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Purpose: In recent years, tumour immunotherapy has ushered in a new era of oncology treatment. However, the use of immune 
checkpoint inhibitors (ICIs) in the treatment of CRC remains limited. There is an urgent clinical need for precise biomarkers that can 
aid in the screening and treatment of CRC subtypes. Therefore, we focused on the NOTCH pathway mutation status and conducted 
a systematic analysis for its predictive value of ICI therapy efficacy.
Methods: We collected mutational and clinical data from cohorts of CRC patients treated with ICIs. The relationship between 
NOTCH pathway mutations (NOTCH-MT) and CRC immunotherapy prognosis was analysed using univariate and multivariate Cox 
regression models. CRC cohort data from The Cancer Genome Atlas (TCGA) database were combined to obtain a comprehensive 
overview of immunogenicity and tumour microenvironment (TME) differences among different NOTCH pathway mutation statuses.
Results: We observed greater infiltration of M1 macrophages, CD8+ T cells, neutrophils, and activated natural killer (NK) cells with 
NOTCH-MT status. Immunogenicity was also significantly higher in patients with NOTCH-MT, as were tumour mutational burden 
(TMB), neoantigen load (NAL), and the number of mutations in DNA damage repair (DDR) pathways.
Conclusion: NOTCH-MT status was strongly associated with the prognosis of CRC patients treated with ICIs and is expected to 
serve as a novel biomarker and therapeutic target for CRC.
Keywords: NOTCH, CRC, ICIs, biomarker, tumour microenvironment

Introduction
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in men worldwide and the second leading cause 
of cancer death.1 Approximately 41% of CRC cases occur in the proximal colon, 22% in the distal colon, and 28% in the 
rectum.2,3 Notably, 50% of patients develop distant metastasis, referred to as metastatic CRC (mCRC), which has a high 
mortality rate. Usually, chemoradiotherapy can be used to treat locally advanced CRC before surgery. However, some 
studies have shown that fractional radiation of tumour cells also leads to chemoresistance.4,5 Therefore, new effective 
treatment strategies for advanced CRC patients are urgently needed. Immunotherapy, a treatment option that employs the 
body’s immune system to fight cancer, has shown promise in treating certain cancer types.6 While patients with some 
cancers, such as melanoma7 and lung cancer,8 benefit from immune checkpoint inhibitor (ICI)treatment, others do not. 
Recently, it was discovered that ICIs are effective in a subgroup of CRC patients with mismatch repair defect (dMMR) 
and high microsatellite instability (MSI-H) tumours (dMMR-MSI-H tumours) but are ineffective in another subgroup of 
patients with pMMR and low microsatellite instability (pMMR-MSI-L tumour).9 The results indicated that patients with 
dMMR-MSI-H tumours had a 40% objective response rate when treated with pembrolizumab, compared to 0% in 
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patients with pMMR-MSI-L tumors and a 78% immune-related progression-free survival rate when treated with 
pembrolizumab.10 In addition, previous studies show that carcinoembryonic antigen (CEA) levels can predict prognosis 
in CRC patients.11 However, elevated CEA levels have also been observed in many nonmalignant conditions, such as 
alcoholism, cigarette smoking, pancreatitis, and liver disease.12 Therefore, it is critical to identify biomarkers with a high 
specificity and detection rates for predicting PD-1/PD-L1 ICI efficacy in patients with CRC.

Important predictive molecular markers for ICI treatment of CRC include d-MMR-MSI-H, tumour mutational burden 
(TMB), tumour microenvironment (TME), tumour-infiltrating lymphocytes (TILs), programmed death-ligand 1(PD-L1), 
DNA polymerase epsilon (POLE), and polymerase delta 1 (POLD1).13 However, these biomarkers have some limitations. For 
example, although TMB is a useful molecular marker for CRC, there is no reliable evidence to support the use of universal 
critical values to define TMB-H and TMB-L tumours.14 Furthermore, although whole-exome sequencing (WES) is the gold 
standard for TMB detection, the associated high cost and uniformity of detection standards represent significant limitations.15 

Different methods for detecting MMR and microsatellites may produce inconsistent results.16 For example, the expression of 
PD-L1 is highly variable between tumours with varying microsatellite states.17 As a result, there is an urgently need for new 
biomarkers to predict the prognosis and efficacy of immunotherapy in patients with CRC.

The NOTCH-signalling pathway was first discovered in Drosophila melanogaster.18 It is a highly conserved signalling 
system that is regulated by Notch receptors (Notch1-4) and ligands (Jagged1, Jagged2, DLL1, DLL3, DLL4) through cell-to-cell 
interactions or through the activation of other pathways (NF-κB, WNT, TGFβ, and STAT3).19 The NOTCH pathway is involved 
in the differentiation and development of various tissues and cells. First, NOTCH signalling can affect the activation of CD8+T 
cells20 and the polarization of macrophages,21 thereby regulating the TME. Second, inhibiting Notch1 can increase the 
immunogenicity of DDR-regulated tumours.22 Additionally, Li et al found that highly-mutated NOTCH signalling indicated 
higher immunotherapy efficacy in non-small cell lung cancer (NSCLC).23 Notch1 signalling is essential for maintaining 
intestinal homeostasis, however, aberrant activation of the associated receptor disrupts the dynamic balance of the Notch1- 
mediated regulatory pathway, ultimately promoting CRC proliferation.24,25 Epithelial NOTCH signalling also rewires the TME 
of CRC cells to drive poor-prognosis subtypes and metastasis.26 However, the effect of NOTCH pathway mutation status on the 
clinical prognosis of patients with CRC receiving immunotherapy is unknown and warrants further investigation.

In this study, we used a CRC immunotherapy cohort (Samstein-CRC-cohort), TCGA-CRC, the TCGA-CRC cohort, 
and a local CRC cohort to evaluate the relationship between the mutation status of the NOTCH pathway and clinical 
prognosis in CRC patients receiving ICI therapy. We also elucidated the clinical and TME characteristics of CRC patients 
with NOTCH pathway mutations.

Methods
CRC Data Collection
The CRC cohort dataset published by Samstein et al comprised patients treated with anti-PD-1/PD-L1 therapy or anti- 
CTLA4 therapy or a combination of the two datasets from the public database (hereafter referred to as Samstein-CRC).27 

The Samstein-CRC cohort data on mutations and immunotherapy prognosis from 109 patients with advanced CRC 
treated with ICIs.

TCGA-COAD and TCGA-READ clinical, mutation, and expression data were retrieved from the TCGA database.28 

The TCGA-COAD and TCGA-READ cohorts were combined to form the TCGA-CRC cohort.We obtained mutation 
data on 103 CRC samples from Zhujiang Hospital, Southern Medical University, using targeted sequencing 
(HapOncoTM680 Panel). Supplementary Table 1 contains information about the panel on targeted sequencing. All 
participants provided written informed consent, and this study was approved by the Zhujiang Hospital Research Ethics 
Committee of Southern Medical University.

Supplementary Tables 2–4 contain the baseline characteristics of the three CRC cohorts.

Evaluation of NOTCH Pathway Mutation State
The NOTCH signalling gene set (KEGG Notch signalling pathway) was downloaded from the Molecular Signatures 
Database (MSI GDB),29 Supplementary Table 5 contains information about the NOTCH signalling gene set. We 
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excluded synonymous mutation data from somatic mutation data for the three CRC cohorts, thereby retaining only 
nonsynonymous mutation data. We counted the number of NOTCH pathway gene mutations in each CRC patient. Then, 
based on whether each CRC patient had zero NOTCH pathway gene mutations, we divided the patients into mutant-type 
(MT) and wild-type (WT) groups.

Analysis of the Tumour Immune Microenvironment
TME immunogenicity analysis comprised immune-related gene expression, immune cell, immune-related score, and 
pathway enrichment analyses. Furthermore, the TMB, neoantigen loads (NAL), and number of mutations in several the 
DNA damage repair (DDR) pathways were used in the immunogenicity analysis. TMB and NAL were derived from 
a published study in the TCGA-CRC.30 The TMB score of the Samstein-CRC cohort was directly obtained from the 
public datasets, and the TMB scores of Local-CRC cohort and TCGA-CRC cohort were quantified by dividing the 
number of somatic mutations by 38 Mb. Moreover, DDR pathways were obtained from a previously published study.31 In 
TCGA-CRC cohort, we selected the number of nonsynonymous mutations in DDR pathways in each patient. Immune- 
related genes and their functional classifications were obtained from articles published by Rooney et al32 and Thorsson 
et al.30 Additionally, we calculated the immune cell abundance of each CRC patient using the CIBERSORT, EPIC, and 
IPS immune cell algorithms33,34 in the TCGA-CRC cohort. Path enrichment analysis comprised two algorithms: gene set 
enrichment analysis (GSEA) and single sample GSEA (ssGSEA).35,36 The signalling gene set was downloaded from the 
MSI GDB.Based on transcriptome data from the TCGA-CRC cohort, ssGSEA and GSEA were used to enrich and 
analyse the functional gene sets.

Statistical Analysis
The Mann–Whitney U-test to compare continuous variables between the two groups . Fisher’s exact test was used to 
compare categorical variables. Furthermore, univariate and multivariate Cox proportional hazards regression models, as 
well as Kaplan-Meier analysis, were used to determine prognosis. All statistics and visualizations in this study were 
performed and created using the R programming language (Version. 4.0). In this study, a two-tailed P value less than 0.05 
was deemed statistically significant.

Results
NOTCH-MT is Related to Improvement in OS After ICI Treatment
To investigate the relationship between NOTCH-MT and ICI efficacy in CRC patients, we downloaded the CRC cohort 
comprising patients treated with ICIs (Samstein-CRC). A detailed breakdown of the analytical process is shown in 
Figure 1A. Next, we divided all patients into two groups according to the nonsynonymous mutation status of the NOTCH 
pathway, namely the NOTCH-MT group and the NOTCH-WT group. Univariate Cox regression analysis revealed that 
while clinical characteristics such as age (old vs young) and sample type (metastatic vs primary) were unrelated to the 
survival rate of ICI patients, the mutation status of the NOTCH pathway was closely related to clinical prognosis 
(Supplementary Figure 1A and B). Additionally, multivariate Cox regression analysis revealed that NOTCH pathway 
mutation status is an independent protective factor for CRC patients undergoing immunotherapy (Supplementary 
Figure 1A and C).To determine the gene mutant phenotype had an opposing effect on prognosis, we performed univariate 
Cox proportional hazards regression analysis to assess the effects of the mutation status of six genes and NOTCH 
pathway on prognosis in CRC patients receiving ICI immunotherapy (Supplementary Figure 1D).The results suggest that 
the mutant phenotype of each relevant gene does not indicate worse prognosis after immunotherapy. Therefore, gene 
mutation status and NOTCH pathway mutation status do not affect the prognosis of CRC patients receiving ICI therapy. 
The overall survival (OS) of NOTCH-MT in CRCpatients was significantly longer than that of NOTCH-WT patients (P < 
0.001, HR = 0.42, 95% CI 0.23–0.77; Figure 1B). Next, we explored the prognostic value of NOTCH pathway mutations 
in CRCpatients who did not undergo therapy with ICIs. Notably, in the TCGA-CRC cohort, there was no significant 
difference in the OS between NOTCH-MT and NOTCH-WT CRC patients (Figure 1C). Finally, we evaluated the 
NOTCH pathway mutation status of patients in the PanCancer cohort treated with ICIs using six genes included in the 
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Samstein-CRC cohort and performed an immunotherapy prognostic analysis. We found a significant difference in the OS 
of NOTCH-MT PanCancer patients (P = 0.001, HR = 0.79, 95% CI: 0.69–0.91;Supplementary Figure 2A).

Landscape of Gene Mutation in Different NOTCH Signalling Pathway States
To investigate differences in the frequency of somatic mutations between the NOTCH-MT and NOTCH-WT groups, 
we analysed the top 20 somatic mutations in an ICI treatment cohort. First, we identified that higher mutation rates 
among the top 20 mutant genes, KMT2D (48.1% vs 10.5%; P<0.05), ARID1A (50% vs 7%; P<0.05), PTPRS (40.4% 
vs 5.2%; P<0.05), RNF43 (38.5% vs 1.8%; P<0.05), TCF7L2 (30.8% vs 8.8%; P<0.05), KMT2C (34.6% vs 3.5%; 
P<0.05), FAT1 (28.8% vs 5.3%; P<0.05), SMARCA4 (26.9% vs 7.0%; P<0.05), ARID1B (30.8% vs 1.8%; P<0.05), 
FBXW7 (25.0% vs 7.0%; P<0.05), PTCH1 (26.9% vs 5.3%; P<0.05), ZFHX3 (32.7% vs 0%; P<0.05), BRCA2 
(23.1% vs 7.0%; P<0.05), CREBBP (30.8% vs 0%; P<0.05) and NF1 (25.0% vs 5.3%; P<0.05). Furthermore, APC 
(63.5% vs 82.5%; P<0.05) and TP53 (40.4% vs 61.4%; P<0.05) had lower mutation rates in the NOTCH-MT group. 
The NOTCH-MT group had a higher TMB value than the NOTCH-WT group (P<0.05). There were no significant 
differences in other clinical characteristics, such as age and sample type between the NOTCH-MT and NOTCH-WT 
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Figure 1 The predictive value of clinical characteristics and NOTCH signalling pathway mutation status for ICI efficacy. (A) Data processing flowchart of the study. (B) 
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groups (Figure 2A). We also integrated the NOTCH pathway gene set in the 3 cohorts (Supplementary Figure 2B) 
and found CREBBP, EP300, NOTCH1, NOTCH2, and NOTCH3 to be shared genes.In addition, we further 
investigated NOTCH pathway gene mutations in the TCGA-CRC cohort, and found that the mutation frequencies 
of CREBBP(26%), EP300(17%), NOTCH1(11%), NOTCH2(15%), and NOTCH3(18%) ranked very high in the 
TCGA-CRC cohort (Supplementary Figure 2C). We also identified NOTCH1-4 as critical genes in the NOTCH 
pathway after analysing the NOTCH signalling using the pathway visualization function in the KEGG database 
(Supplementary Figure 3).

Next, we examined the mutual exclusion co occurrence of the top 20 mutant genes in a cohort of ICI patients. In 
Figure 2B, brown represents co occurrence while yellow represents mutually exclusive relationships. We found high 
correlations between several genes ARID1A and KMT2D(P<0.01), PTPRS and KMT2D(P<0.01), ARID1B and ARID1A 
(P<0.01) and ZFHX3 and PTPRS(P<0.01) showed high correlation. In addition, (RNF43 vs TP53; P<0.01) had the most 
exclusive relationships (Figure 2B). The immunogenicity of the NOTCH-MT group was higher than that of the NOTCH- 
WT group.

As illustrated in Figure 3A–C, we analysed TMB in an ICI treatment cohort, TCGA-CRC cohort, and local treatment 
cohort based on NOTCH pathway mutation status. TMB was significantly greater in the NOTCH-MT group than in the 
NOTCH-WT group (all p<0.05). The accumulation of cancer genome mutations may generate “new antigens” specific to 
tumours. As a result, we analysed the NAL in the TCGA-CRC cohort and found that the NOTCH-MT group had a higher 
NAL (p<0.05, Figure 3D). TMB and NAL levels may have increased in NOTCH-MT patients as a result of their 
improved response to ICIs. Numerous studies have established a link between DDR pathway mutations and the curative 
effect of ICIs. Thus, we compared the number of DDR pathway mutations in NOTCH-MT and NOTCH-WT tumours. 
The number of DDR pathway mutations in the TCGA-CRC cohort increased significantly in the NOTCH-MT group 
(including BER, HR, MMR, SSB, DSB, NER, NHEJ, FA, and DDR, all p<0.05, Figure 3E).

Difference in the Immune Microenvironment Between the NOTCH-MT and 
NOTCH-WT Groups in the TCGA-CRC Cohort
There are obvious therapeutic differences between patients receiving immunotherapy are largely due heterogeneity in the 
immune microenvironment. To measure differences in the immune microenvironment between the NOTCH-MT and 
NOTCH-WT groups, we compared immune cell characteristics, immune-related scores, and immune-related genes. We 
calculated the immune cell infiltration state of patients in the TCGA-CRC cohort using the CIBERSORT, EPIC, and IPS 
algorithms and compared differences in immune cell infiltration patterns between NOTCH-MT and NOTCH-WT patients. 
The results indicated that memory B cells, CD8+ T cells, activated NK cells, M1 macrophages, and neutrophils were more 
abundant in the NOTCH-MT group than in the NOTCH-WT group using the CIBERSORT algorithm (p<0.05, Figure 4A).

In addition, CD4+ T cells, CD8+ T cells, macrophages, and NK cells were more abundant in the NOTCH-MT group 
than in the NOTCH-WT group using the EPIC algorithm (p<0.05, Figure 4B). MHC molecules, effector cells, and 
checkpoint molecules were more abundant in the NOTCH-MT group than in the NOTCH-WT group using the IPS 
algorithm (p<0.05, Figure 4C). This indicated that the NOTCH-MT group had a significantly higher proportion of 
immunocompetent cells than the NOTCH-WT group. We calculated immune-related scores (Th1 cells, Th2 cells, 
macrophage regulation, and lymphocyte infiltration characteristic scores) and discovered that the NOTCH-MT group 
had significantly higher immune-related scores than the NOTCH-WT group (p<0.05, Figure 4D–G).

Immune-related genes regulate the immune status of tumours, and their expression affects the results of ICI treatment. 
In the TCGA-CRC cohort, we compared the relative expression of nine immune checkpoint-related genes between the 
NOTCH-WT and NOTCH-MT groups. The results indicated that CD274, HAVCR2, LAG3, IDO1, CTLA4, TIGIT, 
PDCD1, and PDCD1LG2 expression levels were significantly higher in the NOTCH-MT group than in the NOTCH-WT 
group (all P<0.05, Figure 5A). The differences in the expression patterns of immune-related genes between NOTCH-MT 
and NOTCH-WT are depicted in Figure 5B. The results indicate that NOTCH-MT patients had significantly increased 
expression of antigen presentation-related genes, cytolysis-related genes, stimulating immune-related genes, activated 
immune cell-related genes (CD4+ regulatory T-cells, CD8+ T-cells, NK cells), and inhibition-related genes.
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Figure 2 (A) Genomic profiles of patients with colorectal cancer treated with ICIs.The top 20 genes with the highest mutation frequencies and the corresponding clinical 
information are shown in the figure. (B) Heatmap depicting the mutual exclusion co-occurrence analysis results for the top twenty mutated genes (*p<0.05; **p<0.01; and 
****p<0.0001; Mann–Whitney U-test).
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Figure 4 NOTCH-MT CRC was associated with significant immune cell enrichment and improvement in immune scores. Comparison of the proportions of immune cells 
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Gene Enrichment Analysis Between the NOTCH-MT and NOTCH-WT Groups
GSEA and ssGSEA were used to identify functional gene sets enriched in the NOTCH-MT and NOTCH-WT groups. 
JAK-STAT, Toll-like receptor, B-cell receptor, T-cell receptor, and Fcγ receptor were all significantly upregulated in the 
NOTCH-MT group (p<0.05, ES>0). Wnt, FGFR4 ligand binding, and associated action pathways were significantly 
downregulated in the NOTCH-MT group (all p<0.05, ES<0, Figure 5C). Some immune exhaustion-related pathways, 
such as fatty acid catabolism and glucose metabolism regulation, were more abundant in the NOTCH-WT group (all 
p<0.05, ES<0, Figure 5D). Certain pathways involved in the killing function of immune cells were found to be 
upregulated in the NOTCH-MT group, including leukocyte migration, antigen treatment cross-presentation, and natural 
killer cell activation (all p<0.05, ES>0, Figure 6A). Certain cytokine-related pathways, such as interleukin, tumour 
necrosis factor, interferon, colony-stimulating factor, and chemokine-related pathways, are also significantly enriched in 
NOTCH-MT (all p<0.05, ES>0, Figure 6B). Similarly, the results of ssGSEA showed that the ssGSEA scores of several 
cytokines and chemokines were significantly higher in the NOTCH-MT group. In contrast, the ssGSEA scores of FGFR 
ligand binding and fatty acid metabolism pathways in the NOTCH-MT group were significantly lower than those in the 
NOTCH-WT group (all p<0.05, Figure 7).

Discussion
This study sought to determine the relationship between NOTCH-MT and prognosis in patients withCRC treated with 
ICIs. We discovered that NOTCH-MT is associated with a favour prognosis in patients receiving ICIs, indicating that 
NOTCH pathway mutations can be serve as an independent predictive factor for CRC immunotherapy. We also sought to 
determine reasons why NOTCH-MT is associated with improved clinical benefits, which were particularly notable in the 
immune microenvironment (Figure 8). The NOTCH-MT group demonstrated increased immunogenicity, a greater 
number of immune-activated cells, and higher expression of immune point-related genes, all of which are typically 
associated with a better prognosis following immunotherapy. These findings suggest that NOTCH pathway status may be 
used as a biomarker to predict prognosis of CRC patients treated with ICIs.

The TME may be one mechanism by which NOTCH -MT patients experience improved prognosis with immunother-
apy. It comprises tumour cells, fibroblasts, endothelial cells, immune infiltrating cells, and extracellular matrix compo-
nents. Immune infiltrating cells are the main components of the TME and are shown to be related to the efficacy of 
immunotherapy.37 According to the fundings on the immune cell infiltration state of patients in the TCGA-CRC cohort, 
we inferred that patients with NOTCH-MT had a higher proportion of memory B cells, CD8+ T cells, activated NK cells, 
and M1 macrophages. Macrophages exhibit two distinct phenotypes. M1 macrophages typically express proinflammatory 
cytokines and contribute to the antitumor immune response, whereas, M2 macrophages express anti-inflammatory 
cytokines and chemokines, inhibit CD8+ T-cell activation, promote Treg recruitment, and contribute to tumour immune 
escape.38 NOTCH signalling promotes macrophage polarization to the M1 phenotype, thereby enhancing antitumour 
immunity.21 Macrophages can mediate T-cell activation through the production of IL-12 and the expression of costimu-
latory molecules such as CD86.39 Furthermore, T-cell infiltration, particularly of CD8+ T-cells into the TME, has been 
associated with better prognosis in various malignant tumours types, including breast cancer, lung cancer, melanoma, 
colon cancer, and colorectal cancer.40,41

Similarly, the NOTCH pathway can promote CD8+ T-cell activation by expressing granzyme B and IFN-γ.20 NK 
cells are innate cytotoxic lymphocytes that play a role in cancer surveillance and elimination.42 IL-12 is primarily 
produced by antigen-presenting cells (APCs) with the assistance of Toll-like receptors and stimulates NK cells to exert 
various physiological effects on peripheral blood lymphocytes.42,43 The majority of the effects induced by IL-12 are 
mediated by IFN-γ secretion.44,45 IFN-γ has been shown to reduce Treg infiltration, thus, enhancing the antitumour 
immune effect.45,46 NK cells have recently been shown to enhance the efficacy of PD-1/PD-L1 immunotherapy.46 Taken 
together, we hypothesize that the NOTCH signalling pathway also regulates NK cell activation via IFN-γ, thereby 
enhancing the effect of immunotherapy.

In addition to the TME, increased tumour immunogenicity may contribute to an improved immunotherapy prognosis. 
Immunogenicity is the body’s capacity to promote immunity,47 which has been linked to immunotherapy efficacy48 and can 
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A
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Figure 6 (A) In the TCGA-CRC cohort, differences in immune cells (A) and cytokines (B) were observed between NOTCH-WT and NOTCH-MT CRC patients (identified 
by GSEA).
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Figure 7 Comparison of NOTCH-MT and NOTCH-WT tumours in the TCGA-CRC cohort using ssGSEA (**p<0.01; ***p<0.001; and ****p<0.0001).
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be assessed through TMB, NAL, and mutations in the DDR pathways.49,50 TMB appears to be a predictive biomarker of 
tumour response to ICIs in various cancer types.51,52 In the KEYNOTE-158 study, a high TMB (≥10 mut/Mb) was 
associated with a better response to anti-PD-1 treatment.53 TMB is the primary regulator of tumour-specific antigen 
expression (new antigen).54 The new antigen can enhance antitumour immunity, thereby enhancing the efficacy of 
immunotherapy.55 The DDR pathway is critical for genome integrity.49 Increased DDR mutation accumulation results in 
increased TMB and NAL levels, which can induce an antitumour response mediated by T cells.56 In recent studies, NOTCH 
signalling has been linked to the antitumour immune process mediated by T cells.57 Thus, the higher mutation rates in the 
TMB, NAL and DDR pathways observed in the NOTCH-MT group demonstrates that CRC patients with NOTCH-MT 
respond better to ICI treatment.Some tumour signalling pathways can interact with the NOTCH transduction pathway, 
affecting the immunotherapy prognosis. Studies have shown that Wnt/β-catenin signaling, the upstream Notch pathway, 
may inhibit the therapeutic effect of ICIs.58,59 By interacting with the Notch pathway ligand Jagged1, β-catenin activates the 
Notch pathway, thereby contributing to the development of colon cancer.60,61 We discovered that the Wnt/β-catenin 
pathway, FGFR4 ligand binding, and associated pathways were significantly down-regulated in the NOTCH-MT group 
via GSEA.62,63 According to previous reports, activation of the FGFR4 signalling pathway is intimately linked with the 
development and progression of cancer.64,65 By activating the Ras-Raf-MAPK and PI3K-AKT pathways, FGFR4 signalling 
can promote tumour growth. Interestingly, it has been demonstrated that FGFR4 inhibition indirectly inhibits PD-L1 
expression on the surface of tumour cells by affecting the TME.66 Through the JAK-STAT pathway, IL-2 can regulate the 
development and maturation of NK cells, thereby affecting the antitumour effect.67–69 Some pathways associated with 
immune exhaustion, such as lipid and glucose metabolism, were also significantly downregulated in the NOTCH-MT 
group. Numerous studies have demonstrated that lipid and glucose metabolism can promote tumour growth.70 This study 
investigated the relationship between CRC immunotherapy prognosis and NOTCH pathway mutation status to elucidate the 
possible mechanism underlyingNOTCH pathway mutation as an independent prognostic marker for CRC immunotherapy. 
However, this study has some limitations. First, there was a lack of functional assays related to pathways in GSEA analysis. 
Due to the absence of hot spot mutations among various gene mutations, it is currently difficult to perform experimental 
verification of in pathway mutation research. Currently, functional enrichment analysis can assess correlations in the 
NOTCH pathway as closely as possible through associations identified in previously published pathways, ICIs, and the 
immune microenvironment. We must also concede that the evidence supporting such arguments are relatively weak and 
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thus, we can only propose hypotheses that may explain the observed phenomena. Second, given the small size of the CRC 
cohort receiving ICIs, we examined the relationship between NOTCH pathway expression and immunotherapy prognosis in 
the Samstein-CRC cohort. The TCGA-CRC cohort and a local cohort of 108 CRC patients from Zhujiang Hospital, 
Southern Medical University, were used for verification.

Conclusions
In this study, we found that the OS of CRC patients with NOTCH-MT was significantly longer than that of patients with 
NOTCH-WT patients in the Samstein-CRC cohort. Additionally, NOTCH-MT enriched activated immune cells had 
increased immunogenicity and enhanced immune-related characteristics. Therefore, NOTCH-MT status may be used as 
a biomarker to stratify CRC patients for immunotherapy.
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