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Background: The predictive effect of systemic inflammatory factors on postoperative pulmonary complications in elderly patients 
remains unclear. In addition, machine learning models are rarely used in prediction models for elderly patients.
Patients and Methods: We retrospectively evaluated elderly patients who underwent general anesthesia during a 6-year period. 
Eligible patients were randomly assigned in a 7:3 ratio to the development group and validation group. The Least logistic absolute 
shrinkage and selection operator (LASSO) regression model and multiple logistic regression analysis were used to select the optimal 
feature. The discrimination, calibration and net reclassification improvement (NRI) of the final model were compared with “the Assess 
Respiratory Risk in Surgical Patients in Catalonia” (ARISCAT) model.
Results: Of the 9775 patients analyzed, 8.31% developed PPCs. The final model included age, preoperative SpO2, ANS (the 
Albumin/NLR Score), operation time, and red blood cells (RBC) transfusion. The concordance index (C-index) values of the model 
for the development cohort and the validation cohort were 0.740 and 0.748, respectively. The P values of the Hosmer–Lemeshow test 
in two cohorts were insignificant. Our model outperformed ARISCAT model, with C-index (0.740 VS 0.717, P = 0.003) and NRI 
(0.117, P < 0.001).
Conclusion: Based on LASSO machine learning algorithm, we constructed a prediction model superior to ARISCAT model in 
predicting the risk of PPCs. Clinicians could utilize these predictors to optimize prospective and preventive interventions in this patient 
population.
Keywords: older adult, postoperative complications, ANS, the albumin/NLR score, risk factors

Introduction
PPCs are the leading cause of morbidity and mortality, increasing the risk of intensive care admissions, prolonging 
hospital stays, and raising the economic burden.1–6 Worldwide, more than 310 million surgical procedures are performed 
each year,7 with the proportion of older adults increasing.8 In comparison with young adults, older adults are at a greater 
risk of developing postoperative PPCs.9,10 In nonthoracic surgery, the risk of postoperative PPCs in patients aged 65 
years or older was almost 6 times among other adults.11 As the global aging process intensifies,12 the global burden of 
postoperative pulmonary complications will increase further. Hence, developing a prediction tool for PPCs in older 
patients is particularly necessary.

Although some risk prediction models about PPCs have been developed,9,13–15 such as ARISCAT model, the 
lack of specific targeting of elderly patients and single type of surgery limit their application and generalization in 
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elderly patients. In addition, recent studies have shown that some markers of the systemic inflammatory response: 
albumin, the neutrophil-to-lymphocyte ratio (NLR), ANS, lymphocyte-to-monocyte ratio (LMR), the platelet-to- 
lymphocyte ratio (PLR) and systemic immune-inflammatory index (SII) are significantly associated with post
operative complications.16–19 These factors can be easily detected by blood tests, which are simple and common in 
clinical practice. The lack of data assessing the ability of these indicators to predict the risk of PPCs in older 
patients may compromise the accuracy of predicting the likelihood of PPCs in patients. To achieve the goal of 
predicting PPCs risk in elderly patients, a comprehensive and applicable tool that includes biomarkers is urgently 
needed.

More recently, machine learning has played an important role in the construction of clinical predictive models. 
LASSO regression is a powerful machine learning tool that minimizes the potential collinearity of predictive variables 
and filters out the most influential ones.20

The purpose of this study was to develop and validate a machine learning predictive model incorporating multiple 
dimensions of variables. The model could assess the likelihood of PPCs in elderly patients, promoting rational prevention 
and effective treatment.

Materials and Methods
Study Design
Based on the electronic health record of our institution, the retrospective cohort study analyzed older patients who 
received general anesthesia in the hospital from January 1, 2014, to December 31, 2019. Two authors systematically 
checked and confirmed all clinical data for each study participant. This study was conducted in accordance with the 
Declaration of Helsinki and approved by the Ethics Committee of Wuhan Union Hospital (Approval No.2021–0986). In 
order to protect the patient’s privacy, all personal information was anonymous. Due to the absence of the patient’s 
identifying information, the requirement for informed consent was waived. The analysis and reporting of this study 
followed the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD) reporting guideline.21

Study Population
Patients aged 65 years or older, and receiving invasive ventilation for surgery who underwent general anesthesia were 
included in the study. Patients were excluded if they met one or more of the following criteria: (1) preoperative 
mechanical ventilation; (2) operations related to previous postoperative complications; (3) a second operation after 
surgery; (4) organ transplantation; (5) discharged within 24 hours after surgery; (6) cardiac and thoracic surgery. In 
addition, we excluded patients with missing data in data analysis.

Data Collection
Based on a review of previous research and available variables, we collected potential characteristics. Preoperative 
factors included age, gender, body mass index (BMI), history of smoking and alcohol, respiratory infection < 30 days, 
preoperative SpO2, cancer, chronic obstructive pulmonary disease (COPD), hypertension, coronary artery disease and 
diabetes.

Intraoperative factors were listed below: type of surgery, surgical incision, operation time, emergency procedure and 
red blood cell transfusion (RBC transfusion).

Preoperative laboratory test results included hemoglobin, platelet, urea nitrogen, creatinine, alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), total bilirubin (TBil), albumin, NLR, ANS, PLR, LMR, SII. Anemia was 
defined as the hemoglobin concentration < 130 g/L in men or < 120 g/L in women. ANS was calculated by assigning 
a point of 0 or 1 to albumin and NLR levels over or below the threshold, with scores ranging from 0 to 2. The primary 
outcome was the composite of PPCs (atelectasis, pneumonia, respiratory failure and aspiration pneumonia) in the first 7 
days after surgery.
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Machine Learning Predictive Model
The whole cohort was randomly entered into a development cohort and validation cohort at a ratio of 7:3. A prediction 
model was developed using the development group, and its performance was tested in the validation group.

We developed the model in the training set using a machine-learning algorithm. The machine learning algorithm, the 
LASSO regression model, avoids overfitting and reduces model complexity through L1 regularization to enhance 
robustness.22 Lasso regression is a compression estimation method with the core idea of reducing the set of variables. 
By constructing a penalty function, LASSO regression compresses the variable coefficients. It makes the regression 
coefficients of some insignificant variables zero, thus selecting the critical variables for the following analysis step. The 
optimal variables were determined by the optimal lambda value for 10-fold cross-validation.

We employed LASSO regression for variable selection using the GLMNET package in R. Subsequently, the features 
selected in LASSO regression were included in the multiple logistic regression analysis. Finally, predictors with P values 
<0.05 were used to construct the model to predict PPCs.

Data-Analysis
For baseline characters, continuous variables were expressed as median (interquartile range) using the t-test or Mann– 
Whitney test, and categorical variables were presented as number (percentage) using χ2 test or Fisher's exact test. 
Continuous variables were transformed into categorical variables according to clinically relevant thresholds or the 
Youden index of the receiver operating characteristic (ROC) curve analysis.

The discrimination of the model was assessed by C-index and calibration was evaluated by the Hosmer–Lemeshow 
goodness-of-fit test. For different AUC comparisons, we used the DeLong test.23 All statistical analyses were performed 
in R version 4.1.1. It was considered statistically significant when a 2-sided P < 0.05.

Results
Clinical Characteristics
A total of 13,413 patients aged 65 years and older were screened in the initial assessment, and 3638 patients were 
excluded (Figure 1). Finally, 9775 patients were randomly assigned to the development cohort (6842 patients) and 
validation cohort (2933 patients). The overall length of postoperative hospital stay was 8.96 (6.04 to 13.39) and the 
incidence of PPCs was 8.31%. Table 1 shows the baseline characteristics of the development and validation sets. No 
significant differences were found in key domains.

Predictors Selection
In the development group, we performed a LASSO regression analysis to evaluate the 29 variables (Figure 2A and B). 
After selection by LASSO regression, the six factors were incorporated into a multivariable logistic regression analysis. 
Finally, five variables were independently statistically significant predictors: age, preoperative SpO2, ANS, operation 
time and RBC transfusion. The model based on these variables was displayed in a forest diagram (Figure 3).

Validation and Assessment of the Prediction Model
The C-index of the prediction model was 0.740 (95% CI, 0.720–0.760) in the development group and 0.748 (95% 
CI, 0.717–0.779) in the validation group, which indicated moderate discrimination. The model showed good 
calibration, with insignificant Hosmer–Lemeshow chi-square values of (χ2 = 10.392, P = 0.239) and (χ2 = 8.232, 
P = 0.411). Our model performed better than the ARISCAT model in predicting PPCs (AUC: 0.717; 95% CI, 
0.696–0.738), P =0.003 (Figure 4). The NRI of comparison between our model and ARISCAT model was 0.117 
(95% CI, 0.073–0.161; P < 0.001). ARISCAT model had poor calibration, with a Hosmer–Lemeshow chi-square 
yielding a P-value of < 0.001.
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Comparison of Inflammatory Biomarkers
The ROC curves of the individual biomarker were plotted (Figure 5) and their predictive ability was assessed by AUC values. 
Among six potential biomarkers, ANS had the best predictive ability and was the independent predictor. Besides, the AUC of 
model (incorporating the ANS) was significantly better than the model without the ANS (0.740 vs 0.715, P < 0.001) (Figure 4).

Figure 1 Patient Flow Diagram.

Table 1 Clinical Characteristics of the Study Population in the Development Cohort and Validation Cohort

Variables Total  
(n = 9775)

Development Cohort  
(n = 6842)

Validation Cohort  
(n = 2933)

P value

Operative variables
Age (years) 0.657

65–75 7801 (79.81) 5459 (79.79) 2342 (79.85)
76–84 1737 (17.77) 1223 (17.87) 514 (17.52)

≥85 237 (2.42) 160 (2.34) 77 (2.63)
BMI ≥ 28kg/m2 722 (7.39) 508 (7.42) 214 (7.3) 0.857

Male 5131 (52.49) 3621 (52.92) 1510 (51.48) 0.199

Drinking history 1576 (16.12) 1090 (15.93) 486 (16.57) 0.449
Smoking history 2121 (21.7) 1483 (21.67) 638 (21.75) 0.953

Respiratory infection < 30 days 835 (8.54) 595 (8.7) 240 (8.18) 0.428

Preoperative SpO2 (%) 0.949
≥96 8264 (84.54) 5787 (84.58) 2477 (84.45)

91–95 1263 (12.92) 880 (12.86) 383 (13.06)

≤90 248 (2.54) 175 (2.56) 73 (2.49)
Cancer 1282 (13.12) 915 (13.37) 367 (12.51) 0.262

COPD 2262 (23.14) 1608 (23.5) 654 (22.3) 0.205

(Continued)
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Table 1 (Continued). 

Variables Total  
(n = 9775)

Development Cohort  
(n = 6842)

Validation Cohort  
(n = 2933)

P value

Hypertension 3477 (35.57) 2432 (35.55) 1045 (35.63) 0.955
Coronary artery disease 759 (7.76) 540 (7.89) 219 (7.47) 0.497

Diabetes 1208 (12.36) 867 (12.67) 341 (11.63) 0.160

Operative variables
Type of surgery 0.199

Otolaryngology 672 (6.87) 446 (6.52) 226 (7.71)

Gynaecology 337 (3.45) 222 (3.24) 115 (3.92)
Orthopaedic 1563 (15.99) 1103 (16.12) 460 (15.68)

Urology 937 (9.59) 654 (9.56) 283 (9.65)

Breast and thyroid 696 (7.12) 502 (7.34) 194 (6.61)
Neurosurgery 461 (4.72) 320 (4.68) 141 (4.81)

Digestive 4255 (43.53) 3001 (43.86) 1254 (42.75)

Vascular 366 (3.74) 263 (3.84) 103 (3.51)
Others 488 (4.99) 331 (4.84) 157 (5.35)

Surgical incision 0.814

Laparoscopic 2267 (23.19) 1596 (23.33) 671 (22.88)
Open abdomen 2559 (26.18) 1796 (26.25) 763 (26.01)

Others 4949 (50.63) 3450 (50.42) 1499 (51.11)

Emergency 367 (3.75) 256 (3.74) 111 (3.78) 0.965
Operation time (h) 0.161

<2 3493 (35.73) 2421 (35.38) 1072 (36.55)
2 to 3 2419 (24.75) 1730 (25.29) 689 (23.49)

>3 3863 (39.52) 2691 (39.33) 1172 (39.96)

RBC transfusion 1431 (14.64) 1000 (14.62) 431 (14.69) 0.944
Laboratory test
Anaemia 4816 (49.27) 3351 (48.98) 1465 (49.95) 0.390

Platelet (×109/L) 0.638
100–300 8489 (86.84) 5952 (86.99) 2537 (86.5)

<100 459 (4.7) 323 (4.72) 136 (4.64)

>300 827 (8.46) 567 (8.29) 260 (8.86)
Urea nitrogens >7.5 mmol/L 1460 (14.94) 990 (14.47) 470 (16.02) 0.052

Creatinine >133 umol/L 243 (2.49) 172 (2.51) 71 (2.42) 0.841

ALT >40 U/L 1266 (12.95) 869 (12.7) 397 (13.54) 0.274
AST >40 U/L 977 (9.99) 667 (9.75) 310 (10.57) 0.229

TBil >21 μmol/L 1230 (12.58) 866 (12.66) 364 (12.41) 0.761

Albumin >36.65 g/L 2715 (27.77) 1908 (27.89) 807 (27.51) 0.725
NLR > 3.086 3105 (31.76) 2185 (31.94) 920 (31.37) 0.597

ANS 0.567

0 5374 (54.98) 3741 (54.68) 1633 (55.68)
1 2982 (30.51) 2109 (30.82) 873 (29.76)

2 1419 (14.52) 992 (14.5) 427 (14.56)

PLR >143.004 4097 (41.91) 2834 (41.42) 1263 (43.06) 0.138
LMR >3.62 4901 (50.14) 3453 (50.47) 1448 (49.37) 0.330

SII >638.137 3061 (31.31) 2163 (31.61) 898 (30.62) 0.342

Postoperative variables
PPCs 812 (8.31) 591 (8.64) 221 (7.53) 0.077

Postoperative length of hospital stay (days) 8.96 (6.04, 13.39) 8.92 (6.05, 13.17) 8.97 (6.04, 13.56) 0.817

Hospital length of stay (days) 15.02 (10.02, 20.97) 14.95 (10.01, 20.97) 15.06 (10.03, 20.96) 0.803

Abbreviations: BMI, body mass index; COPD, chronic obstructive pulmonary disease; NLR, neutrophil–lymphocyte ratio; ANS, the Albumin/NLR Score; PLR, platelet– 
lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio.
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Discussion
In the analysis of elderly patients under general anesthesia, a model based on LASSO regression with five variables was 
developed and validated to predict PPCs. Five independent risk factors that were easy to collect included age, 
preoperative SpO2, ANS, operation time, and RBC transfusion. The model had moderate discrimination and good 
calibration for identifying individuals at risk for PPCs. In addition, ANS as a biomarker was added to our model to 
provide more information about patients and increase the predictive value of the model.

With advances in surgical techniques and perioperative management, the demand for surgery in elderly patients is 
increasing. Elderly patients with multiple interrelated risk factors, such as poor performance, underlying comorbidities, 

Figure 2 Plots for LASSO regression model. (A) 10-fold cross-validation plot for the penalty term. (B) A LASSO coefficient profiles plot of the 29 texture features was 
produced against the log (lambda) sequence.

Figure 3 The forest diagram based on the multivariable regression model.
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and impaired lung function are considered to be at high risk for PPCs.24 Therefore, there is an urgent need to develop and 
validate a simple predictive model in older patients to help physicians assess the risk of PPCs.

Postoperative pulmonary complications are widely defined and have different mechanisms. Complications based on 
pulmonary collapse and airway contamination include atelectasis, pneumonia, respiratory failure and aspiration pneu
monia, while pleural effusion and pneumothorax have different mechanisms.25 In this case, we developed a machine 
learning model and compared it with ARISCAT model, which is currently the most widely used model. Lasso regression 

Figure 4 The receiver operating characteristics curve of the model (with and without ANS) and ARISCAT model.

Figure 5 The receiver operating characteristics curves of six systemic inflammatory markers.
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is a modern approach that takes the form of a penalty on the absolute scale of the regression coefficients. The application 
of LASSO’s powerful shrinkage technique in this study was able to reduce variability and minimize the problem of 
multicollinearity, improving the accuracy of the model.

Previous studies have shown that several biomarkers associated with systemic inflammation are valuable in predicting 
postoperative complications.18,26 However, there is limited evidence on the predictive value of systemic inflammation for 
PPCs in elderly patients undergoing general anesthesia. In this study, ANS was identified as an independent predictor of 
PPCs. In addition, ANS significantly increased the ability of the model to predict PPCs. NLR is a simple systemic 
inflammatory biomarker that uses only differential results from blood cell counts; Albumin is a negative acute phase 
protein independently associated with inflammation and increased nutritional risk.27 ANS is a combination of albumin 
and NLR, which represents a multisystem inflammatory response. Pulmonary inflammation is a common pathological 
process of atelectasis, pneumonia and respiratory failure. With the progress of the disease, the inflammation is 
aggravated.28,29 In this study, ANS was compared with other inflammatory blood cell parameters and found to have 
the highest predictive ability for PPCs. Probably due to the use of the machine learning method and the introduction of 
the new marker, our model showed better performance than ARISCAT model.

Although some risk factors, such as age, preoperative SpO2 and operation time, resembled those reported in the 
previous models,9,10,24 RBC transfusion was ignored. A study exploring the association between RBC transfusion and 
PPCs found that RBC transfusion was associated with the activation of pulmonary inflammation/coagulation and 
systemic coagulation disorders, increasing the incidence of PPCs.30 In addition, blood transfusion can inhibit host 
immunity, which has certain immune risks.31 Elderly patients have decreased organ function and poor immune function, 
and intraoperative blood transfusion may further increase the risk of PPCs. Our model results further confirmed that 
intraoperative RBC transfusion was an independent risk factor for PPCs.

Despite the model reported in this paper having certain clinical significance, our study still has some limitations. First, 
despite the large sample size, it was designed retrospectively. Second, the model was not externally validated and its 
international replicability should be confirmed. Third, some detailed parameters related to mechanical ventilation were 
not included in our analysis.

Conclusion
In this study, we developed and validated a model based on LASSO regression that included an inflammatory biomarker 
as well as other clinical features to predict the risk of PPCs in elderly patients. It could help clinicians assess the 
likelihood of PPCs in older patients and make individualized clinical decisions about management options.
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