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Background: Peptic ulcer disease, a painful lesion of the gastric mucosa, is considered one

of the most common gastrointestinal disorders. This study aims to investigate the formulation

of pumpkin seed oil (PSO)-based nanostructured lipid carriers (NLCs) to utilize PSO as the

liquid lipid component of NLCs and to achieve oil dispersion in the nano-range in the

stomach.

Methods: Box–Behnken design was utilized to deduce the optimum formula with minimum

particle size. The optimized PSO-NLCs formula was investigated for gastric ulcer protective

effects in Wistar rats by evaluating ulcer index and determination of gastric mucosa oxidative

stress parameters.

Results: PSO was successfully incorporated as the liquid lipid (LL) component of NLCs.

The prepared optimum PSO-NLCs formula showed a size of 64.3 nm. Pretreatment of

animals using the optimized PSO-NLCs formula showed significantly (p< 0.001) lower

ulcer index compared to indomethacin alone group and significantly (p<0.05) less mucosal

lesions compared to the raw oil.

Conclusion: These results indicated great potential for future application of optimized PSO-

NLCs formula for antiulcer effect in non-steroidal anti-inflammatory drug (NSAID)-induced

gastric ulcer.

Keywords: natural products, gastric ulcer, pumpkin seed oil, nano-lipid carriers,

optimization, Box–Behnken experimental design

Introduction
Peptic ulcer disease (PUD) is a common gastrointestinal disorder with 10% pre-

valence in the human society.1 It is a disease related to damage caused by balance

disturbance between aggressive and defense factors in the stomach. The aggressive

factors include pepsin and stomach acid secretion, active free radicals and oxidants,

leukotrienes, endothelins, in addition to exogenous factors such as alcohol intake

and nonsteroidal anti-inflammatory drugs (NSAIDs). Contrastingly, gastric mucin,

prostaglandins (PGs), bicarbonate, nitric oxide (NO), growth factors, and antiox-

idant enzymes or antioxidant peptides like glutathione (GSH) constitute the defen-

sive factors. Nonetheless, the most commonly affected organs are the lesser

curvature in the stomach and proximal duodenum, however, ulceration may also

occur anywhere in the gastrointestinal tract (GIT) from pylorus to cardia.2,3

Importantly, the prolonged use of NSAIDs is the second most common cause of

PUD.4 NSAIDs used for anti-inflammatory, antipyretic, pain-relief, anti-platelet
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aggregation, and anti-thrombogenesis indications.5 In par-

ticular, Indomethacin, an member of NSAIDs family, is

widely used for the management of rheumatoid arthritis,

several inflammatory diseases, and for its well-established

cardiovascular protection properties; however, its contri-

bution to gastric ulceration has been documented in

literature.2 The induced inhibition of the cyclooxygenase

enzyme (COX-2) enzyme is responsible for indometha-

cin’s anti-inflammatory effect. Nevertheless, when used

to alleviate inflammation and pain, it is known to exert

a severe damaging effect on epithelial cells of the digestive

tract, which constitutes its serious side effect. It is believed

that the pathogenesis of indomethacin-induced gastric

ulceration occurs via its potential to block the activities

of the COX-1 enzyme, the major protective factor of

gastrointestinal system, and the subsequent deficiency of

protective factors such as prostaglandin E2 (PGE2), the

production and secretion of mucus and bicarbonate,

decreased mucosal blood flow, platelet aggregation dys-

function, impairment of microvascular structures.6,7 In

addition, indomethacin increases aggressive factors, eg,

acid, and oxidant parameters. On the other hand, indo-

methacin reduces anti-oxidant parameters; altogether indo-

methacin previously indicated the effects lead to epithelial

damage.6,7

Numerous treatment modalities are presently available

to prevent indomethacin-induced peptic ulceration and to

promote healing of mucosal damage, for instance, hista-

mine receptor antagonists (H2RAs), proton pump inhibi-

tors, PGs analogues, and cytoprotective agents.5

A superior drug to prevent and treat gastric-related side

effects caused by NSAIDs in general remains somewhat

controversial in clinical practice. Besides, most of these

drugs have been reported to produce severe adverse reac-

tions and toxicities upon chronic usage.8 Hence, a search

for less toxic drugs is highly required, particularly in cases

when they are to be used for an extended period.

Amongst the novel compounds recently researched for

alleviation of gastric ulcer is pumpkin seed oil (PSO).

Research has been carried out to investigate the potential

efficacy of the aforementioned drug as a potent anti-

oxidant for management and protection against peptic

ulcer; yet data with this regard remain scarce in

literature.9 PSO is rich in mono- and polyunsaturated

fatty acids, mainly oleic and linoleic acid (37–41.7%).10

In addition, PSO contains carotenoids, in high concentra-

tion, and sterols as stigmastatrienol, stigmastadienol, and

spinasterol.10,11 Reports have shown the therapeutic effects

of PSO, primarily highlighting the antidiabetic, antibacter-

ial, anti-oxidant and anti-inflammatory properties of the

edible oil with the highest contribution to the anti-oxidant

capability being related to the polar fraction of the oil,

mainly tocopherols.12–15 The mechanism underlying the

anti-oxidant activity involves the blockage of 5-alpha

reductase enzyme action.16,17

Nanostructured lipid carriers (NLCs), second-generation

solid lipid nanoparticles (SLNs), are high-performance phar-

maceutical nanocarrier systems developed to enhance water

solubility, stability as well as oil compounds' bioavailability.18

Mainly intended for parenteral administration of anti-cancer

therapeutics, SLNs introduced in 1991, are nanosized particu-

late carrier system prepared either with physiological lipids or

phospholipids, forming a lipid matrix that is solid at physio-

logical temperature, with a size range of 50 to 1000 nm,

dispersed in water vehicle or alternatively, in an aqueous

surfactant solution.19–25 Unlike most polymeric micro-

spherical and nanoparticulate carrier systems, the production

of both lipid-based nano-formulations, SLNs and NLCs, elim-

inates the employment of potentially toxic organic solvents,

which often leads to detrimental effect on certain drugs.

Nevertheless, due to their lipophilic nature, they are primarily

developed for the purpose of incorporating lipophilic active

pharmaceutical ingredients. However, hydrophilic drugs are

also incorporated yet to a lesser extent.26–28

In fact, NLCs were developed in order to overcome the

formulation-associated pitfalls of the SLNs.28 They are for-

mulated using physiological, non-irritating lipids, unlike

those used in forming polymeric nanoparticles (NPs). With

a slight modification to the SLNs, NLCs are prepared by

incorporating bioactive liquid oil component into the lipid-

based formulation. Particularly enhancing oral delivery of

drugs, the notable advantage raised by NLCs is the ability to

encapsulate extensive drug quantities by the formation of

imperfect, less structured lipid matrices, for better encapsula-

tion efficiency.27,29,30 Importantly, the imperfection is owed

to liquid oil incorporationwithin the corematrix of solid lipid

(SL).31 Further to the remarkable advantages imparted by

SLNs and other novel drug delivery systems of nanoparti-

cles, NLCs demonstrated further enhancement of stability,

reduced expulsion of the encapsulated drug from the carrier

during storage period due to the imperfection of crystalline

lattice, properties not possessed by SLNs.31,32 Moreover,

using SLNs and NCLs has minimized the fairly large number

of shortcomings associated with liposomes and NPs, such as

difficulty of upscaling, high-cost production process and

materials, and potential toxicity.19,33-35

Ahmed et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2020:152530

R
E
T
R
A
C
T
E
D

http://www.dovepress.com
http://www.dovepress.com


Lately, the trend towards using NLCs as vehicles for oils

is extremely promising.26 The NLC as a liquid core demon-

strated minimal toxicity. In addition, it has enhanced the

in vivo performance and potentiated the immunosuppressive

effects of the carried drug Tacrolimus, through inhibition of

Interleukin-2 (IL-2) cytokine release. Furthermore, Muchow

et al have developed a paste-like formulation of omega-

3-loaded NLC in order to chemically stabilize the fatty

acids.36

This study aims to investigate the formulation of PSO-

based NLCs in order to utilize PSO as the liquid lipid (LL)

component of NLCs and to achieve oil dispersion in the

nano-range in the stomach. Box–Behnken design was uti-

lized to deduce the optimum formula. The optimized PSO-

NLCs formula was investigated for gastric ulcer protective

effects by evaluating ulcer index and determination of gastric

mucosa oxidative stress parameters.

Materials and Methods
Materials
Pumpkin seed oil (PSO), d-α-tocopheryl polyethylene glycol

1000 succinate (TPGS) and Tween 80 were purchased from

Sigma-Aldrich (St. Louis, MI, USA). Precirol® ATO 5 was

obtained as a kind gift fromGattefosse (Saint-Priest, France).

Soybean L-α-phosphatidylcholine (soybean lecithin) was

purchased from Lipoid (Ludwigshafen, Germany). The

PSO oil has been used as supplied.

Formulation of PSO-NLCs
Precirol was utilized as the solid lipid (SL), PSO was

utilized as the liquid lipid (LL) and Tween 80: TPGS:

soybean lecithin (6:2:2 ratio) mixture was used as surfac-

tant in the formulation of the NLCs. PSO-NLCs were

formulated by high-shear homogenization and ultrasonica-

tion technique as previously reported.25,37,38 Briefly, lipid

formula components, precirol (SL) and PSO (LL), were

melted at 75 °C. Separately, aqueous surfactant mixture

solution (Tween 80: TPGS: soybean lecithin) was heated

to 75 °C and mixed with the melted lipids. The mixture

was homogenized (T25 Ultra-Turrax (IKA® Werke GmbH

& Co. KG, Staufen, Germany)) at 12,000 rpm for 60

seconds, in a water bath at 75 °C. The mixture was then

subjected to probe-sonication for 5 minutes. The final

volume was adjusted to 20 mL using distilled water. The

formed nanoemulsion was then left to cool to form

PSO-NLCs and stored at 20 °C.

Optimization of PSO-NLCs
The development of the Box–Behnken experimental design

for PSO-NLCs formulation components was carried out,

based on preliminary investigation, using the Statgraphics

plus, version 4 (Statgraphics software) (Manugistic Inc., PA,

USA). The selected factors were the concentrations of pre-

cirol as SL (X1); the concentration of oil PSO as LL (X2);

and the sonication time (ST) (X3). The design response was

PSO-NLCs size (nm). The design goal was set to minimize

the size of the investigated response (PSO-NLCs). The

design generated 15 formulations of various combination of

the investigated factors that were prepared as described in the

'Formulation of PSO-NLCs' section.

PSO-NLCs Size Determination
PSO-NLCs size was determined utilizing Nano-ZS particle

size analyzer (Malvern Instrument, Worcestershire, UK).

One hundred microliters of each PSO-NLCs formulation

was 100-times diluted with distilled water that was passed

through a 0.1-µm membrane filter, vortexed for 1 minute

and then measured.

Prediction and Preparation of Optimized

PSO-NLCs Formulation
The data collected from PSO-NLCs formulations, pro-

posed by the experimental design, were statistically ana-

lyzed utilizing the software (ANOVA and multiple

response optimization). The proposed optimum formula-

tion obtained (predicted formula) was practically prepared

and compared to the predicted formula by the design for

result validation.

Fourier-Transform Infrared

Physicochemical Characterization of the

Optimized PSO-NLCs
The optimized PSO-NLCs formula and formula compo-

nents were assessed using Fourier-transform infrared

(FTIR) analysis as previously described.39 Briefly, FTIR

spectra of PSO, precirol, TPGS, Tween 80, soybean

lecithin and the prepared optimized PSO-NLCs formula

were recorded over the wavelength range from 400 to

4000 cm-1 using FTIR spectrophotometer (Nicolet IZ 10,

Thermo Fisher Scientific, Waltham, MA, USA). Samples

were directly applied to the FTIR spectrophotometer with-

out treatment.
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In vivo Evaluation of Optimized

PSO-NLCs Formulation
Animals

Adult maleWistar rats (180–200 gm) were obtained from the

animal house of King Fahd Medical Research Center, King

Abdulaziz University. Animals were acclimatized for 1 week

before the experiment. The study protocol was approved by

the Faculty of Pharmacy Research Ethics Committee, King

Abdulaziz University (Reference #: PH 122–41). Care and

use of animals according to the EUDirective 2010/63/EU and

DHEW publication NIH 80–23 was ensured. One day prior

the induction of gastric ulcers, all rats were fasted in mesh-

bottomed cages to minimize coprophagia with free access to

water. The rats were then divided to four groups (8 animals

each): 1) control group: non-treated rats with no induction of

ulcer, 2) indomethacin group: in which the rats received

50 mg/kg of indomethacin, 3) PSO group: in which the rats

received pure PSO 30minutes before injection of indometha-

cin and finally 4) optimized PSO-NLCs formula group: in

which the rats received optimized PSO-NLCs formula 30

minutes before injection of indomethacin. PSO was given at

a dose of 100mg/kg and PSO-NLCs optimized formulation

was given as an equivalent dose and was administered orally

30 minutes before the induction of ulcer. Gastric ulceration

was induced by an intraperitoneal injection of indomethacin

(50mg/kg). Four hours later, all rats were sacrificed by decap-

itation. Their stomachs were removed, opened along the

greater curvature, and washed with ice-cold saline. Animal

stomachswere scored formacroscopic grossmucosal lesions.

Gastric mucosae were collected and stored at −80 °C until

used for estimation of oxidative stress parameters. Another

set of stomachs from each group was immersed in 10%

formalin for histopathological examination.

Gastric Mucosal Lesion Assessment

Mucosal lesions in all animal groups were quantified

according to a previously described method by Szabo

and Hollander.40 Briefly, images were captured for pinned

stomachs and areas of mucosal damage were measured

using ImageJ software and then expressed as % of the

total stomach surface area. For each group, mean ulcer

score expressed as ulcer index (U.I) and the percentage of

inhibition (preventive index) against indomethacin-

induced ulcers was determined using the equation:

Ulcer inhibition %ð Þ ¼ U:I: in indomethacin� U:I: in treated rats
U: I: in indomethacin

� �

� 100 1ð Þ

Determination of Gastric Mucosa Oxidative Stress

Parameters

Gastric mucosal tissues were homogenized (0.1 g/mL)

using phosphate buffer saline (ice-cold) using then centri-

fuged for 20 minutes at 4 °C. The following parameters

were calculated from the aspirated supernatant:

-Malondialdehyde (MDA), a measure of lipid peroxida-

tion, was determined according to the method of

Uchiyama and Mihara.41

-Nitric oxide (NO) was assayed colorimetrically using

Griess reagent.42

-Catalase activity was determined using a commercially

available kit (Biodiagnostic, Egypt), according to the

method of Fossati, Prencipe.43

Results and Discussion
Formulation and Optimization of

PSO-NLCs
NLCs composed of SL and LL. The inclusion of LL in

NLCs, different from SL nanoparticles, aims to reduce

crystallinity and increase the fluidity of the matrix with

reduced lipid packaging density.44–46 This leads to

improved storage life when compared with SL

nanoparticles.44 The important criteria for efficacy and effi-

ciency of nanoparticles (drug release, biodistribution and

cellular uptake) are particle size and size distribution.46,47

Table 1 shows the PSO-NLCs size variabilities for the

prepared formulations. The results revealed that the size

ranged from 65.0 to 284.0 nm for formulations F13 and

F14, respectively. The polydispersity index for the prepared

PSO-NLCs formulations was in the range of 0.2– 0.5 that

shows acceptable unimodal size distribution. Two-way

ANOVA analysis showed a significant antagonistic effect

of the SL (X1) and ST (X3) percentages on the PSO-NLCs

size with p-values of 0.00001 and 0.0001, respectively

(Table 2, Figure 1). In addition, the quadratic term of X3

showed a significant synergistic effect on PSO-NLCs size

with a p-value of 0.0313. The equation of PSO-NLCs size

prediction according to correlation with the factors is shown

in Equation (1).

PSO� NLCs size nmð Þ ¼ 491:65� 162:5X1 � 17:32X2

� 24:44X3 � 242:59X 2
1

� 11:11X1X2 � 5:83X1X3

� 20:37X 2
2 þ 17:5X2X3

þ 2:26X 3
3
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The results indicated that increasing SL (precirol) percent

(content) in the formulation showed a reduction in the pro-

duced PSO-NLCs size. This has been observed in

formulation number, 2, 6, 12 and 13. The reduction in PSO-

NLCs size with increased SL content is attributed to the

formation of more dense rigid crystalline structure of the

formed nanoparticles.46 In addition, the inverse relationship

between ST (X3) and PSO-NLCs size is attributed to the

ability of ultrasound sonication force to breakdown the

coarse emulsion droplets to smaller nano-range sizes.

Consequently, increased ST provides more energy to break-

down emulsion droplets to smaller sizes.48

On the other hand, the results of pareto chart, Figure 1,

showed a direct relationship, although non-significant at

the specified concentration range, between LL and PSO-

NLCs size. Previous reports revealed the direct relation-

ship between LL and PSO-NLCs size.45,46,48,49 The

Table 1 Experimental Runs and the Observed Globule Sizes

(Observed and Fitted Values)

PSO NLCs

Formula No.

Factors (X1–X3) Response

SL

(%)

LL

(%)

ST

(min)

Globule Size (nm)

Observed Fitted

1 0.75 0.25 3.0 173.0 172.7

2 0.90 0.10 3.0 86.0 82.5

3 0.75 0.25 3.0 174.0 172.7

4 0.60 0.40 3.0 248.0 251.5

5 0.75 0.10 1.0 205.0 205.8

6 0.90 0.40 3.0 92.0 87

7 0.75 0.25 3.0 171.0 172.7

8 0.75 0.40 1.0 198.0 200.3

9 0.75 0.40 5.0 168.0 167.3

10 0.60 0.10 3.0 241.0 246.0

11 0.75 0.10 5.0 154.0 151.8

12 0.90 0.25 1.0 115.0 117.8

13 0.90 0.25 5.0 65.0 70.8

14 0.60 0.25 1.0 284.0 278.3

15 0.60 0.25 5.0 241.0 238.3

Abbreviations: PSO, pumpkin seed oil; NLCs, nanostructured lipid carriers; X1,

concentrations of precirol as solid lipid; X2, the concentration of oil PSO as liquid

lipid; X3, the sonication time; SL, solid lipid; LL, liquid lipid; ST, sonication time.

Table 2 Statistical Analysis of Variance (ANOVA) of the PSO-

NLCs Size

Factor PSO-NLCs Size

Estimate p-value

X1 −164.0 0.00001*

X2 5.0 0.2815

X3 −43.5 0.0001*

X1X1 −10.917 0.1335

X1X2 −0.5 0.9353

X1X3 −3.5 0.5763

X2X2 −0.91667 0.8864

X2X3 10.5 0.1331

X3X3 18.083 0.0313*

R2 99.71%

Adj R2 99.18%

SEE 5.86

MAE 2.89

PRESS 12.99

Note: *Significant effect of factors on PSO-NLCs size at p< 0.05.

Abbreviations: PSO, pumpkin seed oil; NLCs, nanostructured lipid carriers; X1,

concentrations of precirol as solid lipid; X2, the concentration of oil PSO as liquid

lipid; X3, the sonication time; R2, coefficient of determination; Adj R2, adjusted
coefficient of determination; SEE, standard error of estimate; MAE, mean absolute

error; PRESS, predicted residual error sum of squares.

Figure 1 Standardized Pareto chart showing the significance of X1, X2 and X3 and

their combined effects on PSO-NLCs size.

Abbreviations: X1, concentrations of precirol as solid lipid; X2, the concentration

of oil PSO as liquid lipid; X3, the sonication time.

Figure 2 3D response surface plots showing the effects of X1, X2 and X3 on the

investigated PSO-NLCs size.

Abbreviations: SL, solid lipid; LL, liquid lipid; ST, sonication time.
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rational for this relation either unknown48 or attributed to

the inability of surfactant to cover the melted lipid dro-

plets’ surface when the LL-to-SL ratio was more than

50%.49 Pareto chart and response surface plot revealed

the relationship between the investigated factors (X1–X3)

and PSO-NLCs size (Figures 1 and 2).

Validation of the PSO-NLCs Optimized

Formula
The obtained data from the 15 formulations generated by the

experimental design were analyzed with ANOVA. The Box–

Behnken design predicted the optimum formulation that was

practically prepared and evaluated and compared with the

predicted results generated by the design (Table 3). The

prepared optimum formula showed a size of 64.3 nm that

was compared with the predicted value (62.9 nm) of PSO-

NLCs size generated by the design (Table 3). The optimized

PSO-NLCs formulation was utilized in the in vivo evaluation

Table 3 Optimum Levels for PSO-NLCs Factors and Predicted,

Actual and Residual Values for PSO-NLCs Size

Factor Optimum Level Low Level High Level

X1 0.9 0.6 0.9

X2 0.1 0.1 0.4

X3 5.0 1.0 5.0

Response Prediction Actual Residual

PSO-NLCs size 62.9 nm 64.3 nm 1.4

Desirability constraint Minimize the particle size

Abbreviations: PSO, pumpkin seed oil; NLCs, nanostructured lipid carriers; X1,

concentrations of precirol as solid lipid; X2, the concentration of oil PSO as liquid

lipid; X3, the sonication time.

Figure 3 Size distribution of optimized PSO-NLCs.

Abbreviation: PSO-NLCs, pumpkin seed oil nanostructured lipid carriers.

Figure 4 FTIR spectra of PSO, Tween 80, precirol, TPGS, soybean lecithin and the optimized PSO-NLCs formula.

Abbreviations: FTIR, Fourier-transform infra-red; TPGS, d-α-Tocopheryl polyethylene glycol 1000 succinate; PSO-NLCs, pumpkin seed oil nanostructured lipid carriers.
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studies. Size distribution of the optimized formula is shown

in Figure 3 that revealed unimodal narrow size distribution.

FTIR Physicochemical Characterization of

the Optimized PSO-NLCs
Figure 4 shows the FTIR spectra of optimized PSO-NLCs

and its individual formula components. The main PSO IR

peaks were 3300:3500 cm−1 as weak broad peaks that refer

to the OH and COOH groups. The indicated PSO OH and

COOH did not interfere with the characteristic peak region

(around 3000 cm−1) of other formula components. The

results indicated no change in the characteristic functional

group peaks of individual components when formulated in

the optimized PSO-NLCs. FTIR is a useful tool for the

evaluation of possible formula components interaction.

Incompatibility among formula components could be pre-

dicted by changes in the characteristic peaks of the func-

tional groups of each component of the optimized formula.

In vivo Evaluation of Optimized

PSO-NLCs Formulation
Effect of PSO and PSO-NLCs Formula on

Indomethacin-Induced Gastric Lesions

As shown in Figure 5, indomethacin resulted in the develop-

ment of ulcer lesions, which were quantified as ulcer index of

6.2 ± 0.6 (Figure 5A). Pretreatment using both PSO and

Figure 5 Bar graphs showing the effect of indomethacin, PSO and PSO-NLCs formula on ulcer index (A) and preventive index (B). Representative photos of the stomachs

from the four different groups (C).

Notes: Data are presented as mean ± S.E.M. *Significantly different from indomethacin at p<0.05; **significantly different from indomethacin at p<0.01; ***significantly

different from indomethacin at p<0.001; #significantly different from PSO at p<0.01.

Abbreviation: Indo, Indomethacin.
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optimized PSO-NLCs formula resulted in a significantly

(p<0.01 and 0.001, respectively) lower UI compared to indo-

methacin (Figure 5B). The effect of the formula was more

pronounced showing significantly (p<0.05) less mucosal

lesions compared to the raw oil. Representative photos of the

stomachs from the four different groups are shown in

Figure 5C.

Effect of PSO and PSO-NLCs Formula on Gastric

Mucosal Oxidative Stress Parameters

Lipid peroxidation, catalase activity and total nitrite levels

were evaluated in the gastric mucosal tissues. As shown

in Figure 6, the results for the indomethacin group indi-

cated that gastric MDA and total nitrite levels were ele-

vated compared to control that indicated increased

oxidative stress. Similarly, the activity of catalase was

higher than the control rat group (p<0.001) reflecting

a compensatory increase in antioxidative parameters to

counteract the elevated reactive oxygen species genera-

tion. PSO and PSO-NLCs formula administration had

protective effects against these alterations showing

significantly lower MDA, NO and catalase activity

(Figure 6A–C).
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Figure 6 Bar graphs showing the effect of indomethacin, PSO and PSO-NLCs formula on mucosal MDA (A), mucosal catalase (B) and mucosal nitrites (C).

Notes: Data are presented as mean ± S.E.M. **Significantly different from indomethacin at p<0.01. ***Significantly different from indomethacin at p<0.001. #Significantly

different from PSO at p<0.01.

Abbreviation: Indo, Indomethacin.
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Histopathological Examination of Stomach Sections

(PSO versus PSO-NLCs Formula)

Figure 7 shows the results of histopathological examination

of H&E stained stomach sections showing normal structure

with no evidence of inflammation or ulceration in control rats

(Figure 7A). Sections from indomethacin-treated groups

show features of acute gastritis in the form of foveolar

hyperplasia, edema, hyperemia and focal necrosis of foveolar

cells. The lamina propria shows signs of neutrophilic infiltra-

tion (Figure 7B). No pathological lesions could be detected in

mascularisproporia. Sections from PSO-treated rats showed

pits of normal gastric mucosal glands with no ulceration in

which one or pit is found to have focal foveolar necrosis,

mild edema and hyperemia in the lamina propria with sub-

mucosal area of congestion and hyperemia and no abnorm-

alities in muscularispropria (Figure 7C). The stomach of

optimized PSO-NLCs formula-treated rats (Figure 7D)

shows normal gastric mucosal glands with foveolar arrange-

ment and of normal length. No inflammation or infiltrates in

lamina propria could be detected.

Gastric ulcer occurs when there is an imbalance between

certain aggressive factors and defensive endogenous factors.

There is therefore a great need for healthy, economic and

effective antiulcer agents. Natural products have emerged as

a source of compounds with potential antiulcer activity.50,51

Previous report by our group investigated the PSO solubiliz-

ing ability of ibuprofen in self-nanoemulsifying drug deliv-

ery system for improved solubility and as protection factor

from peptic ulcer induced by the enhanced solubility of

ibuprofen.52 These promising results were taken a step

further to prove the efficacy of PSO in ulcer protection

through formulation into NLCs with improved stability and

efficacy characteristics when compared with the self-nanoe-

mulsifying drug delivery system. Optimized PSO-NLCs

showed improved efficacy in protection of anti-

inflammatory drug-induced ulcer. The protection is attributed

to PSO components (polyunsaturated fatty acids, tocopherol

and sterols). In addition, PSO has been reported for wound

healing characteristics.14,53 The optimized formula could

have the ability to re-epithelialize the internal tissues as

a result of tocopherol content of formula (from PSO and

TPGS) that has scavenger activity of peroxy, hydroxyl, and

superoxide radicals with the ability to heal the internal

ulceration.12 In addition, soybean lecithin content of the

Figure 7 Representative photomicrographs of H&E stained stomachs of: (A) control: showed normal mucosal thickness with intact mucosa and more gastric glands; (B)
indomethacin-treated rats (ulcer model) showed damage and loss of epithelial layer and gastric pits and decreased mucosal thickness with distorted gastric glands with

inflammatory cells infiltration of the submucosa; (C) PSO + indomethacin showed a mild damage and loss of epithelial layer with slight decreased in mucosal thickness and

dilation of gastric glands; (D) PSO-NLCs formula +indomethacin showed marvelous amelioration of epithelial layer and gastric pits with normal thickness of mucosa

(magnification = 200×). H&E stain.
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surfactant mixture in the optimized PSO-NLCs formulation

offers gastric mucosal barrier.53

Conclusion
In this study, PSO was successfully incorporated as the LL

component of NLCs. Box–Behnken experimental design

for PSO-NLCs formulation components was carried out to

achieve oil dispersion in the smallest formulation size in

the stomach. Pretreatment using the optimized PSO-NLCs

formula showed lower UI compared to indomethacin and

less mucosal lesions compared to the raw oil. These results

indicated great potential for future application of opti-

mized PSO-NLCs formula for antiulcer effect in NSAID-

induced gastric ulcer.
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