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Abstract: The real problem in pharmaceutical preparation is drugs’ poor aqueous solubility, low permeability through biological 
membranes, and short biological t1/2. Conventional drug delivery systems are not able to overcome these problems. However, 
cyclodextrins (CDs) and their derivatives can solve these challenges. This article aims to summarize and review the history, properties, 
and different applications of cyclodextrins, especially the ability of inclusion complex formation. It also refers to the effects of 
cyclodextrin on drug solubility, bioavailability, and stability. Moreover, it focuses on preparing and applying gold nanoparticles 
(AuNPs) as novel drug delivery systems. It also studies the uses and effects of cyclodextrins in this field as novel drug carriers and 
targeting devices. The system formulated from AuNPs linked with CD molecules combines the advantages of both CD and AuNPs. 
Cyclodextrins benefit in increasing aqueous drug solubility, loading capacity, stability, and size control of gold NPs. Also, AuNPs are 
applied as diagnostic and therapeutic agents because of their unique chemical properties. Plus, AuNPs possess several advantages such 
as ease of detection, targeted and selective drug delivery, greater surface area, high loading efficiency, and higher stability than 
microparticles. In the present article, we tried to present the potential pharmaceutical applications of CD-derived AuNPs in biomedical 
applications including antibacterial, anticancer, gene-drug delivery, and various targeted drug delivery applications. Also, the article 
highlighted the role of CDs in the preparation and improvement of catalytic enzymes, the formation of self-assembling molecular print 
boards, the fabrication of supramolecular functionalized electrodes, and biosensors formation. 
Keywords: AuNPs, nanotechnology, drug delivery, drug targeting, inclusion complexes, cancer management

Introduction
Cyclodextrin (CD) and cyclic oligosaccharides, which combine glucose units (six units or more), are linked to each other 
by α-1,4-glycosidic linkage forming a hollow truncated cone shape structure. It was isolated and first described by 
Villiers from a culture medium of Bacillus Amylobacter, which was grown in starch.1,2 There are three famous kinds of 
cyclodextrins named alpha-cyclodextrin (α-CD) containing six glucose molecules, beta-cyclodextrin (β-CD) of seven 
glucose molecules, and gamma-cyclodextrin (γ-CD) composed of eight glucose units (Figure 1A-C).3,4 These three major 
CDs are non-hygroscopic and crystalline materials.5 The important characteristics of the mentioned cyclodextrins are 
stated in Table 1. In addition, Figures 1D illustrate the chemical structures of different CDs. Based on their architecture, 
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toroidal or cone-shaped, there are two open-sided (one narrow side and the other is wider). The hydroxyl groups are in 
the periphery and classified into two categories, primary and secondary hydroxyl groups. The secondary OH groups are 
located on the wider edges of cyclodextrin molecules. The primary (-OH) groups are located on the narrow side of the 
CD torus. The melting points of α-, β-, and γ-CD are between 240°C and 265°C.6,7

The aqueous solubility of β-CD is lower than that of the linear dextrin, which may be attributed to the strong internal 
hydrogen binding of the cyclodextrin molecules in its crystal state.10 Chemical modifications were applied to produce 
highly water-soluble amorphous β-CD derivatives, including hydroxypropyl-β-CD, sufobutylether-β-CD, and epichlor-
ohydrin-β-CD polymer (more than 500 mg/mL) (Table 2).11,12 Especially, the water-soluble polymerized β-CDs of higher 
molecular weight offer the advantages of complexation without toxic effects and amorphous state.13,14

Herein, we report on a new review, summarizing the recent advance in constructing CD-based gold nanoparticles 
(CD-AuNPs) functional systems. The present review article discusses design methodologies, physicochemical properties, 

Figure 1 Schematic representation of α-, β-, and γ-Cyclodextrin, and the chemical derivatization of β-CD molecule.

Table 1 Distinctive Characteristic Features of α-, β-, and 
γ-CDs.

Character α-CD β-CD γ-CD

Glucose units 6 7 8

Mol. weight (Da) 972 1135 1297

Aqueous solubility (mg/mL) 145 18.5 232

Cavity diameter, nm 0.5 0.62 0.83

Height of the torus, nm 0.78 0.78 0.78

Outer periphery diameter, nm 1.46 1.54 1.75

The volume of the cavity, Ǻ3 174 262 427

pK (by potentiometry) at 25°C 12.33 12.2 12.08

Note: Data from references.8,9
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and unique advantages of different CD-based nanoparticles in detail. Also, the applications of the modified systems, 
including drug delivery, enzymatic catalysis, biomedical diagnosis, and sensing were highlighted in this article.

Ability of Cyclodextrin to Form Inclusion Complexes
Cyclodextrins have relatively hydrophobic inner cavities and a hydrophilic outer surface covered with hydroxyl 
groups.8,15 Therefore, CDs can provide a favorable environment for the inclusion of complex formation with hydro-
phobic organic bioactive compounds in different drug:CD ratios (1:1, 1:2, or 2:1).16,17

The phase solubility diagram will be useful for studying the inclusion complexation, which investigates the impact of 
CD (as a solubilizing agent) on the included drugs.18,19 The investigated drugs’ solubility behavior is classified, including 
category (A) and category (B) curves. The category (A) curves represent the soluble inclusion complexes formation, 
while the category (B)-type curves indicate the construction of poorly soluble inclusion complexes (Figure 2).18 Also, the 
A-category curves are subclassified into different subtypes, including AL (linearly, the guest solubility increases with the 
increase in CD concentration), AP in which a positive deviation isotherm was obtained, and AN (showing a negative 
deviation isotherm) subtypes.

Similarly, B types are subclassified into B1 and Bs subtypes, indicating the formation of insoluble inclusion 
complexes and partially soluble complexes, respectively.20 The most famous, frequent, and simple drug: CD ratio is 
1:1. However, experimentally, there are different other uncommon drugs: CD ratios such as 1:2, 2:1, 1:3, or even more 
complicated associations were reported.21,22 The stoichiometric ratio (n) can be determined by isothermal titration 
calorimetry (ITC), which gives other parameters in addition to the complex ratio named the enthalpy, the entropy, and 
the binding constant, indicating the complexing affinity of the selected drug to the kind of cyclodextrin cavity. For 
example, adamantane molecules showed a (1:1) stoichiometric ratio with β-CD due to the perfect ball-like structure, size, 

Table 2 Characteristics of Different β-CD Derivatives

Character β-CD HP-β-CD SBE-β-CD Methyl-β-CD pβ-CD

Molecular weight (kDa) 1.135 1.400 2.163 1.312 96–112

Aqueous solubility (mg/mL) 18.5 ˃600 ˃500 ˃500 ˃500

Abbreviations: β-CD, β-Cyclodextrin; HP-β-CD, hydroxypropyl-beta-cyclodextrin, SBE-β-CD, sulfobutylether- 
beta-cyclodextrin; methyl-β-CD, methylated-beta-cyclodextrin; pβ-CD, polymerized-beta-cyclodextrin.

Figure 2 Phase solubility diagram of β-CD. According to Higuchi and Connors, the types of phase-solubility diagrams of cyclodextrin presenting the solubility behavior of the 
included drugs upon increasing the CD concentration are two types (A and B) curves. Type (A) phase diagram is classified into three subtypes; AL: linear diagram; AP: 
positive deviation from linearity; AN: negative deviation from linearity. Also, type (B) is classified into two subtypes; B S: indicating the complex of limited solubility; and B I: 
showing the insoluble complex.
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and geometry of adamantane, which is suitable to form a perfect inclusion complex with β-CD. While as, in the case of 
cholesterol, as an example of larger molecules, the ITC results, which were reported previously indicated that the n value 
was (1:2) cholesterol:β-CD. An equilibrium is established between the associated and the dissociated species upon 
dissolving or dissociating these complexes.23 The obtained equilibrium of each complex is expressed by the stability 
constant (Ka).20,24 For the 1:1 type of inclusion complexes, the equilibrium association or binding constant can be 
determined using the following equation.25 

Ka = slope/S0 (1-slope) (1) 

Where S0 is the intrinsic solubility of the drug. Also, the slope in the equation is the slope of the curve linear portion 
of solubility phase diagrams, which will be constructed by plotting the drug solubility against cyclodextrin concentration.

The formation of soluble inclusion complexes (solubilization properties) comes from the replacement of water 
molecules that exist in the hydrophobic cavities of cyclodextrin molecules by the hydrophobic guest molecules via 
hydrophobic–hydrophobic interaction.26,27 Interestingly, the inclusion ability of CD molecules has been utilized as a base 
for their different pharmaceutical applications, including the solubility enhancement of hydrophobic drugs,28,29 increas-
ing their dissolution rate and bioavailability,30,31 improving the guest stability and biological half-lives,32,33 and even for 
several food industry applications.34

Moreover, the inclusion complexation ability of CDs was utilized as a base for the construction of more sophisticated 
supramolecular systems, including polymers,35,36 hydrogels,37,38 and nanoparticles.39,40 Examples of previously reported 
inclusion complexes with CDs and their applications are displayed in Table 3.

It is worth mentioning that CD complexation usually involves a host: guest of 1:1 ratio; concurrently higher-order 
complicated complexations (2:1, 1:2, 2:2, etc) could occur. The complexation process takes place as the CD cavity is 
slightly non-polar in aqueous solutions; therefore, it could be entrapped via the non-covalent interaction by water 
molecules of high enthalpy that are ready to be replaced with other less polar “guest molecules” forming CD 

Table 3 Inclusion Complexes with Cyclodextrin and Their Applications

Year Kind of CD Drug Formulation Application Ref.

2019 β-CD Basil and Pimenta dioica 
essential oils

Antimicrobial food 
preservation sachets

Improves thermal stability, decreases volatility, and 
increases the release duration of the essential oils

[27]

2016 β-CD Erlotinib Nanosponge Enhance solubility, dissolution rate, in vitro 
cytotoxicity, and oral bioavailability

[28]

2007 β-CD and HP-β-CD 5-fluorouracil Thermosensitive 
mucoadhesive vaginal gel

Increases the drug aqueous solubility and release 
rate

[29]

2009 HP-β-CD Cisplatin Solid inclusion complex [41]

2016 β-CD Curcumin Solid dispersion Enhanced drug delivery and improved its 
therapeutic efficacy

[42]

2018 β-CD, SBE-β-CD, and HP-β-CD Amlodipine Limonin Ophthalmic preparation Improved ocular permeation and effectiveness of 
drug

[43]

2018 β-CD and γ-CD Limonin 
Albendazole

Orange juice Significant reduction of bitter taste and keep the 
anti-inflammatory effects of Limonin

[44]

2007 HP-β-CD Albendazole and 
Ricobendazole

Solid complex Increase the drug solubility and efficacy with no 
signs of toxicity

[45]

2020 α-CD, β-CD, and γ-CD; and their 
derivatives (HP-β-CD, and 2,6-di- 

O-methyl)-β-CD (DM-β-CD)

2R,3R-Dihydromyricetin 
flavonoid

1:1 stoichiometric inclusion 
complex

Enhanced the radical scavenging capacity of the 
drug and maintained its lipid-lowering effect (anti- 
hyperlipidemia)

[46]

2019 β-CD Tebipenem pivoxil Solid inclusion complex Improved drug chemical stability and antibacterial 
activity

[19]

2011 PM-CD, α-CD, β-CD and γ-CD, and HP-α- 
CD, HP-β-CD and HP-γ-CD

Lonidamine Improved the solubility, bioavailability, and 
anticancer activity

[47]
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complexes.48 Noteworthy, several analytical techniques are applicable for characterizing the modified drug/CD com-
plexes in the solid state, including thermo-analytical techniques (Differential scanning calorimetry (DSC), 
Thermogravimetric analysis (TGA), Hot-stage microscopy (HSM)), X-ray diffraction (Single crystal X-ray diffraction 
(SCXRD), powder X-ray diffraction (PXRD)), Spectroscopic techniques (Fourier-transform infra-red (FT-IR) spectro-
scopy, Attenuated total reflectance (ATR)-FTIR spectroscopy, and Raman spectroscopy), and Scanning electron micro-
scopy (SEM).49

Factors Affecting Inclusion Complex Formation
Type and Cavity Size of Cyclodextrin
It was reported that the kind of CD molecules (native CDs or derivatives) affected both the formation and the 
effectiveness of guest/CD complexes. In the case of Ibuproxam, the increase in the drug dissolution rate has been 
obtained upon using either β- or γ-CD molecules, but α-CD molecules were less suitable for stable inclusion complexes. 
The dissolution performance of the formed inclusion complexes appeared to be related to both the steric factors of the 
host molecule and the preparation method of the prepared solid systems. It was reported that the cavity size of α-CD was 
less suitable for accommodating Ibuproxam as a guest molecule, whereas a true inclusion complex of such a drug in 
either β-CD or γ-CD cavities. The solubilizing efficiency of the drug enclosed within all investigated CDs was 8, 16, and 
13 regarding α-CD, β-CD, and γ-CD, respectively. Also, the stability constant of the formed complex was 65, 17,500, and 
150, respectively.50

Also, better dissolution performance has been observed from the inclusion complexation of Ketoprofen with methyl- 
beta-cyclodextrin (M-βCDs) compared to β-CDs.51 Moreover, the polymerization of cyclodextrin improves the inclusion 
ability and accompanying characteristics of parent CDs since they were converted to the amorphous form.21 Additionally, 
the formation of CD nano-sponges (CD-NS) was also accompanied by very high inclusion ability and encapsulation 
capacity.52,53 Recently, the solubility and solution rate of docetaxel was affected by the CD type utilized in the inclusion 
complexation.54

Drug Ionization State/Medium pH
The structure of both cyclodextrins (neutral as native CD or charged one as SBE-CD) and the guest molecules (positively 
or negatively charged) play an important role in the degree of inclusion complexation. Generally, the presence of charge 
on the cyclodextrin structure provides an additional site of interaction compared to neutral cyclodextrins. This may be 
attributed to the fact that the strength of inclusion complexation increased with the existence of opposite charge between 
the guest and the host due to the increase in electrostatic or ionic interaction.55 In comparison with HP-β-CD, SBE-B-CD 
of negative charges increase the solubility and inclusion ability of positively charged drugs such as DY-9760e, a novel 
cytoprotective agent.56 On the other hand, the ionization of the drug is an important issue in the complexation ability of 
native CDs (neutral). It was reported that the unionizable drugs are easier to form inclusion complexation with CDs than 
the ionizable ones. The value of K1:1 of non-ionized sulindac was 340 M−1 at pH 2, and it was 139 M−1 at pH 6.57

The complexation ability of CD molecules increases when the guest molecules carry opposite charges.56 For example, 
the cationic (2- hydroxyl-3-[tri-methyl-ammonia] propyl)-β-CD acted as a very suitable solubilizer for many acidic 
drugs.58 Also, the complexation of β-CD with a unionized form of sulindac was easier than in the case of an ionized 
one.57 Regarding Piroxicam, the binding or stability constant values for the drug/CD complexes were affected by the 
change of pH values since it decreased by the increase in pH since it was 87 M−1 and 29 M−1 for pH 4.5 and 6, 
respectively. As a result, more effective complexation was obtained at an acidic pH.59 Similarly, pH affects the 
thermodynamic stability of thymol and carvacrol inclusion complexes with β-CD in an aqueous medium.60

Preparation Methods
Different techniques and methods were utilized for the preparation of inclusion complexes, including kneading 
(slurry),48,61,62 solid dispersion,47,63 grinding,64 supercritical CO2,65 microwave irradiation,66,67 sealed heating,68 freeze- 
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drying,69,70 spray drying,71,72 dry mixing,19 damp (wet) mixing, extrusion, solvent evaporation, or co-precipitation.48 

Figure 3 and Table 4 summarize the common methods of CD complexation.
Noteworthy, the degree of complexation depends on the preparation method.23,113 Both spray-drying and freeze- 

drying techniques were reported as the most effective drug/CD inclusion complexation methods. The enhanced 

Figure 3 Schematic representation of the common CD complexation methods.

Table 4 Preparation Methods of CD Complexes

Year Kind of CD Drug Method Ref.

2007 β-CD Reactive azo dyes Dry Mixing 
(Dry Milling) 
(Ball Milling)

[73]

2016 β-CD Ibuprofen [74]

2019 β-CD Tebipenem pivoxil [19]

2001 β-CD Ibuprofen Kneading 
Damp Mixing(Wet Granulation)

[75]

2004 β-CD Celecoxib (nonsteroidal anti-inflammatory drug) [76]

2007 β-CD Etoricoxib [77]

2010 β-CD Domperidone [78]

2012 β-CD Citronella oil & Citronellal & Citronellol [79]

2004 β-CD & HP-β-CD Quercetin Freeze Drying(Lyophilization) [80]

2005 β-CD Scutellarin 
(in the presence of HP-Methylcellulose & Triethanolamine)

[81]

2018 HP-β-CD Curcumin [82]

2020 α-CD & β-CD & γ-CD; and their derivatives ((HP- 
β-CD & 2,6-di-O-methyl)-β-CD (DM-β-CD))

2R,3R-Dihydromyricetin (flavonoid) [46]

2016 β-CD Erlotinib [28]

2007 β-CD & HP-β-CD 5-Fluorouracil [29]

2009 HP-β-CD Cisplatin [41]

2010 β-CD & HP-β-CD Flutamide (anticancer drug for prostatic carcinoma) [83]

2011 HP-β-CD Zerumbone [84]

2012 β-CD Oridonin [70]

(Continued)
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Table 4 (Continued). 

Year Kind of CD Drug Method Ref.

2010 Methyl-β-CD & HP-β-CD & HP-γ-CD Exemestane (EXE) (irreversible aromatase inactivator) Kneading & co-Lyophilization [61]

2018 β-CD Black pepper oleoresin [85]

2019 β-CD Basil & Pimenta dioica essential oils [27]

2000 HP-β-CD Liposomes containing drugs alone or together: (Lecithin 
liposomes & entrapping Metronidazole & Verapamil)

Spray drying [86]

2009 γ-CD Beclomethasone Dipropionate (corticosteroid) [87]

2013 β-CD Quercetin [88]

2017 HP-β-CD & 2-O-M-β-CD Voriconazole [89]

2017 Maltodextrin & γ-CD Pomegranate juice [90]

2018 β-CD Chloramphenicol Manual grinding [91]

2002 β-CD-EPI & β-CD-EPS Naproxen [92]

2013 β-CD Rifaldazine [93]

2013 HP-β-CD Rifampicin [94]

2017 β-CD & HP-β-CD & RAMEB & SBE-β-CD Praziquantel Grinding by high-energy 
vibrational mills

[95]

2016 βCD & HPβCD Indomethacin nicotinamide cocrystals [96]

2014 SBE-β-CD + citric acid Econazole nitrate [97]

2018 β-CD Opipramol base Grinding using planetary mills [98]

2018 β-CD & HP-β-CD Fluconazole Extrusion [99]

2019 HP-β-CD Carbamazepine printlets [100]

2022 HP-β-CD Naringenin [101]

2008 β-CD Piroxicam Supercritical CO2 [102]

2013 Methyl-β-CD Ketoprofen [103]

2007 β-CD Ibuprofen Supercritical CO2 techniques in 
comparison with other techniques

[104]

2007 β-CD Benzocaine [105]

2007 β-CD Benzocaine & Bupivacaine & Mepivacaine (local 
anesthetic agents)

[106]

2008 β-CD Econazole [107]

2009 β-CD Itraconazole & Econazole & Fluconazole (antifungal 
drugs)

[68]

2015 Methyl-β-CD Olanzapine [108]

2019 β-CD Metformin hydrochloride Microwave irradiation [66]

2022 β-CD Edaravone [67]

2011 PM-CD & α-CD & β-CD & γ-CD & HP-α-CD & 
HP-β-CD & HP-γ-CD

Lonidamine Solid dispersion [47]

2016 α-CD & β-CD & γ-CD & HP-β-CD Etodolac (a preferential COX-2 inhibitor) [109]

2019 β-CD Catechin [63]

(Continued)
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dissolution rate of spray-dried products might be attributed to the decreased particle size, the high-energetic amorphous 
state, and the inclusion complex formation.114 Also, as a powder production method commonly used in pharmaceutical 
fields, spray-drying possesses the advantages of being rapid, low-cost, and easily scalable. In addition, the spray-dried 
microcapsules were of spherical and uniform particle size. The solubility of the guest molecules upon using the spray- 
dried technique may be attributed to the encapsulation of the guest into the cylindrical cavity of cyclodextrin, and thus 
the thermal properties of the host and guest molecules were changed.115

Gold Nanoparticles (AuNPs)
AuNPs are the most stable, fascinating, and attractive metal nanoparticles for nanotechnological research because of their 
stability, uniformity, biocompatibility, etc,17,116,117 and also for their optical, electronic, magnetic, and supramolecular 
properties.118,119 Additionally, AuNPs can conjugate many biological substances and form active complexes to provide 
targeted drug delivery.120 Also, due to their very small size (nanoscales), AuNPs have a larger surface area. 
Consequently, the large surface area allowed better contact of AuNPs containing the bioactive molecules with the 
biological membranes and improved their bioavailability.17,20,121,122 Regarding their application in medicine, AuNPs are 
utilized for the early detection and diagnosis of different diseases, as well as in their treatment.123,124

Stabilized noble metal NPs have been produced using one of the two main techniques, named bottom-up and top- 
down techniques (Figure 4). In the case of “top-down method” AuNPs can be produced from their constituent metals by 
the aid of microscopic machine and converted into nanoscale dimensions. Whereas in the bottom-up method, AuNPs can 
be produced from the gold atom solution using different methods as we will discuss below. There are three main methods 

Table 4 (Continued). 

Year Kind of CD Drug Method Ref.

2018 HP-γ-CD Ibuprofen Supercritical CO2-assisted Spray 
drying

[110]

2007 β-CD Albendazole & Ricobendazole Co-evaporation(solvent 
evaporation)

[111]

2018 β-CD & SBE-β-CD & HP-β-CD Amlodipine Limonin [43]

2005 β-CD & HP-β-CD Ketoprofen Co-evaporation & Sealed heating [112]

Figure 4 Schematic representation of the common methods for AuNPs synthesis.
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for AuNPs synthesis including chemical, physical, and biological methods.125 In the chemical methods, the synthesis 
procedure involves the decomposition or precipitation of gold via the reduction of tetrachloro-auric acid (HAuCl4) as 
a gold precursor with the aid of a suitable reducing agent such as phosphorus,126 citric acid,127 sodium borohydride 
(NaBH4), or trisodium citrate.

The chemical procedure is the most famous and widely utilized technique because of its reagents’ availability. This 
kind of the selected reducing agent affects the particle size of the produced colloids, which ranges from 1 to 100 nm.128 

For example, sodium citrate was utilized to produce AuNPs with a size range of 12–64 nm, depending upon the 
citrate/HAuCl4 ratio.127,129 Also, the smaller particles (3–6 nm) are often prepared by using NaBH4 or a mixture of tannic 
acid and trisodium citrate.128,130 The chemical method includes four main categories: Turkevich, Brust, Seeded growth, 
and Miscellaneous methods. The first two categories produce spherical AuNPs, while the other two categories generate 
various shaped (anisotropic) AuNPs (ie, rods, cubes, tubes, etc). Specifically, the Turkevich method includes the direct 
reduction of Au3+ ions into Au0 atoms using a reducing agent followed by stabilization using a stabilizing (capping) 
agent to generate a size range of 10–20 nm. Brust method includes the incorporation of the Au3+ ions into an organic 
solvent using a phase transfer agent (ie, Tetraoctylammonium Bromide (TOAB)) before the strong reduction using 
NaBH4 (NaBH4) to generate nanospheres of 1.5–5.2 nm. Seeded growth (anisotropic growth of AuNPs) is the most 
widely used technique that includes the strong reduction of the Au salt (ie, by using NaBH4) to form seed particles, which 
are then added to other metal salt solution (seed solution) in presence of a weak reducing agent (ie, ascorbic acid) + 
structure directing agent to generate various shaped AuNPs. Miscellaneous methods include ligands digestion using 
thiols, amines, silanes, phosphines, etc, or by ultrasonic waves, microwaves, laser ablation, solvothermal method, 
electrochemical, and photochemical reduction to generate mono-disperse AuNPs from poly-disperse AuNPs.125,131

Alternatively, different physical methods are utilized for the synthesis of anisotropic AuNPs.132 One of these methods 
is the formation of gas-phase gold via thermal evaporation of gold under high vacuum. Then, the gas was allowed to be 
deposited on the surface of a single crystal substrate.133 Another physical technique was utilized to produce gas-phase Au 
clusters via magnetron sputtering of a high-purity gold target with argon ions. To obtain uniformly dispersed AuNPs, the 
sputtered gold atoms were allowed to be deposited on the surface of a moving powder support material such as 
Aluminium Oxide (γ-Al2O3). Separation of the loaded gold was achieved by using 5 mL of aqua regia (3:1 mixture of 
hydrochloric acid and nitric acid) that dissolved Au from the samples. Then, γ-Al2O3 was separated and washed 3 times 
with deionized water.133,134 Also, an ordered arrangement of AuNPs on an inclusion compound of α-CD–dodecanethiol 
produced by magnetron sputtering. Here, a 2-D hexagonal lattice was formed from -SH groups of the guest molecule 
dodecanethiol linked with α-CD interact with and stabilize AuNPs, which consequently arranged them in an ordered 
way.118 Additionally, femtosecond laser ablation, an environmentally friendly alternative technique for producing 
monodispersed AuNPs, has also been proven since it can be applied at ambient conditions without any possible chemical 
contamination.135 The advantages of physical techniques over other preparation methods include that the process is 
friendly to the environment since the excess gold can be recovered from the chamber. Moreover, no reducing agents have 
been utilized for the production. Hence, there is no solvent or precursor contamination.

Since physicochemical methods require and/or produce toxic byproducts of AuNPs, which are not suitable for 
biological applications, the recent trend is to modify AuNPs by using eco-friendly biological reagents for several 
bioapplications.136,137 Green synthesis (Biosynthesis) of NPs is taking place using three main bio-strategies, including 
the use of biomolecules, microorganisms (bacteria and yeast), algae, fungi, and plant constituents138 that are known to 
interact with the inorganic metals and could be used in bioleaching of minerals.131 Table 5 displays certain studies on the 
common methods followed for the preparation of AuNPs.

Noteworthy, the properties (chemical, physical, or biological) of AuNPs are completely different compared with the 
corresponding gold ions. For example, we know that the color of bulk gold ions (AuCl4) is yellow. This color was 
changed from yellow to red upon the addition of a reducing agent such as sodium citrate with reflux, indicating the 
conversion of gold ions to NPs. Also, the color will be changed to dark grey-blue upon the addition of an excess reducing 
agent indicating the formation of aggregate or suspension of different sizes, dimensions, and plasmon resonance 
characteristics.162 Besides, other properties can be affected by size and shape, including electromagnetic, optical, and 
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Table 5 Different Preparation Methods Were Utilized for AuNPs Synthesis

Year Method Reagents Comment Ref.

A. Physico-chemical techniques

1. Chemical Methods

2007 Citrate Reduction 
(Turkevich methods)

● HAuCl4 + Trisodium citrate (both the reducing agent 
and the stabilizer).

Au3+ was reduced to Au+ by the oxidation of trisodium citrate to 
dicarboxylic acetone, then Au0 atoms are formed when Au+ undergoes 
disproportionation.

[139]

2011 Monodisperse AuNPs (5–10 nm) were obtained. [140]

2010 ● Sodium citrate reducing agent + Solvent isotopic 
replacement (deuterium oxide for higher water 
replacement).

Smaller sizes of AuNPs (5.3 ± 1.1 nm) were obtained in comparison with 
the diameter obtained in pure H2O (9.0 ± 1.2 nm).

[141]

2012 ● Sodium citrate reducing agent + Altering the concen-
tration of HAuCl4

Au NPs size range of 19–47 nm. Higher chloride ions decreased the 
surface charge and cause aggregates.

[130]

2012 Bitartrate Reduction 
(Turkevich methods)

● Potassium bitartrate-reducing agent Dark grey colloidal solution (not stable forming crystals), and dark red 
color by heating.

[142]

● Potassium bitartrate reducing agent + a dispersion 
factor.

Colloid gold with wine-red color (Polyethylene glycol dispersion factor), 
and dark purple-red color by heating (PVP dispersion factor).

2003 Borohydride 
Reduction(Brust 

methods)

● Tetra-octyl-ammonium bromide (TOABr) (phase trans-
fer reagent) + NaBH4

Monolayer protected AuNPs [143]

2011 Borohydride 
Reduction 

(Miscellaneous 
methods)

● L-ascorbic acid (H2Asc) + NaBH4 (NaBH4) (in pre-
sence of an alkanethiol).

● Polyvinyl alcohol (PVA) stabilizer.

The smallest particles were 0.8–4 nm for the HAuCl4-H2Asc system and 
0.6–3 nm for the HAuCl4-NaBH4 system. 
Using polyvinyl alcohol (PVA) stabilizer produces stable colloids.

[144]

2007 (Seeded growth 
method)

● Seed solution: silver aqueous colloid solution (3–4 
nm) stabilized by NaBH4 and sodium citrate (redu-
cing agent).

● Cetyltrimethylammonium bromide (CTAB), HAuCl4, 
and ascorbic acid + Seed solution.

The nano-shape was controlled from rods to hollow spherical [145]

2012 One-pot synthesis 
(Seeded growth 

method)

● CTAB (capping or structure directing agent) + ascor-
bic acid (reducing agent).

● AgNO3 (nucleation and growth triggering agent).

Anisotropic Au nanostars with multiple sharp spiky protrusions (The 
semimajor/semiminor axes of the two spheroids measured by SEM were 
41/32 and 61/13 nm).

[146]

2011 One-pot synthesis 
(Seeded growth 

method)

● (AgNO3 and CTAB) + (HAuCl4, and ascorbic acid) TEM measurements showed irregularly shaped small particles (30–50 nm) 
with protruded surfaces, after an initial stage of the reaction. 
After 5 min, particles become bigger in size (70–90 nm) with higher 
protrusions.

[147]

2002 Digestive ripening 
(Miscellaneous 

method)

● Dodecyldimethylammonium bromide (DDAB) + toluene 
(Micelle solution).

● AuCl3 + Micelle solution (surface-active ligand).
● Aqueous NaBH4 (reducing agent) + AuCl3/Micelle 

solution.

● Dark orange nanogold colloid turned red within 1 min.
● Polyhedral particle structure with reduced size and polydispersity (50 nm).

[148]

2. Physical methods

2005 One-step magnetron 
sputtering 

(By direct current of 
gold target)

● Dried high-surface-area γ-Al2O3 (oxidation catalyst).
● Aqua regia for γ-Al2O3 separation (3:1 mixture of 

hydrochloric acid and nitric acid)
● Deionized water (acids washing)

● The most active size range (2–3 nm) was produced as measured by 
TEM.

[134]

2007 Magnetron sputtering 
(By inclusion 
complexing)

● -α-cyclodextrin-dodecanethiol inclusion compound 
(stabilizing crystal plane).

● 2D hexagonal arrangement of particles (2–3 nm) [118]

2003 Femtosecond laser 
ablation

● Au metal plate + an aqueous solution of α-CD, β-CD, 
or γ-CD.

● Stable AuNPs under the aerobic conditions without protective agents.
● A smaller size of ~2-2.4 nm with a narrow distribution of <1–1.5 nm in 

correlation with the type and increase in the CD concentration.

[135]

2019 One-step 
femtosecond-reactive 
laser ablation in liquid

● Directing pulses of a femtosecond laser beam on 
a silicon wafer immerged in an aqueous solution of 
KAuCl4

● Porous silica (stabilizing agent).

● Si reduced the particles size below 3 nm (more active size). [149]

(Continued)

https://doi.org/10.2147/IJN.S405964                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2023:18 3256

Abdellatif et al                                                                                                                                                       Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


catalytic properties.163 Accordingly, the scientists were motivated to do their best to create a novel synthesis route that 
allows better size and shape control.

The surface plasmon resonance (SPR), the electron oscillation caused by electromagnetic radiation of the gold metal 
influences the photochemical characteristics of AuNPs, including the light scattering/absorption, photochemical conversion, 
and the enhancements of the electric field. The SPR depends basically on the AuNPs’ geometries. The spherical NPs have 
one SPR value (520 nm). Also, it was reported that upon changing the diameter of NPs from 10 to 100 nm, it was found 
that the SPR value was shifted by 50 nm.164 Also, SPR values were influenced markedly by changing the shape of the 
synthesized NPs, since the gold nanorods have two SPR values, depending on the electron oscillation along with two 
different directions. It was 520 nm in the transverse SPR since the oscillation occurs along the short axis. While the value 
ranged from (600–1100) nm, in longitudinal SPR (ie the oscillation of electrons takes place along the long axis).165

Impact of β-CD on AuNPs Properties and Applications
Several AuNPs, capped with thiolated CDs, were reported by different groups.166,167 Most of these reports discussed the 
construction and characterization of CD-AuNPs. However, the safety and efficacy of NPs have limited entrapment 

Table 5 (Continued). 

Year Method Reagents Comment Ref.

2008 Thermal evaporation 
technique

● A substrate of multiwalled carbon nanotubes modified 
with Au nanoparticles by thermal evaporation.

● The size of the resulting hybrid structures on the carbon nanotubes 
influenced by the deposited Au film thickness.

● The size ranged from 4 nm (spherical) to 150 nm (long wire-like).
● The extent of Au depositions was increased by increasing the 

temperature

[150]

2013 ● Glass substrates
● electron-beam
● Evaporation at substrate temperature of 250°C and 

deposition rate of 0.1–0.2 nm/s.

● Polycrystalline AuNPs had a size range of 14 and 19 nm
● Increasing of mass thickness increased the particle size.

[151]

2012 Microwave Heating 
method

● β-CD, HAuCl4, NaOH
● irradiation with 600W for 30 sec.

● The particle size of β-CD-AuNPs 20.6 nm and zeta potential −31mV. [152]

2021 ● β-CD, HAuCl4, NaOH
● irradiation with 800W for 1 min.

● β-CD-AuNPs with particle size of 26.6 nm and zeta potential −22.7mV [153]

B. Biological Methods (Green Synthesis)

2009 From biomolecules ● Natural Honey
● HAuCl4 solution.
● At room temperature.

● Spherical AuNPs of 15 nm size with high crystallinity. [154]

2018 From microorganisms 
(Bacteria)

● Extract of the marine bacterium Lysinibacillus odyssey
● Different temperature, pH, and HAuCl4 

concentration.

● Spherical AuNPs were obtained with a size range of 1–10 nm (average 
particle size = 5.6 ± 0.7 nm)

[155]

2016 From microorganisms 
(Yeast)

● Magnusiomyces ingens LH-F1
● HAuCl4 solution.

● AuNPs mixture of different shapes (spherical, plates, irregular) were 
obtained.

● The average size reported 80.1 ± 9.8 nm by TEM and SEM.
● DLS showed that the average size was 137.8 ± 4.6 nm.

[156]

2018 From Fungi ● −29 thermophilic filamentous fungi (reducing agents).
● Comparing the extracellular extracts, the autolysates, 

or the intracellular fractions.

● Variable sized AuNPs (6–40 nm) were obtained depending on the used 
fungal strain and experimental conditions.

[157]

2016 From algae ● Aqueous extracts of two marine brown algae 
Turbinaria conoides and Sargassum tenerrimum 
(reducing and capping agent).

● Spherical AuNPs having an average size range of 27–35 nm. [158]

2018 ● The marine alga Egregia sp. acted as reducing agent 
and as the stabilizing capping shell

● Spherical AuNPs having an average size range of 8–20 nm. [159]

2015 From higher plants ● Stevia rebaudiana (SR) leaves extract ● Spherical AuNPs size range of from 5 to 20 nm. [160]

2019 ● Olea europaea fruit extract and Acacia nilotica husk 
extract

● The average size is 44.96 nm. [161]
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efficiency (with classical water emulsion polymerization procedures) which, consequently, requires the excessive 
administration of polymeric material.168

Herein, our review article discusses the incorporation of β-CD in AuNPs and highlights its applications in different 
pharmaceutical and biomedical fields. Generally, several applications of CDs (as illustrated in Figure 5) have been found 
attractive in the formulation of AuNPs, including the spontaneous formation, stabilization, and size control, the increase 
in loading capacity and bioavailability of the preparation, the improvement of catalytic enzymes, and the construction of 
functionalized electrodes, etc.15,169

Stabilization and Size Controlling Role of CDs
It was reported that CD molecules have an important role in the control of nanoparticle size. For example, the size of CD- 
derived poly(isobutyl cyanoacrylate) nanospheres depends on CD type since the obtained NPs were 87 nm and 103 nm in the 
cases of HP-β-CD or HP-γ-CD, respectively. Furthermore, the concentration of the utilized CD can affect the size of the 
modified NPs. Upon increasing the concentration of HP-β-CD from 0 to 12.5 mg/mL in the polymerization medium, the size 
of the modified NPs decreased from 300 to 50 nm. Also, it was noted that the values of zeta potential (Z-potential) of the 
modified particles decreased from -40 mV to 0 mV.170 Noteworthy, the reduction of the value of the Z-potential is detrimental 
for the suspension since at low values of Z-potential the suspension becomes unstable, and the flocculation occurs.

Regarding the stabilization of the modified NPs, it was reported that CD molecules act as a steric stabilizer during the 
polymerization process of poly(isobutyl cyanoacrylate) in an aqueous medium.169

Cyclodextrin molecules bind directly to the surface of AuNPs via SH groups, and the AuNPs support the monolayer 
assembly of CDs.171 The modified AuNPs can be affected by the type and concentration of the employed CD. The 

Figure 5 Schematic representation of CD-AuNPs applications.
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smallest particles were obtained using gamma-CD (γ-SH-CD), followed by both β-SH-CD and α-SH-CD. Also, the 
increase in the CD/AuCl4 ratio was accompanied by a decrease in NPs particle size. CD-modified AuNPs were 
constructed directly by adding either Per-6-thio-β-CD,166 or Mono-6-lipoyl-amido-2,3,6-O-per methyl-β-CD172 to 
AuNPs solutions. The role of CDs in these modified systems was to control the aggregation of particles via the inclusion 
complexes formation.173 Similarly, the polymerized CD was utilized to conjugate AuNPs and reported by another 
research group.174,175 Besides, native cyclodextrins have been used and described in the preparation and characterization 
of AuNPs to investigate their impact on the size distribution of AuNPs. It was noted that the presence of CDs 
significantly reduced the size of AuNPs. The size of AUNPs was reduced from 12–15 to 4–6 nm by increasing the 
CD concentration. In addition, the kind of CD molecule affected the size of NPs since it was observed that the size value 
was 5.4 nm, 4.8, and 4.3 upon using β-CD, α-CD, and γ-CD, respectively.120 Some common characteristic effects on the 
modified AuNPs by their coupling CDs are listed in Table 6.

Enhancing the Loading Capacity and Bioavailability
Cyclodextrins can include and solubilize hydrophobic molecules. The conjugation of AuNPs with CD molecules helps 
increase the hydrophobic cavities available for loading the bioactive agents. Therefore, the increase in CD number 
conjugating AuNPs increased the loading capacity.170,178 Adeli and his coworkers reported the surface conjugation of 
gold NPs carriers with cyclodextrins/PEG poly-rotaxane, as a hybrid nano-system for improving solubility, bioavail-
ability, and decreasing non-specific uptake of anticancer drugs (cisplatin and doxorubicin).176 The modified CD nano- 
system allowed the controlled and targeted release of anticancer drugs, the enhanced permeability and the retention effect 
of both drugs, which were conjugated to AuNPs-hybrid nano-systems, which were endocytosed by cancer cells and, 
consequently, allowing the internally controlled drug release.176

In addition, the attachment of polyrotaxanes on the surface of AuNPs increased the internalization capacity of the 
modified system and anticancer drugs into the cells.176,179,180 The modified new system composed of AuNPs core and 
polyrotaxane shell has dual advantages regarding the delivery of anticancer drugs. The nano-system can cross the cell 
membranes rapidly and decrease the anticenter’s adverse effects. Also, the system comprising AuNPs can kill cancer 
cells via their photothermal properties.

Similarly, the inclusion ability of CD-coated AuNPs was utilized to construct a cytotoxic nano-drug system.178 The idea 
was achieved via the inclusion complexation between β-CD and adamantane, end-capping oxo-platin (a prodrug of cisplatin). 
The results showed that the modified system still has anticancer efficiency with higher stability compared with free drugs.

Sierpe and his coworkers reported a ternary nano-system formulated by mixing AuNPs solution with the solution of 
a β-CD-loaded psychoactive drug (phenylethylamine). Full characterization of the constructed nanosystem was carried 

Table 6 Effect of CD on AuNPs Characteristics

Year Kind of CD Methods Size characteristic Ref.

2000 Perthiolated CDs (α-, β-, or γ-) ● Reduction with NaBH4 in 
DMSO containing Perthiolated 
CDs

● Water-soluble, monolayer-coated gold colloids (or clusters) of 
spherical AuNPs (2–7 nm) in diameter.

[173]

2003 Aqueous solution of α-CD, β-CD, or γ-CD. ● Femtosecond Laser Ablation ● Particles size range of ~2-2.4 nm with narrow distribution of <1– 
1.5 nm controlled by the type and concentration of CD.

[135]

2003 α-CD, β-CD, and γ-CD ● Reduction with sodium citrate 
and NaBH4

● Decrease in size range was achieved by higher CD concentration 
as well as by NaBH4 reduction.

[120]

2011 β-CD/Pluronic ● Citrate reduction ● CD decreases the hydrodynamic size distribution of the nanosys-
tem, which increases the loading capacity of Doxorubicin.

[176]

2021 ● Polymeric cationic CD (PolyCD) grafted on gra-
phene layers (reducing and capping agents)

● Bisadamantane
● HAuCl4

● Direct reduction on the gra-
phene surface.

● PolyCD@BisAda@GCD/Au nano-assembly was obtained with 
a size range of 134 ± 53 nm.

● PolyCD@BisAda induced the formation of AuNPs that were not 
formed using graphene alone.

[175]

2022 ● α-CD
● β-CD

● Chemical reduction with o-hydro-
xybenzoic acid.

● Stabilization with α-CD and β-CD reduced the size of AuNPs as 
detected by DLS.

[177]
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out, and the results showed that the modified system would allow the release of the loaded drug after photothermal laser 
irradiation.181

Park and his coworkers reported a new nano-assembly that was constructed from the coating of AuNPs with CDs 
(AuNP/CD). The modified system was utilized to load or encapsulate an anticancer drug called β-Lapachone.182 Besides, 
the incorporation of CDs in the gold nano-system was utilized as host cavities for the inclusion of targeting moieties 
called anti-epidermal growth factor (Anti-EGFR) receptor antibodies. There are two kinds of cancer cell lines, MCF-7 
and A549. The results showed that the intercellular uptake and the extent of cellular inhibition of AuNPs-loaded drug 
were higher in the case of the system containing the targeting ligand than that does not contain the targeting ligand.182

Gimenez and his co-workers report the modification of AuNPs by SH-β-CD. The modified nano-system was utilized 
to incorporate violacein as an anticancer agent via inclusion complexation with CD cavities to improve its solubility and 
bioavailability. The results illustrated that the loaded drug exhibited higher cytotoxic potential (based on MTT assay) on 
human leukemia cells (HL60) and lung fibroblast cells (V79) in comparison with the free drug.183 Table 7 lists the role of 
CD complexation in enhancing the characteristics of the loaded bioactive molecules.

Role of CD-AuNPs in Drug Targeting/Delivery
The presence of hydrophobic cavities in the CD structure makes it possible to carry certain hydrophobic materials or 
bioactive agents.184 CDs and their derivatives, formed via structural modification of either primary or secondary face of 
parent CDs with aliphatic hydrocarbon chains, have been considered as potential excipients for different applications, 
including the production of nanospheres or nano-capsules of high loading capacity providing efficient targeting 
delivery.185,186 β-CD derived nanoparticles were reported for loading and release of Tamoxifen.184 The results indicated 
that the drug was either included in CD cavities or entangled in the aliphatic chains, allowing the release of the drug in 
a controlled-release manner.184 However, the application of β-CD as a drug carrier is restricted by its low aqueous 
solubility, which could be enhanced by structural modification of the parent CD and the design of new formulations such 
as formulations of β-CD-AuNPs.

AuNPs exhibit applications as transfection vectors,187 siRNA and DNA-binding agents,167,188 protein inhibitors,189 

and spectroscopic markers.190,191 A monolayer of thiolated CD derivatives, with different spacer lengths between the 
thiol termination and CD cavities, were adsorbed on gold films and described by many researchers.192,193 The thickness 
and packing densities of the molecular monolayer as well as the orientation of the CD cavities and the outermost layers 
of these systems were controlled by changing the number of thiol groups and the length of the alkyl chain. The 

Table 7 Role of CD Complexation in Enhancing the Characteristics of the Loaded Bioactive Molecules

Year CD Complex Bioactive Molecule CD Effect Ref.

2005 Thiol derivatized β-CD/AuNPs Violacein  
(antitumor drug)

● Formation of (Violacein-β-CD-thiol-protected AuNPs) supramole-
cular system with higher cytotoxicity in vitro on V79 and HL60 cell 
lines.

[183]

2009 SH-CD/AuNPs β-Lapachone  
(anticancer drug)

● Noncovalent encapsulation of the hydrophobic drug on CD- 
covered AuNPs (27 nm) carrier.

● Higher cellular uptake of drug-carrying CD/AuNPs was reported.

[182]

2011 AuNPs@ Polyrotaxane Doxorubicin ● Increases the loading capacity of the anticancer drug and enhances 
its controlled release.

[176]

2013 Two-part arming system from per-6-thio-β- 
CD coated AuNPs/adamantane oxoplatin 
conjugate

Cisplatin  
(Anticancer drug)

● 4.7 ± 1.1 nm delivery vehicle of Cisplatin from adamantane oxopla-
tin prodrug was obtained to produce cytotoxic nanodrug.

[178]

2015 Ternary system of β-CD- Phenylethylamine 
(PhEA) /AuNPs

Phenylethylamine 
(Antidepressant)

● The ternary system of βCD-PhEA-AuNPs, with AuNPs of 14 nm 
average size, enabled the effective photothermal drug release

[181]

2020 β-CD/chitosan/ Au nanocubes (AuNCs) 
hydrogel

Cytochrome 
c (mitochondrial protein)

● AuNCs were formed inside the 3-D inter-linked CS-g-β-CD hydro-
gel network for the protein immobilization.

● The mean edge length of AuNCs increased from 40.2 nm to 200– 
250 nm.

[174]
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substitution of all secondary hydroxyl groups in the β-CD rings by S-H groups afforded the synthesis of highly water- 
soluble AuNPs with the outermost layer formed by β-CD cavities. Using a spacer group between the S-H terminations in 
the preparation of NPs is novel. It could also increase the number of adsorbed β-CD molecules and improve particle size 
control. One of these modified AuNPs is capped with β-CD-alkyl thiol derivatives, mono [6-deoxy-6-[(mercapto- 
hexamethylene) thiol]]–β-CD.

The inclusion complexation of certain hydrophobic drugs such as violacein, an antitumor drug, in β-CD-S(CH2) 
6-S-AuNPs afforded violacein transfer to an aqueous medium.183 Cell viability measurements indicated that the system 
violacein-modified NPs maintained the violacein cytotoxicity on myeloid leukemia cells (HL60) and reduced the activity 
towards the normal cells (V79), ie, it became less cytotoxic on normal V79 cells compared to other violacein/β-CD complexes 
(Figure 6). Hence, this novel modified-NPs system enhanced the selectivity and targeting ability toward tumor cells.183

The conjugation of AuNPs by CD molecules occurs during the reduction process, using Na-borohydride in 
dimethylsulphoxide solvent. The obtained AuNPs-CD gold can be utilized as multisite hosts for binding other guests 
in the solution such as 1-adamantane and ferrocene methanol.173

Generally, a great interest has been directed toward developing and modifying nanomaterials as novel drug delivery 
systems.194 The inorganic AuNPs were considered promising drug delivery and targeting carriers, especially for cancer 
treatment and phototherapy.119,195 However, the application of such unmodified NPs for drug delivery is limited by the 
quick release of the loaded drugs from the surface of AuNPs, as well as their considerable cytotoxicity.196 To overcome 
this limitation, the chemical modification of such NPs to relatively sustain the drug release is required. The modification 
of AuNPs with CD molecules is a famous example and had great interest from researchers in the last decade.197 The 
modified complex system has the advantages of both CD (inclusion ability of different hydrophobic drugs, improving 
solubility and bioavailability and stability of the included drugs)198 together with the advantages of AuNPs (increasing 
the drug selectivity and targeting to a specific site of action via the addition of targeting molecules)196,199 making the 
combined new system as an attractive and promising approach for drug delivery.171 Curcumin (CUR), a drug utilized for 
the prevention and treatment of osteoporosis, was loaded on AuNP-CDs by Heo et al.200 It was noted that the modified 
NPs were spherical, ranging from 20 nm to 40 nm. Also, the obtained Au-CD loaded-CUR showed a better effect at 
lower concentrations compared with either the plain drug or the unmodified AuNPs.

Figure 6 Formation of the ternary system which is composed of the inclusion complexation of guest drug (eg, anticancer drug) in the β-CD cavity and then conjugation with 
gold nanoparticles (β-CD-S(CH2)6-S-AuNPs) for drug delivery.
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Similarly, curcumin as an anticancer was loaded on the CD-NPs system via inclusion complexation and reported by 
Möller et al.201 The results indicated that the modified system loaded with the drug exhibited a higher cytotoxic effect 
compared with the free drug. The complete inhibition of cancer cells was achieved within a few hours of incubation.

Baicalin (BC), as an anticancer cancer drug, has low cancer cellular uptake.200 Therefore, AuNP@CDs were utilized 
as a drug carrier for (BC). The results illustrate that the modified AuNP-CD-BC solved the targeting problem since they 
inhibited cellular growth and induced apoptosis of all targeted cells upon using 100 mM drug concentration.202

Similar findings were obtained and reported previously on the high activity and selectivity of the modified paclitaxel 
(PTX)-loaded AuNP@CDs203 and β-lapachone AuNP@CDs182 for the treatment of cancer. Shi and his coworkers 
studied the impact of CD-coated AuNPs as a delivery carrier for a prodrug of cisplatin (Adamantane–Oxoplatin 
conjugate) to produce a cytotoxic nanodrug in vivo.178 The inclusion complexation between CDs and adamantane 
moieties was utilized for the construction of a nanodrug with a stoichiometric ratio of 1:1. The results indicate CD 
decorating AuNPs play an important role in the increase of the photothermal potential of AuNPs as anti-tumor.

Silva and co-workers utilized the inclusion complexation of β-CD, coating AuNPs, for loading and controlled release 
of methotrexate (MTX) as an anticancer drug.204 CDs enhanced the solubility and decreased the side effects of the drug. 
The drug was allowed to release from the modified system via laser irradiation of the cells, causing laser light absorption 
by AuNPs. Then, the absorbed light was transformed into heat dissipated into the environment. Consequently, this 
allowed the controlled release of the included drug from CD cavities. Afterward, the released MTX gives its cytotoxic 
effect. MTT assay was utilized for the investigation of HeLa tumor cell viability. The results showed that the irradiated 
cells with the modified ternary system caused huge cell growth inhibition. Table 8 lists the applications of CD-NPs for 
drug delivery and targeting.

Table 8 Different Reported Drug Targeting/Delivery Applications of CD-AuNPs Complexes

Year CD-AuNPs Complex Drug Biological Target Results Ref.

2005 Supramolecular system of β-CD-Thiol- 
protected AuNPs (β-CD–S(CH2)6–S–Au)

Violacein  
(antitumor drug)

● Normal (V79) fibro-
blasts cells derived from 
Chinese hamsters

● Human leukemia cells 
(HL60) cell lines

● Formation of (Violacein-β-CD-thiol-protected AuNPs) 
supramolecular system with higher cytotoxicity in vitro.

[183]

2014 AuNPs-β-CD/β-D-galactose-recognizing 
lectins peanut agglutinin (PNA) and human 
galectin-3 (Gal-3)

Methotrexate Lectins PNA and Gal-3 ● CD enhanced the ability of AuNPs to load the antic-
ancer drug providing a site-specific delivery system.

[205]

2014 β-CD/AuNPs Curcumin RANKL-induced BMMs ● The CUR-β-CD-GNPs complex:
● Elicited better effect at lower concentrations com-

pared with the drug or the unmodified AuNPs alone.
● Improved bone density and prevented bone loss 

in vivo.

[200]

2018 α-, β-, and γ-CD/ Polyethyleneglycol- 
Conjugated AuNPs

Curcumin Human lung carcinoma cell 
line (A549 Cells)

● The three complexes elicited cytotoxic effects com-
pared with the curcumin, which was not toxic.

[206]

2016 AuNPs/thiolated β-CD (AuNP-S-β-CD) Baicalin Anti-cancer 
drug

Cancer Foundation-7 
(MCF-7) cells

● AuNP-S-β-CD-BC complex showed high prolifera-
tion inhibition effect on MCF-7 cells via inducing 
apoptosis.

[202]

2015 CD dimmers, biotin-CD 
AuNPs-Ad moieties 
Targeting legend: (Biotin units)

Paclitaxel  
(Anti-cancer drug)

SKOV-3, NIH3T3, and 
NIH3T3 cell lines

● The complex showed active targeting of drug and 
improved its aqueous solubility, biocompatibility, and 
anticancer activity.

[203]

2009 SH-CD/ AuNPs 
Anti-fouling shell: PEG 
Targeting moiety: Anti-EGFR

β-Lapachone 
(Anticancer drug)

● MCF-7 (low glutathione 
concentration)

● A549 cells (high glu-
tathione concentration).

● The modified system containing CD provided suita-
ble carriers of hydrophobic anti-cancer drugs.

● Anti-EGFR increased the cellular uptake of the mod-
ified nanosystem.

[182]

2013 Two-part arming system from per-6-thio-β- 
CD coated AuNPs/adamantane Oxoplatin 
conjugate

Oxoplatin prodrug 
releasing the Cisplatin 

anticancer drug

Human neuro- blastoma 
(SK-N-SH)

● Formulation of a delivery vehicle for the cytotoxic 
nanodrug Cisplatin from adamantane Oxoplatin 
prodrug.

[178]

2018 AuNPs + β-CD Methotrexate HeLa tumor cells ● Thermal irradiation produced photothermal con-
trolled release of the drug from CD cavities, which 
increases its cytotoxicity.

[204]
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β-CD-Modified AuNP Aggregates
One of the properties of AuNPs is their ability to form nano-aggregates of specific surface plasmon resonance (SPR).207 

In fact, the random unintended aggregation of AuNPs is undesirable in general. However, the intended and planned 
aggregate formation was the subject of plenty of research articles in the last decade. In our review, we focused on some 
of these pharmaceutical and biomedical applications. AuNPs aggregates were formulated by different approaches 
including metal–ligand interaction,208 ion–pair interaction,209 hydrogen bonding,210 and hydrophobic interaction via 
host-guest inclusion complexation166 etc. There are several research articles discussing the formulation and applications 
of AuNP nano-aggregates, but only a few articles focus on aggregation reversibility and the factors that may affect such 
property, including pH change,211,212 temperature change,213 and biomolecular recognition.214 For AuNPs aggregation, it 
is important to conjugate the nanoparticles with various materials, including proteins,215 DNA,216,217 synthetic 
polymers,213 fullerenes,217 and cyclodextrins (CDs)218.

Cyclodextrins are preferable over other materials because of their low toxicity, and high solubility. We study the 
complexation between β-CD, conjugating AuNPs, and diazo (guest).219 Diazo molecules have a double azobenzene 
structure, acting as a crosslinking agent to bind the individual nanoparticles together (Figure 7). It was observed that the 
color of the gold colloid was changed upon aggregation into purple, accompanying the shift in the absorption spectrum. 
Also, the average number of AuNPs, in the constructed nanoaggregate depended on the amount of both CD and diazo. 
The dissociation of the formulated gold aggregates was realized via the addition of α-CD, which acts as a competitive 
host to β-CD.

Hence, α-CD formed new inclusion complexes with the utilized guest molecules by capturing them from the cavities 
of β-CDs. Interestingly, the recovery and self-assembling of AuNPs-β-CD were achieved upon the addition of the guest 
molecules again. Therefore, the modified system is smart and reversible, which is controlled by the addition of either β- 
CDs or guest molecules.219

Also, the aggregate of AuNPs which were conjugated with thiolated CDs (SH-CD) was performed in an aqueous 
solution via the inclusion complexation between 1,10-phenanthroline (guest molecules, utilized as molecular retractor 
which binds the nanoparticles together) and BCD (host molecules). The modified system was characterized by different 
analysis techniques including fluorescence, FT-IR, and UV spectroscopy. The results showed that the aggregation process 
depends on the concentration of both guest and CD molecules.220

Figure 7 The representation of the aggregation and the competitive dissociation of smart AuNPs-β-CD via the addition of either guest molecules (ie, PEG-Ad or diazo) 
causing aggregation, or α-CD as compotator host molecules.
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Role of Cyclodextrin in Gene-Drug Delivery (DNA Concentration)
Cyclodextrins are helpful in gene delivery applications because of their binding affinity to nucleic acids and their ability 
to reduce the cytotoxicity of other gene carriers.221,222 CD-containing polymers were demonstrated by Davis for DNA 
aggregation. The modified system is a highly biocompatible matrix for recombinant adenovirus-mediated gene delivery 
to local wound sites.223 Another research article showed the utilization of CDs in the improvement of adenoviral- 
mediated gene transfer into the jejunum of rats.224 CDs can bind various molecules via the formation of inclusion 
complexes.225 Therefore, CDs have been used to construct supramolecular aggregates acting as receptors in biological 
technology. In addition, cyclodextrins are considered effective absorption and gene-delivery enhancers. An earlier study 
showed the utilization of CDs in improving adenoviral-mediated gene transfer into the jejunum of rats.224 The obtained 
improvement was attributed to CD molecules in the gold NPs, which enhanced the viral binding and subsequent 
internalization into the host cells. Moreover, the derivatization of CD at the 6-position was reported for the improvement 
of plasmid DNA (32P-labeled pDNA) complexation capacity and consequent cellular uptake efficiency as in the case of 
COS-7 cell transfection.226

It was reported that adamantane (Ad) forms perfect inclusion complexes with β-CD. This kind of complexation has been 
utilized in the construction of self-assembling nanoparticles.227 As a nonviral vector, the CD-based polycations have been 
synthesized to deliver DNA.223,228 These polycationic polymers can be self-assembled with DNA molecules via electrostatic 
interactions to form nano-assembly which are called “polyplexes.” The modified NPs exhibited higher cellular internalization 
of the gene compared with unmodified DNA.229,230 The modified polyplexes, based on CD, were specifically immobilized on 
Ad-functionalized surfaces via inclusion complexation. Compared to PEI-modified NPs, CD-PEI NPs showed noticeably 
greater adsorption on Ad surfaces. Additionally, compared to single CD molecules, the combined CD-PEI NPs have a greater 
binding affinity Ad surface due to multivalent interactions. On the other hand, the immobilized NPs, illustrated in Figure 8, 
were examined by AFM and fluorometric spectroscopy.231

Oligo (ethylenediamine)-β-CD-modified AuNP (OED-CD-NP) was constructed as a non-viral vector for DNA.232 

The aggregation behaviors of these constructed systems with DNA were characterized by several microscopic and 
spectroscopic techniques. The obtained results indicated a direct relationship between the morphological feature of the 
modified aggregate and the initial concentration of both OEA-CD-NPs and DNA. The transfection efficiency of the 
modified system was evaluated by MTT assay using MCF-7 cells. The obtained results indicated the successful delivery 
of noroviral vectors into the cancer cells. In contrast, the system free of CD molecules had a weak bond with the DNA 
receptor, indicating the importance of CD in the modified system.232

Several AuNPs-capped CDs have been reported by different groups for application in gene delivery.17,233,234 These 
studies focus on the construction and characterization of CD-AuNPs. The utilization of cyclodextrin-containing cross- 
linked matrixes for DNA aggregation has been established and reported by Davis and coworkers.223 The modified 
cyclodextrin-based system was regarded as a highly biocompatible matrix for gene delivery. Table 9 displays the effect of 
CD on gene delivery using AuNPs.

Role of CDs in Preparation and Improvement of Catalytic Enzymes
Cyclodextrin-gold NPs were utilized to enhance the loading efficiency, control the release, and targeting of enzymes. 
Accordingly, different studies presented that CD-AuNPs are considered attractive and promising building blocks for 
effective artificial enzyme model engineering.236

For example, an artificial enzyme model was developed via the complexation of metal catalytic centers with β-CD 
modified AuNPs. Firstly, AuNPs were coated with SH-CD molecules. Secondly, the constructed CD-AuNPs were 
utilized as a backbone to install metal catalytic centers via self-assembling or inclusion complexation between adaman-
tane-modified copper-triethylenetetramine complex and β-CD cavities, which act as hosts for adamantane guest 
molecules.236 The results showed that in the prepared system, enzyme has catalytic behaviors, which were considered 
as an esterase mimic enzyme. Besides, the prepared enzyme exhibited excellent hydrolysis ability for catalyzing the 
breakdown of an active ester 4,4‘dinitro-diphenyl carbonate.
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Similarly, the host-guest supramolecular interactions were utilized by other researchers to formulate enzyme nano- 
catalysts.237,238 The immobilization of enzymes (proteins) on the CD-containing AuNPs system was achieved via the 
inclusion complexation of one or more of the protein bulky moieties and the hydrophobic cavities of CD. Alternatively, 
the loading of the enzyme can be done by linking a hydrophobic moiety, such as adamantane molecules to the enzyme. 
Hence, the loading can be carried out via the inclusion of complexation between Ad molecules and CDs.

Additionally, the Ad/CD inclusion complexation was utilized for the formulation of nanodevices acting as biosensors. 
The modified system was conjugated with superoxide dismutase and catalase enzymes. The conjugation or loading of 
these enzymes was carried out by decorating these enzymes with adamantane moieties, which will be included in the CD 

Figure 8 Schematic representation of CD-AuNPs immobilization on Ad substrate via inclusion complexation for pDNA concentration according to the following steps. (1) 
Ad-modified self-assembled monolayer (SAM) gold substrate; (2) Immobilization of PEI-pDNA polyplex NPs on the modified SAM; (3) pDNA using Heparane; (4) 
Immobilization of β-CD-PEI-pDNA polyplex NPs on the modified SAM; (5) pDNA using Heparane.
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cavities. The results of the analysis indicated the successful construction and development of the biosensor, based on Ad- 
modified bi-enzymatic nanodevice.237,239 The same method was utilized for the formulation of uni- and bi-enzymatic 
nanocatalysts reported by another research group.81,238 Ad-COOH was utilized for making hydrophobic capping of 
catalase enzymes to be immobilized on β-CD-AuNPs via supramolecular associations, and then the enzymatic nano- 
catalyst was further constructed via co-immobilization of β-CD-modified-dismutase (copper/zinc superoxide dismutase 
enzyme).81 The results showed that the modified system still retained about 35% and 73% of initial specific activity for 
dismutase and catalase, respectively. It was also observed that the thermal stability was improved by the process of co- 
immobilization. Additionally, the bi-enzymatic immobilization with catalase on metal nanoparticles improved the 
resistance efficacy of superoxide dismutase by 90-fold to the inactivation by H2O2 (at a concentration of 100 mM).81

Recently, thiolated β-CD-AuNPs supramolecular associations (water soluble) have been utilized to immobilize native or 
Ad-modified enzyme structures through host-guest interactions. For example, the enzyme L-phenylalanine dehydrogenase 
(PhDH) modified by Ad-carboxylic acid (Ad-PhDH) was immobilized on β-CD-AuNPs via supramolecular interactions. 
The results revealed that the formulated enzyme retained its catalytic activity and affinity to the substrate.239 Noteworthy, 
AuNPs, and CD derivatives have catalytic capacity, which mainly comes from guest molecules.171 Table 10 lists the 
selected studies on some CD-AuNPs complexes used for the preparation and improvement of catalytic enzymes.

Table 9 Effect of CD on Gene Delivery Using AuNPs

Year CD Mediated Vector for Gene 
Binding

Gene CD Effect Ref.

2007 Oligo(ethylenediamino)-β-CD-modified 
AuNPs (OEA-CD-NPs)

DNA ● CD deep cavities on the surface of OEA-CD-NPs aggregate prevented the deposition of Au 
clusters on cell membranes, which helped in decreasing their cytotoxicity.

[232]

2009 β-CD/Pluronic 
Cationic Polyrotaxanes

DNA ● Novel cationic polyrotaxanes increasing the loading capacity, cytotoxicity, and gene transfection 
efficiency of DNA to cancer cells.

[179]

2014 β- CD-AuNPs/ caped with anthryl 
adamantanes

Calf thymus 
DNA

● Form supramolecular nanostructure for the condensation of the DNA producing condensates of 
a suitable size for endocytosis by hepatoma cells.

[235]

2016 G5 dendrimer of poly(amidoamine)/β- 
CD-entrapped Au NPs 

(Au DENPs-β-CD system)

Plasmid DNA 
(pDNA)

● β-CD increases the cytotoxic effect of the Au DENPs-β-CD system and enables more efficient 
cellular gene delivery than the system free of β-CD.

[233]

2018 β-CD-modified dendrimer-entrapped 
AuNPs (Au DENPs-β-CD system)

siRNA ● The modified Au DENPs-β-CD system enhanced the uptake (cytocompatibility) of siRNA into 
glioblastoma cells as well as its gene silencing, forming an effective gene therapy system for the 
inhibition of the expression of Bcl-2 and VEGF proteins.

[234]

Table 10 Selected Studies on Some CD-AuNPs Complexes Used for the Preparation and Improvement of Catalytic Enzymes

Year CD-AuNPs Complex Enzyme Role Ref.

2005 β-CD-AuNPs Supramolecular assembly Bovine pancreatic trypsin ● Successful supramolecular immobilization of trypsin. [238]

2005 β-CD-AuNPs Catalase and Copper/Zinc 
superoxide dismutase enzymes

● Successful supramolecular co-immobilization of both enzymes, improving 
their activity and thermal stability.

[81]

2006 β-CD-AuNPs Native and adamantane-modified 
L-Phenylalanine dehydrogenase

● Successful supramolecular immobilization of the investigated enzyme retain-
ing its catalytic activity and the affinity to the substrate.

[239]

2008 TEA-Ad-β-CD- modified AuNPs with 
metal (Cu2+) catalytic centers (Artificial 

nanozyme model)

Artificial catalytic nanozyme for 
the hydrolysis of the activated 

ester DNDPC.

● The nanozyme system showed strong hydrolysis activities for the active 
ester DNDPC.

[236]

2016 β-CD-AuNPs (15–20 nm) Glucose oxidase (GOx) ● β-CD-AuNPs complex formed nano-platform for sensing, self-assembly, and 
cascade catalysis with mimicking properties of both glucose oxidase and 
horseradish peroxidase simultaneously.

[240]

2017 β-CD-AuNPs PNi@IPTS-Azo@βCD-AuNPs 
catalytic substrate

● High efficiency, regenerative, material-saving, catalytic model was obtained 
from the inclusion complexation between CD and Azo benzene moieties.

● The modified system was considered as catalytic fixed beds suitable for 
industrial applications.

[241]

2020 β-CD-AuNPs (Co-catalyst) Cu2+-PPi + H2O2 
inorganic pyrophosphatase 

(PPase)

● The modified system acted as co-catalyst
Improves the colorimetric and photothermal biometric properties via 
improving the Cu2+/Cu+ conversion rate.

[242]

Abbreviations: TEA-Ad, triethylnetetramine-Adamantane; DNDPC, 4,40-dinitrodi- phenyl carbonate; PNi, Porous nickel; IPTS, (3-isocyanatopropyl) triethoxysilane; Azo, 
azobenzene; PPi, inorganic pyrophosphate.
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Role CD-AuNPs in the Formation of Self-Assembling Molecular Print Boards
Owing to their high binding strength and reversibility,111,243 the inclusion complexation has been utilized for the 
construction of receptor-functionalized molecules and nanoparticles called molecular print boards. The concept of 
“molecular print boards” was introduced by the Reinhoudt group,244 which are β-CD self-assembled mono- and multi-
layers on silicon oxide or gold substrates that possess supramolecular host properties.245,246

The inclusion complexation between adamantane (Ad) and cyclodextrin cavities was utilized for the construction of 
physical nano assemblies. Huskens and his co-workers reported that Ad-end capping polypropylene imine dendrimer Ad- 
PPI), ranging from 4 to 64 Ad moieties, act as guest molecules, which will be included in the cavities of CD-decorating 
AuNPs (host molecules)247 to form self-assembled monolayer molecular print board, as illustrated in (Figure 9). Upon using 
multiple inclusion complexes between CD and Ad (Ad-CD) stable assemblies can be obtained of high strength. The 
modified structural surfaces can be utilized for different nanotechnological and electronic applications. Also, the modified 
systems can be utilized as molecular print boards on which the molecules can be firmly placed.247

Similarly, a novel multi-layered, self-assembled organic-metal NP was constructed via layer-by-layer assembly. The 
modified nano-assembly was characterized by UV and SPR spectroscopy as well as atomic force microscopy. The results 
indicated a direct relationship between the number of bilayers and the extent of absorption. Various structures of multiple 
supramolecular interaction assemblies might be obtained via such protocols. This provides a general pattern for 
nanofabrication via integrating several components from inorganic, organic, metallic, and bio-molecular reagents while 
maintaining the specificity of supramolecular interfacing.248 Previously, this group of researchers also studied the 
irreversible precipitation of dendrimer/CD-AuNPs aggregates induced by the complexation of a CD-modified AuNPs 
solution with adamantyl dendrimers.249

Other research groups250,251 demonstrated nanostructures of supramolecular layer-by-layer assembly of 3D multi-
component nanoparticles. Generally, there are two classes of nanofabrication methods: “top-down” and “bottom-up.” 

Figure 9 Chemical structures of adamantly functionalized PPI dendrimers (Ad-PPI) and their formation of inclusion complexes with cyclodextrins to construct water-soluble 
assemblies (A); the formation of a monolayer of these modified assemblies on a gold substrate via adsorption (CD-AuNPs monolayer) (B); and formation of multilayer CD- 
assemblies on gold (C). Reproduced with permission from Copyright 2002 Wiley VCH GmbH.247
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There are different\common techniques utilized in the case of the “top-down” class method, including directed self- 
assembly, supramolecular assembly, and probe lithography techniques. On the other hand, soft lithography, lithography, 
and evaporation techniques are common examples of the ‘bottom-up’ class (Figure 4). Layer-by-layer assembly and 
nanoimprint lithography (NIL) were used as tools of patterning that fabricated patterned β-CD-SAMs complexes and 
retained nanoparticles on the substrate. In addition, a combination of metallic and inorganic NPs with organic molecules 
built-up multi-layered and multicomponent NP arrays ie, CD-conjugated gold NPs (CD-Au, d ~3 nm), CD-coated silica 
NPs (CD-SiO2, d ~350 nm), ferrocenyl-coated silica NPs (Fc-SiO2, d ~60 nm), and adamantyl-end-capping poly 
(propylene imine) dendrimers (G1-PPI-(Ad)4) (generation 1). The gathering of guest- and host-functionalized NPs 
appeared in a layer–by–layer alternating assembly (Figure 10).

Furthermore, the ordering effects of the steps of nanoparticle assembly including, small-to-large and large-to-small 
nanoparticle assembling were compared. Interestingly, supramolecular LbL assembly provided control nanostructures 
over their height in the nanometre range, whereas NIL provided confinement nanostructure in the x and y directions. Full 
integration of these methods, therefore, lead to the fabrication of arbitrary shape from 3D nanostructures on substrates.251

Also, multiple inclusion of the guests (adamantane end capping polyisobutene-alt-maleic acid polymer) into the 
cavities of β-CD self-assembled monolayers were constructed and reported by Crespo-Biel and co-workers.252 The 
results indicated that the adsorption was irreversible, strong, and specific. Also, the polymer adsorption led to very thin 
polymer films on the surface as evidenced by both SPR spectroscopy and AFM. Moreover, the results indicated that there 
is no significant effect of the selected hydrophobic moieties (nature and number) decorating the polymer as well as the 
polymer concentration on the adsorption capacity.

Role of CD-AuNPs in the Fabrication of Supramolecular Functionalized Electrodes 
and Biosensors
Another novel application of β-CD-capped gold NPs is the development of a supramolecular-functionalized redox electrode 
acting by the physical assembly between β-CD coating AuNPs (β-CD-AuNPs) and ferrocene moieties coating indium tin 
oxide (Fc-ITO)253 Cyclic voltammetry and AFM evaluated the immobilization of β-CD-AuNPs on the Fc-ITO vehicle. In 
addition, cyclic voltammetry confirmed the supramolecular characteristics of the immobilization process. CD-modified 

Figure 10 Schematic representation of the multicomponent nanostructures construction using (A) CD-Au and Fc-SiO; (B) The nano-assembly from small NPs to large 
NPs; and (C) nano-assembly from large NPs to small NPs. The artwork was reproduced from MDPI according to permission via license: CC BY 4.0.251
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electrodes exhibited enhanced electrocatalytic and electroanalytic effects compared to the unmodified (CD-free) Fc-ITO- 
electrode toward the ascorbic acid.253

CDs possess a special structure that enables them to generate polymers of various structures that perform different 
functions via several reactions,199 as well as in synergy with inorganic nanoparticles.254 Furthermore, entrapping of drugs 
via complexation with CDs improves their stability and bioavailability.198

Interestingly, immersing the modified electrode in a saturated solution of adamantane carboxylic acid (Ad-COOH) 
leads to the disruption of the modified system. This may be because the adamantane moieties have a higher affinity to CD 
cavities and can form highly stable complexes with β-CD compared to Fc, causing the release of β-CD-AuNPs from the 
electrode surface. The obtained findings confirm that the immobilization mechanism depends on the previously described 
inclusion complexation hypothesis.253

Bisphenol A (BPA) is an organic material used to manufacture polycarbonate plastics and epoxy resins, which are 
subsequently utilized for coating the internal surfaces of cans. Bisphenol A can disrupt the human health endocrine 
system. Therefore, it is important to detect its amount in the environment. A new molecular imprinted system was 
constructed from acryloyl-β-CD, acrylamide (AAm), and N, N-methylene bis-acrylamide (MBAA). Then, it was loaded 
with bisphenol, as illustrated in. The modified system was utilized as a sensor for the detection of bisphenol.155 In this 
concern, bisphenol can be detected potentiometrically by monitoring the change in the color of the hydrogel system from 
blue to red. The modified system can detect bisphenol at a concentration of 0.5 mM.155

An ultrasensitive detection of bisphenol A was also described and previously published.255 The detection was carried 
out by utilizing an electrochemical biosensor, constructed from graphene oxide-AuNPs decorated with β-CD molecules. 
Then, the system was heated and electrodeposited to obtain a glassy carbon electrode. The modified biosensor was 
characterized by different analyses, including X-ray (XRD), UV, and SEM. The results exhibited a good detection limit 
of bisphenol (3 *10−9 M) with high stability.,255

Similarly, an electrochemical biosensor was reported by Wu et al,256 the modified system was constructed from the 
deposition of β-CD-AuNPs on stainless steel electrodes. The constructed system was utilized for the detection of low- 
density lipoprotein (LDL). In the modified system, β-CD was utilized as a binding receptor for LDL via different binding 
mechanisms including van der Waals forces, hydrophobic interactions, and hydrogen bonding. The results indicated that 
the modified β-CD-AuNPs biosensor exhibited a high sensitivity towards LDL.

Moreover, thiolated β-CD-AuNPs with reduced graphene oxide were modified and utilized for both acetaminophen 
and ofloxacin electrochemical sensing. The results showed that the detection limits for acetaminophen and ofloxacin were 
3*10−8 M and 8*10−9 M, respectively. In addition to its wide detection range, the sensor showed high stability, and 
reproducibility.198

Hydrogen peroxide (H2O2) biosensors were synthesized by incorporating AuNPs into the cyclodextrin/chitosan 
hydrogels. Noteworthy, H2O2 shares in mitochondrial electron transfer reactions. Also, this kind of oxygen species is 
considered the most stable one which can penetrate the cell membrane and damage the cell proteins. Hence, the detection 
of H2O2 level changes is very important. The results showed that the presence of AuNPs in such modified hydrogels 
improved the conductivity. Consequently, we improve the biosensor sensitivity with a low detection limit for H2O2 and 
its cell biocompatibility.201

Moreover, a chemo-visual biosensor based on AuNPs-polymerized CD was constructed and reported by Lee et al for 
the detection of both cysteine and sodium diethyldithiocarbamate (SDDC).202 The CD polymer acts as a stabilizer and 
reducing agent to form small AuNPs of about 15 nm. The results illustrated that the color of AuNPs was changed from 
red to blue upon attaching sodium diethyldithiocarbamate (SDDC) and cysteine as sulfated compounds. It was realized 
that the role of CD, as an amphiphilic structure, was the agglomeration of AuNPs and the entrapment of the sulfated 
compounds. The modified sensor detection limits were 0.05 and 0.07 µM for SDDC and cysteine, respectively. Table 11 
lists some selected studies on the fabrication and applications of supramolecular functionalized electrodes based on CD- 
AuNPs complexation.
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Cyclodextrin as a Phase Transfer Agent
Ferrocene is an excellent guest molecule to be included in CD cavities via hydrophobic–hydrophobic interaction. The 
inclusion of complexation between ferrocene derivatives and CD molecules conjugating AuNPs has received much attention 
in recent years. The binding interactions of AuNPs were utilized to transfer the hydrophilic CD-modified NPs (hydrophilic) 
into less polar solution phases. Therefore, CD molecules play an important role in the phase transition, which acts as a phase 
transfer agent. From these ferrocene derivatives, both dodecyl ferrocene and hexadecyl ferrocene act as phase transfer agents, 
facilitating the solubility of AuNPs in an organic solvent, such as chloroform.118 However, other ferrocene derivatives have 
a limited ability to act as phase transfer agents such as heptyl-ferrocene and propyl-ferrocene derivatives. This may be due to 

Table 11 Selected Studies on the Fabrication of Supramolecular Functionalized Electrodes Using CD-AuNPs Complexation

Year Functionalized / 
Modified Biosensor

System Composition Detected probe Role of CD-AuNPs Conjugation Ref.

2008 Supramolecular 
recognition functionalized 

redox electrode

β-CD- AuNPs 
Ligand electrode: Fc-ITO

Ascorbic Acid ● β-CD- AuNPs complexation improved the electrocatalysis activity 
of Fc-ITO electrode towards ascorbic.

[253]

2009 Amperometric glucose 
sensor (AuNPs/CD–Fc/ 

GOD)

Mono-6-thio-β- CD- AuNPs 
Ligand: Ferrocene (Fc) capped 
on AuNPs 
and GOD

Glucose ● CD/AuNPs complexation formed an electron shuttle and allowed 
the detection of glucose at 0.25 V, which provided high stability, 
anti-interference ability, and natural life of the biosensor.

● AuNPs/CD-Fc film provides a convenient electron tunneling 
between the protein and the electrode, which provides excellent 
sensitivity.

[257]

2012 β-CD stabilized AuNPs 
detector

β-CD-AuNPs Micromolar quantities 
of Pb2+ ions

● The deprotonated secondary OH group of β-CD provided the 
highest chelating affinity toward Pb2+ ions, which induces AuNPs 
aggregation.

● Aggregates changed the visual color from red to blue.

[152]

2013 Enzyme electrode 
constructing reagentless 

amperometric 3D- 
biosensor

Au-Pt NPs- β-CD-branched 
cysteamine core PAMAM G-4 
dendron

Adamantane- 
modified GOD

● The supramolecular associations of AuNPs with inorganic-organic 
hybrid constructed a stable and highly sensitive biosensor with 
a low detection limit, and a rapid amperometric electroanalytical 
response to Adamantane-modified GOD.

[258]

2016 GCE (Electrochemical 
sensor)

β-CD-AuNPs 
Ligand: RGO

Electrocatalytic 
oxidation of BPA

● The modified sensor showed a perfect linear relationship between 
the detection current and BPA concentration.

[255]

2018 Enzyme-free µPAD 
biosensor loading 

secondary antibodies or 
peptide.

β-CD 
Au-PWE

Two tumor markers; 
CEA and PSA antigens

● The Au-Paper based electrode showed high sensitivity, wide linear 
ranges, and low detection limits.

[259]

2019 Plasmonic biosensor β-CD-AuNPs Cholesterol ● Ultra-sensitive and highly integrated plasmonic biosensor with 
a promising localized surface, plasmon resonance properties, and 
ultralow detection limit of cholesterol.

[260]

2019 Electrochemical sensor Thio-b-β-CD-functionalized 
graphene/AuNPs

Tetrabromobisphenol 
A in water

● Sensitive, reproducible, and selective sensor, showing linear range 
of low detection limits.

[261]

2020 Colorimetric nanoprobe β-CD-AuNPs Cysteine ● Obvious color change from wine red to purple was achieved by 
the decrease in the surface plasmon resonance band.

[262]

2021 Electrochemical Biosensor β-CD-AuNPs Low-density 
Lipoprotein

● A highly selective and sensitive biosensor with excellent molecular 
recognition per- formance, especially in ultra-low concentrations.

[256]

2021 Multi-sensing colorimetric 
probe

β-CD-AuNPs Hydroxychloroquine 
drug

● Complexation of the drug with the probe causes red shifting in the 
surface plasmon resonance owing to the AuNPs aggregation.

[153]

2021 Electrochemical catechol 
biosensor (Tyrosinase- 

based nanosensor)

β-CD-AuNPs 
on graphite electrode 
Drug inhibition platform: 
Tyrosinase with the catechol 
substrate

Catechol ● The biosensor showed excellent capability for Tyrosinase inhibition 
by ibuprofen.

[263]

2022 RVFT test box device β-CD-AuNPs (silver stained) 
NC-LPS. 
Labeled protein: SPA. 
Test: Brucella LPS. 
Control: Sheep IgG.

Brucella LPS ● The complexation provides an RVFT device that provides a short 
reaction time (5–6 min visible to the naked eye), without any 
equipment for the convenient, fast, effective, and inexpensive 
diagnosis of Brucellosis.

[264]

Abbreviations: Fc-ITO, ITO coated with ferrocene residues; GOD, Glucose oxide; RGO, Reduced graphene oxide; GCE, Glassy carbon electrode; BPA, Bisphenol A; 
µPAD, Microfluidic paper-based analytical device; Au-PWA, AuNPs modified paper working electrode; CEA, carcinoembryonic antigen; PSA, prostate-specific antigen; RVFT, 
Rapid vertical flow technology; NC, Nitrocellulose film; LPS, purified lipopolysaccharides; SPA, Staphylococcus protein A; IgG, Immunoglobulin.
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these derivatives having very limited amphiphilic properties. Therefore, the existence of CD molecules in the nano 
assemblies of gold could include the amphiphilic ferrocene moieties, which lead to phase transition via solubilization of 
the aqueous NP in chloroform.118,120 Also, it was proved that AuNP@CDs had the ability to reversible-phase transfer 
between the aqueous phase and the organic phase by UV and Vis light irradiation.171,265

Inclusion of Fullerenes
Fullerenes, special water-insoluble π-electronic systems, comprise lots of unsaturated carbon atoms linked to each other 
by single or double bonds to form hollow tubes or ball-like sphere structures. Fullerenes, also called Buckminster 
fullerenes” show various interesting magnetic, superconductive, electrical, and biochemical properties.266,267

Because fullerenes C60 (cage-like structure composed of 60 carbon atoms) is extremely water-insoluble, the water- 
soluble gold NPs conjugated with thiolated γ-CD hosts were utilized to solubilize such kind of fullerene via inclusion 
complexation between fullerenes and the cavities of CDs to form a large soluble nanoaggregates as illustrated in 
Figure 11.

Additionally, because the method of fullerenes preparation is based on the thermal reactions of the appropriate carbon 
sources under various conditions,268 the produced fullerenes are always obtained as a mixture of C60, C70, and higher 
homologs. Consequently, the separation of fullerenes from each other will be considered a challenge and a point of 
research for chemists. Water-soluble gold NPs modified with thio [2-(benzylamine) ethyl-amino]-β-CD are constructed 
and successfully used as a selective recycling extractor for the C60 fullerene analog. The mechanism of separation is 
based on the fact that β-CD can only form an inclusion complex with C60 (at a ratio of 2:1 CD:fullerene) but cannot form 
such inclusion complexes with either C70 or the higher fullerene molecules.269 Thus, C60 can be easily separated from 
the mixture of C60 and others via inclusion complexation with CD-NPs to form large nano assemblies. Then, the 
included or captured C60 can be released via the addition of an inclusion compotator as adamantane molecules, as 
illustrated in270 The reversibility of the modified smart system can be utilized also for the fabrication and designing of 
other functional supramolecular hybrid materials.270 Similarly, a water-soluble nanoaggregate was constructed via the 
inclusion complexation between fullerene and α-CD.271

Cyclodextrins can include linear polymers such as PEG and PPG to form CD-capped poly-rotaxanes, with specific 
lengths depending on the utilized polymers’ molecular weight.272 There are various poly-pseudo-rotaxanes formulated 
from threading either native β-CD or L-tryptophan-modified β-CD onto the amino-terminated PPG chains of different 
Mwt or lengths.273 Afterward, further assembling of the modified polysiloxanes with AuNPs leads to the construction of 
different supramolecular networks. The modified hydrophilic aggregates or networks were characterized using different 
analyses including UV spectroscopy, FT-IR, X-ray diffraction 1H NMR, TEM, and fluorescence spectroscopy.

The mechanism of polyurethane adsorption on the surfaces of AuNPs was carried out via the electrostatic interaction 
between the amino groups end capping polyrotaxanes and AuNPs. The results indicated that the sedimentation rate and 
the modified gold aggregates’ size mainly depended on the PPG chain lengths.273

Figure 11 Schematic illustration of Fullerene tube or cylindrical structure (A), ball-like structure (B), and the formation of water-soluble nanoaggregates via the inclusion 
complexation between Fullerene and γ-CD-decorating AuNPs (C).
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Interestingly, the modified Au-aggregates, involving many L-tryptophan moieties, have both water solubility. In 
addition, the modified system has the ability for capturing or loading of fullerene (C60 analog) in water solution (ie, 
improve the aqueous solubility of fullerenes). Moreover, the obtained nano assemblies loaded with fullerene exhibited 
not only water solubility but also a high ability for DNA cleavage under light irradiation, which can be a promising 
system having potential applications in material and biological science.273

Conclusion
Due to its wide range of applications, nanotechnology is a promising and growing medical research area. AuNPs possess 
targeted drug delivery with low toxicity and ease of detection. Higher stability and drug loading compared with 
microparticles and liposomes. Cyclodextrins and their derivatives gain a great interest from researchers in the last 
decade due to their role in enhancing drug solubility and stability via the inclusion of complexation with hydrophobic 
moieties. In our article, we tried to highlight the chemistry and application of different cyclodextrins, especially the 
ability of inclusion complexes formation. Also, it focuses deeply on cyclodextrin’s role in improving drug loading 
capacity, stability, and size control of gold NPs. Moreover, in our review, we presented the reported roles of CDs in the 
design and applications of CD-conjugating gold nanoparticles (CD-AuNPs) in different biomedical fields, including drug 
delivery, antimicrobial, anticancer, and gene delivery and various targeted drug and gene delivery, preparation and 
improvement of catalytic enzymes, formation of self-assembling molecular print boards, and the fabrication of supra-
molecular functionalized electrodes and biosensors formation. Also, this review focused on applying nano-aggregates to 
separate fullerenes in an aqueous medium. The present review realized that the nano-systems composed of AuNPs-CD 
are very promising and open the door for further pharmaceutical and biomedical applications.
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