioning.4 In fact, reduced HGF-MET signaling has resulted in inhibition of lung cancer cell growth, invasion, and 
metastasis via blockage of epithelial–mesenchymal transformation (EMT).9 Additionally, c-MET signaling is thought to 
support the development and sustenance of the tumor microenvironment, leading to tumor cells harboring an immune 
escape from T-cell killing.10 Genetic alterations in MET have therefore shown to produce unchecked cell signaling that 
can enhance cancer cell growth and potentiate spread through multiple pathways.

Figure 1 MET Exon 14 Skipping Activity.
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Met in NSCLC
In NSCLC, three main types of oncogenic MET alterations have been identified: c-METex14 skipping mutations, gene 
amplification of c-MET, and c-MET protein overexpression.10 In this review, we will focus on all of these aberrations 
since amplification, overexpression and exon 14 skipping mutations have been associated with a poorer prognosis in 
NSCLC patients and have been the focus of recent drug development.11,12

Exon 14 Skipping Mutations
METex14 skipping mutations are the most commonly reported MET alterations in NSCLC, with up to 4% of NSCLC 
displaying such mutations.13,14 Exon 14 skipping can be caused by point mutations, deletions, or insertions.10 These 
mutations result in impaired transcriptional splicing of the MET gene and subsequent loss of exon 14, which encodes 
the juxtamembrane (JM) domain of the MET receptor.15 The impact on the JM domain is typically deletion of its 
tyrosine-1003 residue. This leads to poor ubiquitination of the c-MET receptor, thereby impairing receptor internatio
nalization and degradation.16 Continued expression of receptors that would have otherwise been degraded results in 
overactive c-MET signaling, including ligand-independent activation, and therefore in the case of tumor cells, 
continued cell growth.15

Patients with METex14 mutations tend to be older on average (median 70–73 years old) with more extensive smoking 
history.15 Interestingly, METex14 skipping mutations are theorized to contribute to early-onset NSCLC development, 
with subsequent additional mutations, such as amplification and/or overexpression producing a more aggressive 
phenotype.15 Similarly, numerous studies have shown that there to be co-existence of METex14 with other oncogenic 
mutations, such as MDM2, CDK4, and TP53.17,18 The clinical phenotype that results from such combinations, however is 
yet to be fully elucidated.

Met Amplification
An increase in the number of MET genes may occur either from amplification of the gene itself or via polysomy, 
which is an increase in the number of chromosome 7.19 However, polysomy (aneuploidy) is less likely to progress 
as an oncogenic driver than true amplification. True MET amplification (METamp) typically occurs as a local gain 
of one arm of chromosome 7q31.15 METamp may present alone or in association with METex14, with a varying 
co-occurrence rate of 0–40%.14 MET gene copy numbers >5 have been correlated with poorer prognosis in 
NSCLC patients.20 Overexpression at the protein level has also been implicated on oncogenesis (Figure 2).21 In 
general, MET amplification occurs in about 4% of patients with NSCLC that have not been previously exposed to 
systemic therapy. When exposed to EGFR TKIs, this rate can increase to 20% of patients due to an acquired 
amplification.22

Importantly, METamp has been recognized as a form of treatment resistance to tyrosine kinase inhibitors (TKIs) in 
NSCLC, specifically in EGFR mutation-positive NSCLC.14,24 METamp was found in approximately 3% of untreated 
NSCLC, and this rate increased to 5–22% in patients who acquired resistance to treatment with first- or second 
generations EGFR-TKIs.19 The aforementioned poor prognosis seen with METamp may correlate with this observed 
treatment resistance in select patients.

Role of TKIs in NSCLC
Numerous TKIs have been approved for use in NSCLC and have been shown to be efficacious against a wide range 
of alterations including EFGR, ALK, and MET.25 Their appeal comes from the fact that they are orally bioavailable 
and provide treatment options to patients with advanced NSCLC harboring specific genetic alterations. Following 
the footsteps of successful targeting of EGFR, ALK, ROS and RET, cMET targeting has emerged as one of the major 
advancement in NSCLC therapeutics over the last few years. Capmatinib was the first targeted agent for alteration of 
the MET gene, specifically exon 14 mutations.26 Results from the GEOMETRYmono-1 trial reported in May 2020 
resulted in accelerated approval by the United States (US) Food and Drug Administration (FDA) for the treatment of 
metastatic NSCLC with exon 14 skipping mutations. Capmatinib went on to receive regular FDA-approval in 
August 2022.27
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Capmatinib
Administration and Mechanism of Action
Capmatinib is an oral agent, which is a highly selective small-molecule inhibitor of cMET. It has been shown to have 
anti-tumor properties against MET-driven in vitro and in-vivo solid tumor models.28 The agent is 30 times more potent 
than crizotinib with IC50 values of 0.13 nmol/L and 4 nmol/L, respectively, and slightly more potent than tepotinib which 
has an IC50 of ~1.7 nmol/L.29,30

Pharmacokinetics and Pharmacodynamics
After oral administration of capmatinib, Cmax was attained within 1–2 hours (Tmax). Absorption of oral medica
tions was noted to be >70%. The postprandial or fasting state did not significantly affect Cmax or capmatinib 
exposure (AUC 0–12 hours). The drug is mostly protein-bound (96%) in circulation, and its half-life is estimated to 
be 6.5 hours. Capmatinib is primarily metabolized by the liver via enzymes CYP3A4 and aldehyde oxidase. In 
healthy subjects, 78% of the total radioactivity was recovered in feces and 22% in urine after a single oral dose of 
radiolabelled capmatinib.31

Historical Perspectives Leading Up to FDA Approval and Beyond
Most of the initial studies were performed on MET amplified lung cancer as assessed by immunohistochemistry and were 
found to have inconsistent results. Subsequent studies used FISH to assess gene copy number (CGN) and showed 
promising activity. Further studies, especially in lung cancer patients with oncogenic METex14 skipping mutations, have 
demonstrated that this drug has the highest activity in this subset of patients. MET overexpression is a common resistance 
pathway in patients treated with EGFR TKI for EGFR mutated lung cancer, and capmatinib has been shown to be 
effective preclinically and clinically in this setting.32–35

The first in-human, Phase I, dose-escalation/dose-expansion study in solid tumors that harbored MET altera
tions, which included 55 patients (NCT01324479), established 400 mg tablets twice daily or 600 mg capsules 

Figure 2 MET Amplification Activity. 
Notes: Data from Drusbosky et al.23
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twice daily as the Phase II dose. The agents were well-tolerated, with gastrointestinal (GI) events, edema, fatigue, 
and anorexia being the most common adverse events. Adverse events (AEs) that were grade ≥3 were rare. The 
disease control rate (DCR) was 51%, with a 20% partial response (PR). The responses were most robust in 
patients with MET GCN ≥6.36

The Geometry Mono-1 (NCT02414139), a Phase II, open-label, multicenter study of capmatinib in NSCLC 
enrolled patients with EGFR and ALK wild-type NSCLC belonging to several cohorts, was initiated in 2015.37 The 
various cohorts of patients included in this study were as follows: cohort 1, MET amplified (GCN ≥6) previously 
treated NSCLC; cohort 2-previously treated NSCLC with GCN ≥4 but <6; cohort 3-previously treated NSCLC with 
MET CGN <4; cohort 4-previously treated NSCLC with METex14 skipping mutation; and cohort 5-treatment naïve 
MET amplified (CGN≥10) or METex14 skipping mutation-positive NSCLC. There were two additional expansion 
cohorts: cohort 6 for pre-treated patients with MET GCN ≥10 without MET exon 14 mutation or METex14 skipping 
mutation, regardless of MET GCN, and cohort 7 for treatment-naïve patients with METex14 skipping mutation only. 
Recently, the activity of capmatinib in some of the aforementioned cohorts has been reported. The study enrolled 
a total of 364 patients, 96 of whom had a METex14 skipping mutation. This group experienced an overall response rate 
(ORR) of 41% (95% CI, 29–53) among those who had received prior lines of therapy and 68% (95% CI, 48–84) 
among those who were treatment-naïve. The median duration of response was 9.7 months (95% CI 5.6 to 13) for pre- 
treated patients and 12.6 months (95% CI 5.6 to NE) for treatment-naïve group. There was very little activity in MET 
amplified NSCLC, in which GCN was less than 10% and 29% (95% CI 19 to 41) in pre-treated NSCLC with GCN ≥ 
10% and 40% (95% CI 16 to 68) in treatment-naïve high MET expressors. Edema and nausea were the most common 
adverse events occurring in 51% and 45%, respectively.37

On May 6, 2020, the US FDA granted accelerated approval for the use of capmatinib in NSCLC with METex14 
skipping mutations.26 The updated results of Geometry Mono-1 were presented at the American Society of Clinical 
Oncology in 2021. Efficacy analysis was performed on treatment-naïve patients with METex14 NSCLC (cohorts 5b 
and 7) as well as those who had received other lines of treatment (cohorts 4 and 6). This updated analysis involving 160 
patients who were treated with capmatinib 400 mg twice daily showed an ORR of 65.6% (95% CI 46.8 to 81.4) and 
a median PFS of 10.8 months (95% CI 8.6 to 22.2) for treatment-naïve patients in the expansion cohort 7. Mature overall 
survival (OS) survival data for cohort 5b (treatment-naïve) and cohort 4 (pre-treated) populations were also provided 
during this updated analysis at 20.8 months (95% CI 12.4 to NE) and 13.6 months (95% CI 8.6 to 22.2), respectively. No 
new safety signals were observed. After this update, involving 63 additional patients and a longer follow-up of 22 
months, the FDA granted regular approval for the drug in METex14 NSCLC.27,38

Real-world experience with capmatinib has been reported in a retrospective, multicenter study. Patients in this 
study were adults with locally advanced or metastatic NSCLC with confirmed METex14 skipping mutation and were 
part of the early access program. Of note, 30% of patients in this study had an Eastern Cooperative Oncology Group 
(ECOG) Performance Status (PS) of 2 or 3. ORR was 50% (95% CI, 35–65) in patients who had received prior lines 
of therapy and 68% (95% CI, 50–82) in patients were treatment-naïve. PFS was 9.1 months (95% CI, 4.7–14.3) and 
10.6 months (95% CI, 5.5–15.7), respectively. Overall efficacy results were similar to that seen in the Geometry 
Mono-1 study.39

Central Nervous System (CNS) Activity
Capmatinib was found to have CNS activity in an ad hoc analysis of Geometry Mono-1, which included 13 patients 
with brain metastases. The CNS response rate was 54% and included complete response (CR). In a subsequent real- 
world analysis of 68 patients with METex14 NSCLC and brain metastases, the ORR in the first-line setting (n=55) 
was 90.9% systemically and 87.3% intracranially. In patients who did not receive cranial radiotherapy (n=20), the 
ORR was 85% extra- and intracranially.40 In a separate real-world study, CNS response rate was 46% in 22 patients 
with brain lesions.39
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Adverse Events (AE)
Toxicity data is available from GEOMETRY mono-1 Cohorts 1–6 (n=373) and real-world populations, showed that the 
drug is well-tolerated.39,41 The most frequent AEs occurring in ≥10% of patients included edema, which was the most 
common AE and occurred in 48–59% of patients, muscle aches, fatigue, fever, weight loss, nausea, vomiting, constipa
tion, diarrhea, dyspnea, cough, anorexia, rash, and dizziness. Most AEs were grade 1 or 2, but grade ≥3 AEs occurred in 
some patients, with edema as the top AE on the list at 13%.

Dose Reductions, Interruptions and Discontinuations
The recommended starting dose of capmatinib is 400 mg twice daily, to be taken whole with or without food. Dose 
reduction due to an AE occurred in 26–40% of patients with edema, and biochemical abnormalities in the liver and renal 
function were the most common AEs requiring dose modification. The recommended first and second dose reduction 
doses were 300 mg and 200 mg twice daily, respectively.29 Dose interruptions occurred in 26–57% of patients with 
edema, and abnormal liver, pancreatic, and renal function tests were the most common reasons. GI side effects, fatigue, 
cough, dyspnea, pneumonia, and musculoskeletal pain are among the other reasons for treatment interruption. AEs 
leading to permanent discontinuation, occurred in 10–12% of patients, included edema, pneumonitis, fatigue, and 
pneumonia.

Impact on Health-Related Quality of Life (HRQoL)
Importantly, HRQoL was assessed by patient-reported outcomes (PRO) and global health scale (GHS) in 
Geometry Mono-1, and results were published recently.42 At the time of data cut-off for this study in 
January 2020, 92 patients had completed PROs at baseline and >70% remained engaged throughout the study 
by completing PRO at different time points. Most patients noted improvement in lung cancer-related symptoms, 
particularly cough, which improved early (by seven weeks) and persisted over time (43 weeks). HRQoL, as 
assessed by the GHS, also improved by 7 weeks in both the first-line and subsequent line cohorts. Median time to 
definitive deterioration (TTDD) in GHS/QoL was 16.6 months (95% CI: 9.7 to NE) in 1st line and 12.4 months 
(95% CI: 12.4 to NE) in subsequent line cohort.42

Other Agents Targeting Met in Lung Cancer
Similar to capmatinib, tepotinib is also a small-molecule tyrosine kinase inhibitor, which has received accelerated 
approval by the US FDA for the treatment of metastatic NSCLC with METex14 skipping mutation.43 Paik et al found 
that tepotinib administered once daily at a dose of 500 mg resulted in a partial response in approximately half of the 
evaluated patients.30 Given that capmatinib and tepotinib are orally bioavailable, they are frequently the first choice for 
treating lung cancer with a METex14 skipping mutation. The toxicity profile of tepotinib is very similar to that of 
capmatinib with lower rates of nausea seen (26% vs 45%), but higher rates of edema (63% vs 48–51%).30,39,41 

However, other agents, such as the bispecific antibody amivantamab, and investigational compounds, such as the 
antibody–drug conjugate telisotuzumab vedotin, may also be options for patients. Amivantamab is a bispecific anti
body that engages both EGFR and MET was granted accelerated FDA approval in May 2021.44 This bispecific 
antibody demonstrates activity in patients with METex14 skipping mutations as well as EGFR exon 20 insertions. 
The CHRYSALIS study has found that amivantamab exerts anti-tumor activity in patients with alterations in MET.45 

On the experimental front, the antibody–drug conjugate telisotuzumab vedotin has demonstrated promising activity in 
patients with metastatic NSCLC with c-myc overexpression who have progressed on platinum-based therapy. This 
comes from the phase II LUMINOSITY trial, which was designed to determine the ORR of telisotuzumab vedotin in 
a selected population of patients with NSCLC whose tumors overexpress c-myc. The trial is ongoing and has been 
granted breakthrough status by the FDA.
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Perspectives
METex14-driven NSCLC represents a unique subset of NSCLC for which there are two approved therapeutic options. 
Current NCCN guidelines recommend using TKIs as the first-line for METex14 positive NSCLC.46 We agree with this 
recommendation. Given the fact that capmatinib was approved earlier and has a higher IC50 than other TKIs, our 
preference has been capmatinib in the first-line setting. We typically start patients at the recommended FDA starting dose 
of 400 mg twice daily; however, in patients with higher/borderline performance status and multiple comorbidities, we 
start with a lower dose and titrate accordingly. It is very common for dose reductions and dose interruptions due to 
toxicity, as observed in the Geometry Mono-1 study and other real-world experiences.37,39 Use of MET inhibitors in 
patients with MET amplification tumors is undefined at this point and use of MET inhibitors in these patients should not 
be done outside of clinical trials. Due to a very unique, potentially serious AE profile, we believe that it is imperative to 
have clinical pharmacists on the team managing these patients.

We provide an in-depth education regarding the administration of capmatinib and its potential AEs to all patients. We 
specifically educate them about timely communication regarding any signs or symptoms of pulmonary toxicity, including 
dyspnea, cough, and fever, in which case we ask them to stop capmatinib immediately while elucidating alternate causes. 
We permanently discontinued capmatinib if pulmonary toxicity is determined to be a direct result of the capmatinib 
treatment.

Patients are also monitored closely with blood tests, specifically liver function tests, lipase, amylase, and creatinine 
levels. Biochemical abnormalities are not infrequent and dose adjustments and interruptions are frequently necessary as 
a result. In most cases, biochemical abnormalities subside with drug interruption.

The most common difficult-to-treat side effect is peripheral edema, which can range from mild to severe. The 
actual mechanism of AE is unknown, but it is thought that the HGF/MET inhibition may disrupt the permeability 
of the vascular endothelium and result in edema. We educate patients at the onset of this possibility and advise 
them to use compression stockings, maintain an active lifestyle, and elevate their lower extremities. We also 
measure limb girth before initiating treatment so it can serve as a reference when edema occurs. If peripheral 
edema occurs, we advise elevation of the extremities, compression stockings, and low-dose diuretics for grade 
2 peripheral edema. For grade 3 or higher, we recommend dose interruption until it resolution to grade ≤1 and 
then restart with a lower dose.

Progression on targeted therapies, including capmatinib occurs often. Although there is no data to provide guidance 
on second-line treatment for these patients after progression on capmatinib, there are a multitude of options. Clinical 
trials are the best options for these patients, but these are not available or applicable to many patients. There are anecdotal 
reports of switching to tepotinib successfully and this is concordant with our experience.47,48 Alternatively, platinum- 
based chemotherapy or chemoimmunotherapy may be an option.46 Unlike other genomic drivers, METex14 does not 
seem to render tumors resistant to immunotherapy, although there are some conflicting reports regarding this. Newer 
agents, including ADC and bispecifics, can also be used in these patients.

Conclusions and Future Directions
Targeting specific genetic alterations is an illustration of the advances in oncology and medicine as a whole. We 
have entered an era in the field of precision medicine that allows us to analyze and target a patient’s particular 
genetic aberrations to achieve therapeutic outcomes. Among these aberrations identified, METex14 skipping and 
MET amplification mutations have emerged as important targets for NSCLC treatment. The development and 
approval of capmatinib has been a milestone that offer promise for the treatment of cancers driven by MET 
alterations.

Looking to the future, capmatinib may possibly serve a role in other subsets of lung cancer driven by other 
aberrations in MET such as amplifications and overexpressions. Studies have also focused on targeting MET aberrations 
that occur as “escape” mechanisms in EGFR and ALK-positive cancers. Further ongoing and future studies with 
capmatinib are summarized in Table 1. In addition, capmatinib is also being studied in a variety of solid tumors by 
investigators globally.
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CNS ORR

NCT0492683156 
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II Stages IB-IIIA, N2 and selected 

IIIB NSCLC harboring METex14 

skipping mutation or high MET 

amplification

Capmatinib 400 mg BID 38 MPR ORR, AEs, DFS

NCT0432343657 II Treatment naive advanced 

NSCLC harboring cMETex14 
skipping mutation

Capmatinib 400 mg BID 

+ Spartalizumab
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NCT0548831458 
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II Treatment naive advanced 
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skipping mutation or MET 
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+ amivantamab
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OS

Abbreviations: AEs, adverse events; BM, brain metastases; CNS, central nervous system; DCR, disease control rate; DFS, disease free survival; DLT, dose limiting toxicity; 
DOR, duration of response; MPR, major pathological response; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free 
survival; PK, pharmacokinetics; TTR, time to response.
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