
© 2011 Feng et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article  
which permits unrestricted noncommercial use, provided the original work is properly cited.

Neuropsychiatric Disease and Treatment 2011:7 117–125

Neuropsychiatric Disease and Treatment Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
117

O R I G I N A L  R E S E A R C H

open access to scientific and medical research

Open Access Full Text Article

DOI: 10.2147/NDT.S15921

Performance of Cpred/Cobs concentration  
ratios as a metric reflecting adherence  
to antidepressant drug therapy

Yan Feng1

Marc R Gastonguay2

Bruce G Pollock3,5

Ellen Frank3

Gail H Kepple4

Robert R Bies5,6,7

1Discovery Medicine and Clinical 
Pharmacology, Bristol-Myers Squibb, 
Lawrenceville, NJ, USA; 2Metrum 
Institute, Tariffville, CT, USA; 
3Department of Psychiatry, School of 
Medicine, 4Department of Depression 
Prevention, University of Pittsburgh, 
PA, USA; 5Centre for Addiction and 
Mental Health, University of Toronto, 
Toronto, Canada; 6Division of Clinical 
Pharmacology, School of Medicine and 
Center for Computational Biology 
and Bioinformatics, Indiana University 
School of Medicine, Indianapolis,  
IN, USA; 7Indiana Clinical Translational 
Research Institute, Indiana University 
School of Medicine, IN, USA

Correspondence: Robert R Bies 
Division of Clinical Pharmacology, 
Center for Computational Biology and 
Bioinformatics, Indiana University School 
of Medicine, 1001 W 10th Street W7138, 
Indianapolis, IN 46202, USA 
Tel +1 317 630 7868 
Fax +1 317 630 8185 
Email rrbies@iupui.edu

Background: Nonadherence is very common among subjects undergoing pharmacotherapy 

for schizophrenia and depression. This study aimed to evaluate the performance of the ratio of 

the nonlinear mixed effects pharmacokinetic model predicted concentration to observed drug 

concentration (ratio of population predicted to observed concentration (Cpred/Cobs) and ratio 

of individual predicted to observed concentration (Cipred/Cobs) as a measure of erratic drug 

exposure, driven primarily by variable execution of the dosage regimen and unknown true 

dosage history.

Methods: Modeling and simulation approaches in conjunction with dosage history information 

from the Medication Event Monitoring System (MEMS, provided by the “Depression: The search 

for treatment relevant phenotypes” study), was applied to evaluate the consistency of exposure 

via simulation studies with scenarios representing a long half-life drug (escitalopram). Adherence 

rates were calculated based on the percentage of the prescribed doses actually taken correctly 

during the treatment window of interest. The association between Cpred/Cobs, Cipred/Cobs 

ratio, and adherence rate was evaluated under various assumptions of known dosing history.

Results: Simulations for those scenarios representing a known dosing history were generated 

from historical MEMS data. Simulations of a long half-life drug exhibited a trend for overpre-

diction of concentrations in patients with a low percentage of doses taken and underprediction 

of concentrations in patients taking more than their prescribed number of doses. Overall, the 

ratios did not predict adherence well, except when the true adherence rates were extremely 

high (greater than 100% of prescribed doses) or extremely low (complete nonadherence). 

In general, the Cipred/Cobs ratio was a better predictor of adherence rate than the Cpred/Cobs 

ratio. Correct predictions of extreme (high, low) 7-day adherence rates using Cipred/Cobs were 

73.8% and 64.0%.

Conclusion: This simulation study demonstrated the limitations of the Cpred/obs and Cipred/obs 

ratios as metrics for actual dosage intake history, and identified that use of MEMS dosing history 

monitoring combined with sparse pharmacokinetic sampling is a more reliable approach.

Keywords: adherence, Medication Event Monitoring System, dosing history, modeling and 

simulation

Introduction
Adherence to drug therapy is a largely undermeasured and underappreciated 

phenomenon, which may possibly contribute to significant problems with response 

to therapy and toxicity. Nonadherence is very common among subjects receiving 

treatment for schizophrenia or depression, and potentially contributing to substantial 

variability in response.1–3 Researchers have demonstrated that poorly adherent subjects 

with schizophrenia had a higher risk of rehospitalization.1 In addition, the relationship 
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of the time to first drug holiday with fluoxetine treatment 

and the probability of response among subjects with major 

depressive disorder were related.3 Therefore, measuring 

an individual’s specific dosage history condition is a very 

important piece of information in clinical trials, because 

the nonresponse or adverse drug effect may be caused by 

inconsistent drug intake.

The major measures of adherence include electronic mon-

itoring of a dosage form container (eg, the Medication Event 

Monitoring System [MEMS]4 caps, ie, the gold standard), 

pill count, patient interview/rating scales, pharmacokinetic 

indicators, and the evaluation of prescription refill records.5–8 

All of these methodologies are indirect approaches and have 

significant limitations.

A poor understanding of the adherence pattern that is 

most likely to contribute to a therapeutic problem3 represents 

a significant challenge in the area of pharmacotherapy. This 

issue is of particular importance in psychiatry where indi-

viduals with depression may be particularly susceptible to 

adherence patterns that relate to drug holidays as opposed 

to erratic, albeit consistent intake.3

Adherence can be conceptualized as the course of drug 

treatment and comprises three major components. These com-

prise acceptance of drug therapy (also referred to as initiation 

of drug therapy, ie, the patient starts taking the medication), 

execution of the prescribed drug regimen (ie, comparing the 

two time courses of drug intake, actual versus ideal), and 

discontinuation of the drug regimen (ie, the patient decides 

to stop taking the medication altogether). Acceptance and 

discontinuation are dichotomous, whereas execution is 

continuous. Persistence on drug therapy is defined as the 

time between acceptance and discontinuation.9 The method 

we propose for capturing erratic adherence patterns relates 

solely to the execution of the drug regimen.

Vrijens et al10,11 reported that using the detailed records 

of subjects’ dosing history not only helped to achieve 

convergence in model fitting under sparse sampling mea-

surement situations, but also explained 40% of residual 

variability in plasma lopinavir concentrations and reduced 

overall variability by 55%. Utilization of a prior established 

pharmacokinetic/pharmacodynamic model may allow one to 

exploit this variability by evaluating the deviation between the 

prior model predicted and the observed drug concentrations 

at the population level (Cpred/Cobs), as well as the individual 

(Cipred/Cobs) level.

The primary objective of this study was to assess the stabil-

ity and robustness of the ratio of Cpred/Cobs and Cipred/Cobs 

in predicting adherence rates. This was accomplished using 

simulation approaches that incorporate design features of a 

typical psychiatric clinical trial (Depression: The search for 

treatment relevant phenotypes. see http://clinicaltrials.gov/ct/

show/NCT00073697)12 using the pharmacokinetic character-

istics of escitalopram as a representative long half-life drug. 

We hypothesize that the magnitude of the ratios of Cpred/

Cobs and/or Cipred/Cobs predict adherence (ie, percentage 

of doses taken in a time window of interest).

Methods
Adherence definition and categorization
MEMS caps records from the study sponsored by the National 

Institute of Mental Health entitled “Depression: The search 

for treatment relevant phenotypes”12 were used to supply 

the “true” dosage histories. Determination of the adherence 

patterns used the MEMS patterns divided into two different 

observation windows (2 days and 7 days) immediately prior 

to the sampling time. The adherence “rate” was calculated 

from the dosage history obtained from MEMS caps into 

a proportion of dosages correctly taken over the window 

period of interest.

Specifically, adherence rate was equal to the total number 

of MEMS caps openings recorded divided by the number of 

doses prescribed. Adherence rates were categorized accord-

ing to total number of dosing events and frequency of drug 

administration (Table 1). The adherence rate was calculated 

for both 2-day and 7-day windows for each simulated clinic 

visit. This rate was used to classify adherence into percentage 

categories.

Trial simulation
Observed concentrations were generated by the simulation of 

the virtual patients (ie, Cobs). The predicted concentrations 

were obtained using NONMEM estimation steps (the popula-

tion predicted and individual predicted represents the model 

predicted concentration at that sampling time based on the 

population prediction [Cpred] as well as the individual 

Table 1 Categorization of 7-day and 2-day adherence rate

Group 7-day history 2-day history

1 .100% .100%
2 85%–100% 50%–100%
3 30%–85% 0%–50%
4 0%–30% 0%
5 0% NA

Notes: Adherence rates were categorized given total number of dosing events 
and frequency of drug administration. Seven-day and 2-day history categories differ 
due to different numbers of dosage events possible in each time window allowing 
additional resolution in the 7-day history group.
Abbreviation: NA, not available.
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prediction [Cipred]). A diagram depicting the simulation 

and estimation steps is shown in Figure 1.

Analysis platform
Nonlinear mixed effects modeling was employed for the 

population pharmacokinetic analysis as implemented in the 

NONMEM computer program (Version V, Icon Development 

Solutions, Elicott City, MD).13,14 The models consisted of a 

structural model that described the disposition of the drug fol-

lowing oral administration, and a pharmacostatistical model 

that described the residual interindividual and intraindividual 

variability. NONMEM was also utilized for performing 

the model-based simulations. “Virtual subjects” datasets 

simulation, graphics, and postprocessing of NONMEM 

outputs were performed using S-PLUS (Version 6.2.1; 

Insightful, Seattle, WA). Perl (version.5.6) was utilized as a 

scripting language to assist in automation of data extraction 

and simulation routines.

Pharmacokinetic model for escitalopram
An established escitalopram model was utilized to represent 

the long half-life drug.15,16 A two-compartment model with 

additive and proportional residual error models was adapted 

from the literature reports for escitalopram as a long half-life 

drug (Table 2). The models were then used to generate a unique 

set of pharmacokinetic parameters for each patient using the 

UKNOWN DOSAGE HISTORY (UDH)  

Step 1: MEMS cap data – Generation of “virtual  
subject” dosing history 

Step 2: Simulation to generate pharmacokinetic profile using: 
 Known dosing history (MEMS)+ simulated pharmacokinetic
sampling time at each clinic visit (actual sampling time) and

pharmacokinetic model   

Step 3: Estimation of
pharmacokinetic profile under
known dosing history scenario
(MEMS + actual sampling time)

Step 4.2: Estimation of pharmacokinetic profile under
unknown dosing history scenario (nominal dosing + reported

sampling time)

Step 4.1: Simulation to generate pharmacokinetic profile
using: Unknown dosing history (assume 100% adherence +
simulated reported pharmacokinetic sampling time at each

clinic visit) and pharmacokinetic model

Step 5: Evaluation of simulation/estimation results

KNOWN DOSAGE HISTORY (KDH)   

Figure 1 Flow chart of simulation and estimation approach under known dosage history and unknown dosage history scenarios.
Abbreviation: MEMS, medication event monitoring system.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2011:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

120

Feng et al

NONMEM program (two-compartment, ADVAN4 TRANS4). 

In the model component, the individual parameter estimates are 

modeled as a function of typical values for the population and 

individual random deviations. The interindividual variability 

of the pharmacokinetic parameters is described below:

CL TVCL CL= × exp( )η

where TVCL is the typical value of clearance for the popu-

lation, CL is the individual parameter estimate, and η
CL

 is 

the interindividual variability term on CL, representing the 

difference between the individual parameter estimate and the 

population mean. The inter-individual random variability are 

assumed to be log-normally distributed, with a mean of zero 

and variance of ω2.

Generation of Cobs, Cpred, and Cipred
A simulated (observed) plasma drug concentration (Cobs) was 

compared with model predicted concentrations using popula-

tion level (Cpred) and individual (Cipred) level parameter 

estimates. This was accomplished by fitting this simulated 

(observed) plasma drug concentration (Cobs) to generate the 

population and individual predicted concentration values. 

This is shown in the equation below:

C f xobs i j i j i i j[ , ] [ , ] [ ] [ , ], ,= ( ) +θ η ε

where C
obs[i, j]

 is the jth concentration measured in the ith 

subject, X
[i, j] 

is the jth time in the ith subject, θ are the fixed 

effects parameters in the model, η
[i]

 is the ith individual’s 

deviation in fixed effect from the population estimate and 

ε
[i, j]

 is the residual error associated with the jth measured 

concentration in the ith individual. The C
pred[i. j]

 is evaluated at 

η
[i]

 = 0 and C
ipred[i. j]

 is evaluated at η
[i]

 equal to the maximum 

a posteriori Bayes estimate of the individual random 

effect (η
[i]

). Each simulated clinic visit was associated with 

a single concentration measurement.

Trial simulation and estimation
A flow chart of simulation and estimation steps is presented 

in Figure 1. Simulation scenarios for the virtual trials are 

summarized in detail (Table 3), including number of subjects, 

pharmacokinetic sampling per subject, simulation replicates, 

etc. Figure one shows how the MEMS data (Step 1) were 

utilized as the actual dosing history (dose and time of 

dose taken) for subjects in the clinical trial “Depression: The 

search for treatment relevant phenotypes”.

Subjects recruited in the clinical trial had chronic psychi-

atric disorders. Dosing histories for the simulated trials were 

obtained by bootstrap resampling from the actual MEMS 

database in the phenotypes study.

Simulation (Step 2) was used to generate the “observed” 

concentrations (Cobs) for subjects at each clinic visit using 

the NONMEM simulation option.

Table 2 Pharmacokinetic parameters for a long half-life drug

Parameters Parameter estimates  
for long half-life drug

CL (L/h) 24.5
V2 (L) 417
Q (L/h) 35.7
V3 (L) 541
Ka (/h) 0.16
ωCL% 50

ωv2% 35

ωQ% 30

ωv3% 30

σ1% 30

Abbreviations: CL, clearance; V2, volume of distribution of central compartment; 
V3, volume of distribution of peripheral compartment; Q, intercompartment 
clearance; ω, coefficient of variation of interindividual variability; σ, coefficient of 
variation of residual error.

Table 3 Detailed description of simulation scenarios for a long 
half-life drug

Simulation profile Simulation scenarios 

Sample size for each  
simulation replicate

65

Dose (mg) Long half-life drug (10)
Clinical visit record  
per subject (n)

18 (2–43 records)

Time of dose administration Actual: MEMS cap opening time
Nominal: 9 pm (normal distribution,  
SD = 1 hour)

Pharmacokinetic  
sampling time 

Actual: 8 am to 6 pm (uniform 
distribution)
Nominal: Actual sampling time + 
reported time error (normal distribution, 
SD = 15 minutes)

Adherence rate (%) Continuous adherence rate: 7-day and 
2-day actual rate
Categorical adherence: Adherence rate 
groups (very high, high, intermediate, low 
and extremely low) based on weekly and 
2-day pattern

Simulation replicates 100
Simulation conditions MEMS data (number of doses taken)

Actual dosage time and actual 
pharmacokinetic sampling time

Estimation conditions  
for known dosage history

Dosing: MEMS dosing (number of doses 
taken)
Actual dosage time and actual sampling 
time

Estimation conditions for 
unknown dosing history

100% adherence rate (all doses taken)
Nominal dosage time and reported 
sampling time

Abbreviations: SD, standard deviation; MEMS, Medication Event Monitoring System.
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plots were generated for all the adherence rate categories. 

The box plot allows examination of the consistency of the 

Cpred/Cobs ratio in reflecting erratic adherence patterns 

(extremely low to high adherence). Under ideal conditions 

(known dosing history), the ratio of predicted and observed 

concentrations should be equal to one. Under the unknown 

dosing history scenario, concentrations were expected to be 

overpredicted if the adherence was less than 100% and under-

predicted if the actual adherence was over 100%. Thus, the 

systematic deviations of differences between the observed and 

the predicted concentrations could be reflected by the shift of 

the median ratio value with change of adherence rate.

Rate classification using the established  
relationship between adherence rate and ratio
The central tendency of the ratio (mean) at each adher-

ence rate was calculated under unknown dosing history. 

Exponential decay models were applied to characterize 

the relationship between Cpred/Cobs, Cipred/Cobs, and 

actual adherence rate for the 7-day and 2-day time win-

dows using NONMEM. The established relationships 

were then applied to predict adherence using the observed 

ratio. The ability to predict adherence correctly was used 

to evaluate the performance of the relationship between 

ratio and adherence rate.

The predicted adherence rate was classified based on min-

imum Euclidean distance classification criteria.17 At a given 

Cipred/Cobs ratio, the distance between the predicted rate 

and the observed rate was calculated using the equation:

d  = −Adherence Adherencepred obs

The predicted adherence rate was assigned to the class 

(observed rate) for which the distance “d” was the minimum. 

The percentage of the correctly assigned rates was calculated 

for the 7-day and 2-day adherence periods.

Results
Subjects and MEMS data
MEMS data for a total of 65 patients were available from the 

ongoing depression phenotypes clinical trial during the first 

6 months, providing 863 clinic visit records. The adherence 

rate was calculated for each clinic visit event (pharmacoki-

netic sampling). These rates were then grouped into different 

time windows, eg, adherence rates 7 days prior to a clinic 

visit and 2 days prior to a clinic visit. The adherence rates 

were found to be highly variable within subjects during the 

treatment period. The 7-day adherence pattern had 9.7% 

Simulated datasets, comprising “virtual subjects” with 

unique virtual concentration time profiles (ie, the virtual 

Cobs values) were generated using the sampling conditions 

outlined in the phenotypes study as well as the residual 

unknown variability in the prior pharmacokinetic model. 

The actual pharmacokinetic sampling time at each clinic 

visit was simulated to occur between 8 am to 6 pm (clinic 

hours) using a pseudorandom uniform distribution. These 

simulated datasets provided individual pharmacokinetic 

parameters and concentration measurements (Cobs) for each 

virtual subject.

Simulation (Step 4.1) was also performed to create the 

subject with the incorrectly reported dosage history (nominal 

dose and dose-taking time) and the recorded pharmacokinetic 

sampling time. The erroneous nominal time of dose taken 

(incorrect dosing) was simulated from a normal distribution 

with a mean time of 9 pm, and a standard deviation (SD) of 

one hour. The reported pharmacokinetic sampling time was 

generated assuming a normal distribution using the actual 

time as the mean and a SD of 15 minutes. The pharmacoki-

netic samples were assumed to be taken at each clinic visit 

during regular clinic hours. An adherence rate of 100% was 

assumed for the unknown dosing history scenario.

Estimation (Step 3 and Step 4.2) was conducted under two 

conditions, ie, known dosage history, given the correct dos-

age history (MEMS cap data) and actual sampling time; and 

unknown dosage history, given incorrect (nominal) dosage 

history and reported (erroneous) sampling time. Population 

and individual pharmacokinetic parameters were estimated 

using NONMEM, and model predicted concentrations (Cpred 

and Cipred) were derived. The “observed” (ie, simulated from 

the virtual individuals as described in Step 2) concentrations 

were predicted based on individual-specific pharmacokinetic 

parameter estimates, and the Cpred/Cobs and Cipred/Cobs 

ratios were calculated in relation to the dosing history.

Due to the large number of simulation scenarios, the 

estimation of population and individual specific pharma-

cokinetic parameters, as well as the population predicted and 

individual Bayesian predicted concentrations, were obtained 

using the first-order method with the post hoc option in 

NONMEM.13

Evaluation of robustness of Cipred/Cobs: 
Cpred/Cobs for true adherence prediction
Ratios with true adherence rates  
for 2- and 7-day windows
The distribution of Cpred/Cobs and Cipred/Cobs ratios were 

evaluated across all adherence patterns. Box and Whisker 
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of the events with more than 7 doses taken (rate .100%), 

52.5% of events with 6–7 doses taken (rate 85%–100%), 

19.0% of events with 3–5 doses taken (rate 30%–85%), 4.3% 

of events with 1–2 doses taken (rate 0%–30%), and 14.5% 

with 0 doses taken (rate 0).

Simulation and estimation results
Box plots were generated for the long half-life drug under 

unknown dosing history and known dosage history scenarios 

(Figures  2 and 3). The known dosage history, where the 

estimation was based on the correct dosing history, had log 

median values of Cpred/Cobs and Cipred/Cobs ratios that 

were approximately zero at each adherence rate. This is 

shown in Figure 2A and 2B.

Under unknown dosing history scenario, the estima-

tion was based on the subjects’ incorrect dosage history. 

The median of the Cpred/Cobs and Cipred/Cobs ratios 

increased with decreasing adherence rate. This is shown in 

Figure 2C and 2D. The differences of the Cipred/Cobs ratio 

Figure 2 Box plot of the ratio distribution at each adherence rate condition for a long half-life drug. The box plots represent median (dots), 25th and 75 percentiles of the 
distribution. Notches show approximate 95% confidence limits for the median. A) Box-plot of the log Cpred:Cobs ratio under known dosage history. B) Box plot of the log 
Cipred:Cobs ratio under known dosage history. C) Box plot of the log Cpred:Cobs ratio under unknown dosage history. D) Box plot of the log Cipred:Cobs ratio under 
unknown dosage history.
Abbreviations: Cipred, individual predicted concentration; Cobs, observed concentration.
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across adherence rates appeared to be more substantial than 

that of Cpred/Cobs ratio under an unknown dosing history 

scenario.

Rate classification using modeled  
relationship between rate  
and adherence ratio
Relationship between 7-day adherence  
rate and ratio
The relationship between the median value of Cipred/Cobs 

ratio and the observed 7-day adherence rate was modeled. 

A biexponential function adequately described the relationship 

between Cipred/Cobs ratio and the weekly adherence rate. The 

observed adherence rate versus the Cipred/Cobs ratio, along 

with the Cipred from the unknown dosing history scenario, is 

shown in Figure 3. The exponential relationship between the 

Cipred/Cobs ratio and adherence rate is shown below:

Adherence e eCipred Cobs Cipred Cobs= +− × − ×699 1173 15 0 507. / . /
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Relationship between 2-day adherence rate and ratio
This same assessment was conducted for adherence rate 

categories arising for the 2-day period immediately prior to 

a clinic visit and concentration sampling. The relationship 

between this 2-day-based adherence rate and the Cipred/Cobs 

ratio was adequately described using a monoexponential 

function, as shown below:

Rate e Cipred Cobs= − ×834 2 05. /

Similar relationships were found for the Cpred/Cobs ratio 

and adherence rate.

Performance of ratio as a measure  
of adherence rate
Rate classification for 7-day adherence rate
The exponential relationship developed above was applied for 

adherence rate prediction at each Cipred/Cobs ratio obtained 

under the unknown dosing history scenario, and then clas-

sified into the 7-day adherence category. The predicted rate 

classification was based on the minimum Euclidean distance 

classification criteria.17 The assigned rates were grouped 

based on weekly adherence patterns as described in the Meth-

ods section. The results of the correct rate classifications for 

each rate group are shown in Table 4. The result of the 7-day 

adherence rate conditions showed that the correct assigned 

rate in pharmacokinetic samples measured under the high 

adherence rate condition (ie, hypercompliant) was 73.8%. 

In pharmacokinetic samples measured under extremely 

low adherence rates (0% in the last week) the percentage 

of instances correctly classified was 64.0%. The rates were 

better classified in pharmacokinetic samples measured 

under extremely low (0%) and extremely high adherence 

rate conditions (.100%) than at intermediate adherence 

rate conditions.

Using Cipred/Cobs ratios to predict the 7-day adherence rate 

pattern, the overall rate of correct adherence classification was 

42.3%. The overall rate of correct adherence classification was 

26.4% when the Cpred/Cobs ratio was used as the predictor.

Rate classification for 2-day adherence rate
The adherence condition was well classified for the event 

under extremely high (rate .  100%) and extremely low 

(rate = 0%) adherence conditions. The correct classification 

rate (Table 5) was 80.8% for adherence .100%. The correct 

classification rate was 87.6% for adherence = 0%.

Using the Cipred/Cobs ratios to predict the 2-day adherence 

rate pattern, the overall rate of correct adherence classification 

was 50.2%. The overall rate of correct adherence classification 

was 29.9% using the Cpred/Cobs ratio as the predictor.

Discussion
It has been suggested that the inconsistency of drug exposure 

caused by variable adherence to prescribed therapy is the single 
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Figure 3 Association between Cipred:Cobs ratio and weekly adherence rate. Dots 
represented the median values of Cipred:Cobs ratio at each observed adherence 
rate condition. The line represented the model predicted weekly adherence rate at 
given Cipred:Cobs ratios. The vertical line represents a Cipred:Cobs ratio = 1 at a 
100% weekly adherence rate.
Abbreviations: Cipred, individual predicted concentration; Cobs, observed 
concentration.

Table 4 Correct classified 7-day adherence rate using Cipred: 
Cobs ratio as predictor

Adherence rate 
pattern 

Events (n) Correct 
classification (%)

Group 1 8014 73.82
Group 2 45319 39.19
Group 3 15972 36.65
Group 4 2733 25.72
Group 5 1128 64.01

Notes: Group 1, very high adherence rate condition (.100%); Group 2, high 
adherence rate condition (85%–100%); Group 3, intermediate adherence rate 
condition (30%–85%); Group 4, low adherence rate condition (0%–30%); and 
Group 5, extremely low adherence rate condition (0%).
Abbreviations: Cipred, individual predicted concentration; Cobs, observed 
concentration.

Table 5 Correct classified 2-day adherence rates using Cipred: 
Cobs ratio as predictor

Adherence rate 
pattern 

Events (n) Correct 
classification (%)

Group 1 8437 80.75
Group 2 43653 44.69
Group 3 17396 41.25
Group 4 3680 87.58

Notes: Group 1, extremely high adherence rate condition (.100%); Group 2, high 
adherence rate condition (100%); Group 3, intermediate adherence rate condition 
(50%); Group 4, extremely low adherence rate condition (0%).
Abbreviations: Cipred, individual predicted concentration; Cobs, observed 
concentration.
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ways this one dose is actually taken. Therefore, the ratio 

metric and the 2-day adherence rate will have a stronger 

association than the association between the ratio and 7-day 

adherence rate.

Only 20% of the high, intermediate, and low adherence 

rates were correctly assigned. Therefore, electronic monitor-

ing, in addition to population pharmacokinetics, is necessary 

under these conditions, because these types of inconsistencies 

may still contribute adverse drug reactions, as well as treat-

ment resistance, and are not detectable using a Cipred/Cobs 

or Cpred/Cobs ratio approach. Thus, the single deviation 

observed using the population pharmacokinetic methodology 

has some serious limitations. The use of multiple observa-

tions (ie, as in the Brundage study)18 may be necessary to 

improve adherence classification or link these deviations to 

response. These results identified that use of MEMS dosing 

history monitoring in everyday clinical practice combined 

with sparse pharmacokinetic sampling could be a more 

reliable approach.

The delayed effect between pharmacokinetic and phar-

macodynamic activity is common with central nerve system 

compounds, due to their mechanism of action in that most 

central nerve system compounds target neurotransmitters in 

the brain neuron synapse. The limitation of paper is that it 

only evaluated the impact of nonadherence on pharmacoki-

netics and the performance of Cipred/Cobs as a measure 

of erratic drug exposure, and the impact of erratic drug 

exposure on pharmacodynamics was not investigated in this 

simulation.

Conclusion
This simulation study demonstrated that the combination 

of the population pharmacokinetic model in the absence of 

robust adherence information from a source such as MEMS 

caps is limited as a method to detect erratic exposure with 

specific exceptions, eg, a subject has taken virtually no drug 

(extremely low adherence condition) or more drug than 

prescribed (the extremely high adherence condition). Both 

the extremely high and extremely low adherence rate condi-

tions are reasonably well predicted by the Cipred/Cobs and 

Cpred/Cobs ratio with a single observation. If the adherence 

patterns reflect an intermediate number of dosages taken, 

the single Cpred/Cobs or Cipred/Cobs measurement does 

not adequately reflect the adherence in this range. In this 

case, MEMS information in conjunction with population 

pharmacokinetics may be necessary. Therefore, this ratio 

may be helpful in identifying those who took virtually no 

drug or took more than the prescribed drug regimen.

largest source of variance in the drug response.11 Therefore, 

adherence plays an important role in pharmacotherapy 

efficacy assessment, because the dosage adjustments may 

not be relevant if the subject is inconsistently receiving the 

prescribed medicine. The aim of this study was to identify 

erratic adherence using a modeling and simulation approach 

based on the possibility of taking a single concentration 

measure from a virtual patient and assessing whether or not 

this single measure provides an insight into how well the 

patient adhered with their medication regimen. This is the first 

study to evaluate the performance of the deviation between 

the population pharmacokinetic model predicted versus 

observed concentrations as an indicator of adherence rate for 

a target population. This was accomplished by developing a 

specific parametric relationship between the adherence rate 

calculated from MEMS data and the ratio of Cipred/Cobs and 

Cpred/Cobs as metrics reflecting these differences.

Seven-day and 2-day time windows were selected as two 

extreme conditions for adherence rate calculation. These 

windows were selected to link closely the information on 

dose taken with inconsistency of drug exposure. Our simu-

lation study suggested that the population pharmacokinetic 

modeling approach was most useful in the detection of 

extremely high and extremely low adherence rate patterns 

(Tables 4 and 5). These results are not unexpected, given 

that intermediate adherence rate patterns can arise from 

many different dosing histories, resulting in false assign-

ment based on the ratio. Consider the following example 

using the 2-day adherence rate pattern. Subject A has 

taken the dose on the first day of the 2-day time window, 

subject B has taken the dose on the second day of the 2-day 

time window, and subject C takes all doses correctly in the 

2-day time window. Subjects A and B have a 50% adher-

ence rate, but their Cipred/Cobs ratios will be different. 

This explains how the Cpred/Cobs and Cipred/Cobs ratios 

predicts adherence rates reasonably well only at the extremes 

(eg, 0% and .100% adherence).

The 2-day adherence rate patterns had a higher per-

centage of correct assignment than did 7-day adherence 

patterns (Tables 4 and 5). One explanation for this different 

percentage of correct assignment is the result of different 

time windows used for adherence rate calculation, as dis-

cussed above. Specifically, for the 2-day adherence rate 

pattern, if the adherence rate is 50% (one dose taken in the 

2-day time window), there will be two combinations of how 

this one dose is actually taken, whereas for the 7-day adher-

ence rate pattern, if the adherence rate is 14% (one dose 

taken in the 7-day time window), there are seven possible 
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