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Abstract: A healthy stress response is critical for good mental and overall health and promotes neuronal growth and adaptation, but 
the intricately balanced biological mechanisms that facilitate a stress response can also result in predisposition to disease when that 
equilibrium is disrupted. The hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine system plays a critical role in the body’s 
response and adaptation to stress, and vasopressinergic regulation of the HPA axis is critical to maintaining system responsiveness 
during chronic stress. However, exposure to repeated or excessive physical or emotional stress or trauma can shift the body’s stress 
response equilibrium to a “new normal” underpinned by enduring changes in HPA axis function. Exposure to early life stress due to 
adverse childhood experiences can also lead to lasting neurobiological changes, including in HPA axis function. HPA axis impairment 
in patients with depression is considered among the most reliable findings in biological psychiatry, and chronic stress has been shown 
to play a major role in the pathogenesis and onset of depression and other neuropsychiatric disorders. Modulating HPA axis activity, 
for example via targeted antagonism of the vasopressin V1b receptor, is a promising approach for patients with depression and other 
neuropsychiatric disorders associated with HPA axis impairment. Despite favorable preclinical indications in animal models, 
demonstration of clinical efficacy for the treatment of depressive disorders by targeting HPA axis dysfunction has been challenging, 
possibly due to the heterogeneity and syndromal nature of depressive disorders. Measures of HPA axis function, such as elevated 
cortisol levels, may be useful biomarkers for identifying patients who may benefit from treatments that modulate HPA axis activity. 
Utilizing clinical biomarkers to identify subsets of patients with impaired HPA axis function who may benefit is a promising next step 
in fine-tuning HPA axis activity via targeted antagonism of the V1b receptor. 
Keywords: allostatic overload, cortisol, HPA axis, major depressive disorder, neuroendocrine

Background
A healthy response to stress is critical for good mental and overall health and promotes neuronal growth and adaptation, 
but the intricately balanced biological mechanisms that facilitate a stress response can also result in a predisposition to 
disease when the equilibrium is disrupted.1–3 Allostasis is the biological process of ongoing adaptation to maintain 
homeostatic stability in response to challenges,2,3 and a key adaptive mechanism by which the body responds to stress is 
the hypothalamic-pituitary-adrenal (HPA) axis.4 The cumulative physiological impact of this adaptive response, or 
allostatic load, becomes allostatic overload when metabolic, hormonal, and neurotransmitter mediators of allostasis are 
overused or dysregulated as a result of stress, trauma, or abuse.2,3 It is at this point of allostatic overload and disrupted 
equilibrium that the cumulative impact of the body’s stress response system can shift from protective to damaging, 
leading to diseases such as depression and other neuropsychiatric disorders (Figure 1).1–3,5 Research suggests that 
arginine vasopressin (AVP) and vasopressin receptor subtype V1b play a key role in regulation of the HPA axis in 
response to stress, and therefore, targeting HPA axis dysregulation via modulation of the AVP-V1b receptor system may 
offer a novel therapeutic approach to treatment of these diseases.6
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Role of the HPA Axis in Stress Response
On a neural and molecular level, the HPA axis neuroendocrine system plays a critical role in the ability of an organism to 
cope with and adapt to stress.1,2,7 Activation of the HPA axis by a physical or emotional stressor triggers a signaling cascade 
from the hypothalamus (Figure 2), causing neuronal synthesis and release of AVP and corticotropin-releasing hormone 
(CRH) into the pituitary portal circulation, where they cooperate to trigger the release of adrenocorticotropic hormone 
(ACTH).3,8 AVP alone is a weak stimulus of ACTH secretion, but, upon simultaneous release of both AVP and CRH during 
stress, AVP potentiates the effect of CRH to stimulate ACTH secretion.8,9 After its release from the pituitary, ACTH acts on 
the adrenal cortex to stimulate production and release of glucocorticoids (cortisol in humans; corticosterone in rodents), 
which serve as key allostatic mediators that penetrate the blood-brain barrier to affect brain function and behavior as well as 
participate in negative feedback loops to influence release of CRH and AVP from the hypothalamus and ACTH from the 
pituitary gland.1,3,7,10 However, activation of the HPA axis, including relative levels of and sensitivity to each component 
and temporal pattern of response, varies according to the nature of the stressor: evidence suggests that acute stress triggers 
a primarily CRH-mediated, dynamic, rapid, and self-limited increase in ACTH and glucocorticoids, whereas chronic 
(repeated) stress results in blunted and/or sustained increases in ACTH and glucocorticoids mediated by AVP.2,5,9,11

Contribution of the AVP V1b Receptor System to the HPA Axis Stress Response
AVP activity is mediated through 3 vasopressin receptor subtypes: V1a, V1b, and V2.12 V1a receptors are located largely in 
vascular smooth muscle, and V2 receptors are located in the kidney; these receptors play key roles in vasoconstriction 
and fluid homeostasis, respectively, whereas V1b receptors are expressed in the anterior pituitary and limbic brain regions 
and are involved in HPA axis regulation, stress, and emotions.12–15 In rats, V1b receptor mRNA expression and V1b 

receptor protein have been shown in corticotrophs, the cells in the anterior pituitary that secrete ACTH during the HPA 
axis stress response,9,13,15 as well as in the cerebral cortex, hippocampus, amygdala, and hypothalamus.13,15–17 The 
limbic system, which includes the cerebral cortex, hippocampus, amygdala, and hypothalamus, contributes to emotion, 
cognition, behavior, and the stress response.9,18 The relative contributions of limbic and pituitary V1b receptors to the 

Allostasis Allostatic load Adaptation

Chronic social and 
environmental stress: 
home, work, poverty,

social isolation

Individual differences 
in vulnerability:

genes, development, 
experience

Behavioral response:
adaptive or maladaptive

Physiological stressors:
metabolic syndrome, 

inflammation, circadian 
disruption, other illness Major life events 

and trauma:
death, divorce, 

abuse, dislocation

Physiological response

Figure 1 Allostasis and allostatic load. The brain perceives and responds to stimuli and stressors. The major function of cortisol and other mediators of allostasis is to 
promote adaptation. However, overuse and/or dysregulation among allostatic mediators can lead to allostatic load (or overload) and accelerate disease processes such as 
cardiovascular disease, diabetes, and affective disorders. Adapted from McEwen BS, Akil H. Revisiting the stress concept: implications for affective disorders. J Neurosci. 
2020;40(1):12–21, with permission under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.3

https://doi.org/10.2147/NDT.S402831                                                                                                                                                                                                                                  

DovePress                                                                                                                                    

Neuropsychiatric Disease and Treatment 2023:19 812

Kanes et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


stress response is an area of ongoing study via selective V1b receptor inhibition in rodent models. Antidepressant- and/or 
anxiolytic-like effects can be achieved via local inhibition of V1b receptors in the amygdala or the lateral septum and by 
systemic inhibition in hypophysectomized rats,19–21 confirming the limbic role of V1b receptors in the stress response. 
Conversely, anxiolytic-like effects associated with systemic V1b receptor inhibition have been prevented via 
hypophysectomy,22 confirming the pituitary role of V1b receptors in the stress response. Thus, evidence suggests that the 
V1b receptor modulation of the stress response occurs via both pituitary-dependent and pituitary-independent pathways.

Altered AVP and V1b receptor responses to ongoing stress contribute to HPA axis dysfunction. During HPA axis 
homeostasis, basal CRH and AVP levels are regulated by glucocorticoid feedback inhibition as a protective mechanism to 
prevent inappropriate activation or overstimulation of the HPA axis in response to minor stimuli (Figure 3).9 During 

Stress from a variety of sources 
triggers a series of changes in brain 
and behavior

Stress causes release of CRH and AVP 
from the hypothalamus in the brain

CRH and AVP together interact with the 
CRH1 and V1b receptors in the pituitary 
gland to stimulate ACTH release

ACTH causes the adrenal glands to 
release the stress hormone cortisol, 
which then circulates throughout 
the body

Cortisol provides negative feedback to 
the brain, reducing CRH release and 
thereby shutting down the immediate 
stress-induced release of cortisol

Cortisol

Adrenal gland

ACTH

CRH AVP

Pituitary gland

Hypothalamus (PVN)

Hypothalamus (PVN)

Stress

Figure 2 Key elements of the HPA axis stress response. 
Abbreviations: ACTH, adrenocorticotropic hormone; AVP, arginine vasopressin; CRH, corticotropin-releasing hormone; CRH1, CRH 1; HPA, hypothalamic-pituitary- 
adrenal; PVN, paraventricular nuclei; V1b, vasopressin 1b.
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CRH

ACTH

cAMP/PKA PLC/IP3/PKC
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Figure 3 AVP and CRH stimulate ACTH secretion by pituitary corticotrophs. (A) In the basal state, the HPA axis releases glucocorticoids according to ultradian and 
circadian rhythms. (B) Activation by an acute physical or emotional stressor triggers synthesis and release of CRH and AVP from the hypothalamus to the pituitary, where 
they bind to the CRH1 and V1b receptors, respectively, to trigger ACTH release. ACTH acts on the adrenal cortex to stimulate production and release of glucocorticoids, 
which serve as key allostatic mediators of brain function and behavior and regulate upstream steps via positive and negative feedback loops. (C) During chronic (repeated) 
stress, AVP is upregulated, CRH is downregulated, and AVP-mediated stimulation of ACTH release is refractory to negative glucocorticosteroid feedback due to enhanced 
responsivity of PKC-mediated stimulation of ACTH release by glucocorticosteroids. 
Note: Data from these studies.9,119,120,151,199,200 

Abbreviations: ACTH, adrenocorticotropic hormone; AVP, arginine vasopressin; cAMP, cyclic adenosine monophosphate; CRH, corticotropin-releasing hormone; CRH1, 
CRH 1; HPA, hypothalamic-pituitary-adrenal; IP3, inositol 1,4,5-trisphosphate; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C; V1b, vasopressin 1b.
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chronic stress, however, AVP becomes refractory to glucocorticoid feedback.9 Elevated glucocorticoid levels reduce 
expression of CRH and its receptor, whereas V1b receptor expression and its sensitivity to AVP are enhanced, suggesting 
that vasopressinergic regulation of the HPA axis is critical for sustaining corticotroph responsiveness during chronic 
stress in the presence of high levels of circulating glucocorticoids.9

Stress-Related Dysregulation of the HPA Axis
During a normal stress response, activation of the HPA axis promotes a mild state of anxiety, alters attention and memory, 
limits dysphoria, and alters pleasure and reward processing to allow for sufficient focus on the stressor.1 However, exposure to 
repeated or excessive physical or emotional stress or trauma shifts the body’s stress response equilibrium, or allostatic load, to 
a “new normal” that is underpinned by enduring changes in HPA axis function.2,3 In animal models of chronic stress, changes 
in structure, function, and connectivity within and between the hippocampus, amygdala, and prefrontal cortex are mediated by 
CRH and glucocorticoids, elements of the HPA axis.2,23,24 Moreover, similar effects have been observed in humans in the 
brain regions involved in regulation of emotion and stress response (Figure 4).25,26 Although the relative reversibility of these 
stress-induced effects suggests that they are the result of a system of adaptive neuroplasticity rather than of damage, a history 
of stress exposure can nevertheless lead to lasting neuroplastic dysregulation of stress reactivity.23,26 These changes and their 
clinical outcomes are influenced by the type and timing of stress, the environment, and genetic and epigenetic factors27–38 and 
can manifest as hyperactive or hypoactive impairment of the HPA axis.27,39

Neurobiological Changes Associated with Adverse Childhood Experiences
Exposure to early life stress (ELS) from, for example, adverse childhood experiences (ACEs) during windows of vulnerability in 
which the brain is still developing can lead to lasting neurobiological changes, including in HPA axis function, that significantly 
increase the risk of developing depression and other neuropsychiatric disorders.40–45 ACEs can include physical, psychological, 
or sexual abuse, physical or emotional neglect, or other traumatic events during childhood39 and are an important risk factor for 
many neuropsychiatric disorders, including depression.41,42 In a meta-analysis of more than 17,000 adults with depression, nearly 
half (46%) reported a history of childhood maltreatment, with an estimated prevalence of 43% for childhood emotional neglect, 
37% for childhood emotional abuse, 36% for childhood physical neglect, 28% for childhood physical abuse, and 25% for 
childhood sexual abuse.43 Furthermore, patients with major depressive disorder (MDD) were almost 4 times more likely than 
healthy controls to have been mistreated as children, and those with persistent depressive disorder were almost 9 times more 

Amygdala 
hyperactivity

Hippocampal 
degradation

Chronic 
stress

Potentially 
leading to 

depression

Prefrontal cortex 
degradation

Chronically elevated 
stress hormones 

(cortisol)

Figure 4 Stress responses in the brain. In response to chronic stress, long-term effects of elevated circulating levels of cortisol include structural and connectivity changes in 
the brain and activation of the brain’s fear center in the amygdala. These changes can result in worsening stress and contribute to the development of depression.
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likely than healthy controls to have experienced multiple forms of abuse or neglect.44 Approximately 60% of adults with 
depression have experienced ≥1 ACE,44,45 and ELS is 4 times more prevalent in patients with depression than in healthy 
controls45 and is associated with earlier onset of depression,43,45 reduced response to depression treatment,43,45 and reduced life 
expectancy.42,46–49

During the heightened neuroplasticity of childhood, ELS or ACE exposure is also associated with substantial effects on 
brain structure, function, connectivity, and network architecture, including brain regions involved in regulation of emotion 
and stress response.25,50,51 Preclinical and clinical research have shown an association between ACEs and lasting changes to 
HPA axis function, which may contribute to the risk and course of depression.38,42,43,45 The nature of HPA axis impairment 
(eg, hyperactivity or hypoactivity) following an ACE is influenced by the type of ACE, psychosocial support, and genetic 
and epigenetic factors.38,52 Consequently, depression in patients with a history of ELS may be a distinct biologic endophe
notype, with a unique clinical feature, course of illness, and response to therapy.31,38

HPA Axis Impairment in Depression, Neuropsychiatric Disorders, and 
Beyond
HPA axis impairment in patients with depression is considered among the most reliable findings in biological psychiatry.10 

Alterations in activity of limbic regions that are regulated by the HPA axis may contribute to heightened anxiety, changes in 
attention and memory, dysphoria, and altered pleasure and reward processing.1 Stress has been shown to play a major role in the 
pathogenesis and onset of depression and to contribute to increased vulnerability to developing depressive symptoms.53,54 

Polymorphisms in genes involved in HPA axis functioning have been shown to influence stress response, risk of depression,55–58 

and response to antidepressant treatment,56,59 and several mechanisms of HPA axis impairment have been implicated in the 
pathogenesis of depression, including cortisol resistance, reduction in neurogenesis, increase in cytokines, and immune system 
activation.10,60 Significant HPA axis hyperactivity, as indicated by elevated serum, urinary, salivary, cerebral spinal fluid, and hair 
cortisol levels, occurs more often in patients with depression than in healthy controls,61,62 with nearly three-quarters of people 
with depression demonstrating elevated cortisol levels.61 Furthermore, elevated cortisol may be one of the few prospective 
predictors of MDD onset and relapse or recurrence63 and may correlate with the severity of depressive symptoms.61 For example, 
recent dramatic increases in stress and depressive symptoms associated with the COVID-19 pandemic and lockdown have been 
correlated with changes in cortisol levels,62,64,65 and elevated pre-pandemic cortisol levels were predictive of depressive 
symptoms during the pandemic (Box 1).62

Box 1 Effects of the COVID-19 Pandemic on Global Mental Health

● COVID-19–related stress is associated with depressive symptoms,189–193 and individuals with higher levels of COVID-19–related stress are more 

likely to screen positive for depression or major depressive disorder.192,194,195

● Exposure to a higher number of COVID-19‒related stressors is associated with a greater risk of depression.191,192

● Globally, rates of depressive symptoms increased 2- to 10-fold during the COVID-19 pandemic, with pre-COVID prevalence rates of 1.3–11.5% 

that increased to 18.3–33.7% in the peri-COVID era.128–140

● US rates of depressive symptoms increased from 6.5–8.9%139,196 in the years shortly before the COVID-19 pandemic to 14.2–27.8% early in the 

pandemic139,191 and have remained elevated (25.0% as of October 5–17, 2022).139

● In nationwide surveys of US adults, the prevalence of moderate-to-severe depression increased through the COVID-19 era and reached rates ≥3 
times higher than those of the pre-COVID era.193,197

● Changes in biomarkers of hypothalamic-pituitary-adrenal axis function have been observed during vs before the COVID-19 pandemic and 

lockdown and may be related to perceived stress and depressive symptoms.62,64,65

● Serum cortisol concentrations significantly increased in women and decreased in men during vs before the COVID-19 lockdown.65

○ Significant increases in serum cortisol concentrations were observed in patients who experienced moderate-to-high stress.65

○ Changes in serum cortisol concentrations were significantly associated with both perceived stress and depression.65

● Hair cortisol concentrations (HCCs) may serve as a marker of psychological susceptibility to stress, as elevated pre-pandemic HCCs among adults 

aged ≥50 years significantly predicted depressive symptoms during COVID-19;62 however:

○ Both abnormally high and abnormally low HCCs were reported in healthcare workers during the COVID-19 pandemic.64

○ Both increases and decreases in HCC were reported before vs during the COVID-19 lockdown.198
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Profound changes in HPA axis function during pregnancy and in the perinatal period may also contribute to 
postpartum depression.66 Under healthy conditions, significantly increased HPA axis activity is observed in the third 
trimester, followed by a decline in activity after the birth.67,68 Cortisol concentrations rise during pregnancy due in 
large part to placental CRH production, which stimulates production of and is subject to positive feedback by 
maternal and fetal cortisol.69 During and after birth, the HPA axis is subject to abrupt changes when the placental 
contribution of CRH ceases and cortisol concentrations decrease substantially during the postpartum period.69 

Among women who develop perinatal or postpartum depression, elevated cortisol levels observed in some studies 
suggest that the HPA axis may not be adequately suppressed after birth.70–72 Compounding the effects of fluctuating 
cortisol, changes in estrogen during pregnancy may also alter HPA axis activity. In rats, estrogen induces remodeling 
of the CA1 region of the hippocampus, an area involved in suppression of the HPA axis stress response; in humans, 
estrogen alters HPA axis activity by increasing basal cortisol levels and blunting cortisol suppression by dexa
methasone, similar to alterations observed in depression.24,73 Combined, these dramatic changes in hormone activity 
during and after pregnancy may impose a dysregulating effect on the HPA axis and result in postpartum 
depression.66 Likewise, MDD rates have been shown to increase 2- to 3-fold during the menopause transition, 
and research has suggested that hormonal changes leading to HPA axis impairment in cortisol reactivity may 
increase vulnerability to stress and depression in this population.74

Changes in HPA axis function have been implicated in a number of other neuropsychiatric conditions, as well. 
Reduced HPA axis activity appears to contribute to posttraumatic stress disorder (PTSD).75,76 While higher cortisol 
in children is predictive of PTSD, enhanced negative feedback inhibition of the HPA axis is observed in individuals 
experiencing PTSD, indicated by simultaneously reduced circulating cortisol and increased CRH coupled with 
enhanced cortisol suppression in response to dexamethasone challenge.76,77 In contrast, anxiety disorders are 
associated with hypercortisolemia and reduced feedback inhibition of the HPA axis.54,78 An increased susceptibility 
to anxiety due to ELS may be a consequence of HPA axis hyperactivity in the form of an imbalance between 
glucocorticoid receptor‒ and mineralocorticoid receptor‒mediated negative feedback.78 Excessive HPA axis activity 
is also a feature of bipolar disorder,79 with more robust hyperactivity observed in patients with severe manic 
symptoms80 or a history of suicidal behavior.81 In schizophrenia, changes in hair cortisol concentration are 
negatively associated with delusion severity, and evidence supports the use of measures of HPA axis activity as 
biomarkers for associated brain tissue loss.82,83 A dysregulated HPA axis response to stress is associated with 
anorexia and bulimia nervosa and is exacerbated by the added experience of childhood trauma.84–86 Attenuated HPA 
axis activity persisted following treatment for anorexia or bulimia and therefore may represent a risk factor for an 
eating disorder rather than a consequence thereof.86

One contributor to HPA axis impairment in patients living with these disorders is dysregulation of the AVP 
V1b receptor system, specifically.61,87,88 Elevated AVP levels have been shown in patients with depression,89–93 

including anxious-retarded depression89 and melancholic-type depression,90 as well as in patients with bipolar 
disorder,91,93 obsessive compulsive disorder,94 bulimia nervosa,85 and PTSD,95 indicating overactivation of AVP 
in these patient populations.6 Involvement of the AVP-V1b receptor system HPA axis dysregulation in patients 
with depression is further supported by positive correlations demonstrated between AVP and cortisol levels,89,96 

particularly among those who have attempted suicide.96 These data provide support for increased sensitivity of the 
V1b receptor to AVP regulation of the HPA axis stress response in the presence of elevated cortisol in patients 
with depression.88,97

The central role of the HPA axis in allostasis, allostatic load, and allostatic overload suggests broader implications 
beyond neuroplasticity for HPA axis dysfunction.4,98 Because the HPA axis neuroendocrine system dynamically 
influences a wide variety of physiological processes, changes in its function are associated with a broad range of long- 
term health consequences.3,61,99,100 Among patients with depression, HPA axis dysregulation as demonstrated by 
elevated cortisol levels is associated with increased risk of other medical conditions in which HPA axis dysregulation 
has been implicated, including diabetes, obesity, metabolic syndrome, cardiovascular disease, cognitive dysfunction, and 
osteoporosis.61,99–111 Overall, evidence suggests that HPA axis dysfunction underpins a bidirectional relationship 
between many of these comorbidities and depression.110,112–114
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Cortisol as a Biomarker of HPA Axis Dysfunction
Depression is a clinically heterogenous condition comprising several subtypes that may be characterized by unique HPA 
axis profiles that range from hyperactivity to hypoactivity,68 but patients whose depression is associated with HPA axis 
impairment may benefit from treatment that selectively modulates a single target within the HPA axis.6 For example, 
melancholic depression (characterized by anhedonia, insomnia, loss of appetite, feelings of worthlessness, and diurnal 
mood variability) and psychotic depression (characterized by delusions or hallucinations) are associated with HPA axis 
impairment as demonstrated by elevated cortisol levels.61,115,116 Similarly, patients who are hospitalized for depression 
and older patients with depression are more likely than nonhospitalized patients and younger patients, respectively, to 
have HPA axis impairment as demonstrated by elevated cortisol levels.61

Conversely, some studies have shown a reduction in basal cortisol levels in depression and other neuropsychiatric 
disorders, indicating HPA axis hypoactivity, rather than hyperactivity, in some patients.61,68,77,117 For example, studies 
have suggested that patients with atypical depression (characterized by hypersomnia, fatigue, hyperphagia, weight gain, 
and emotional reactivity) may have lower cortisol levels than those with nonatypical depression and may not differ from 
healthy, nondepressed individuals.61,115 Furthermore, among patients exposed to chronic stressors, including patients 
with PTSD with or without MDD, reduced cortisol levels were directly proportional to the length of elapsed time 
between precipitating traumatic event and cortisol assessment.77,117,118 These observations suggest that, following 
exposure to chronic stress, HPA axis dysregulation follows a nonlinear course in which cortisol levels rise initially in 
response to the traumatic event or in anticipation of events, then taper over time with increasing chronicity until a state of 
hypocortisolism is reached.

Also important when considering the relationship between cortisol and depression are the diurnal (circadian) and 
ultradian (pulsatile) rhythms by which cortisol is released under basal conditions. Ultradian oscillations are characterized 
by pulsatile bursts of cortisol, CRH, AVP, and ACTH secretions.119,120 Mathematical modeling, confirmed in vivo in rats, 
supports the hypothesis that the ultradian pulses exchanged within the pituitary-adrenal system provide a dynamic 
feedforward-feedback regulation that can function independently of hypothalamic control.120,121 Ultradian rhythms 
contribute to the responsiveness of the HPA axis to stress, and changes in ultradian pulse amplitude and frequency are 
the foundation of circadian rhythm.119

In healthy individuals, the diurnal pattern is characterized by a marked rise in cortisol upon waking that peaks 
50–100% higher than baseline 30–45 minutes later and returns to baseline approximately 1 hour after waking.122 

Any point of the diurnal rhythm may be affected in depression, and the specific nature of cortisol changes can be 
related to disease severity or subtype.122,123 For example, flattened diurnal cortisol rhythms have been observed in 
severe depression, and distinguishable patterns have been identified in depressed patients with comorbid 
anxiety.124,125 Both higher and lower/blunted cortisol wakening responses have been observed in depression, 
with the former exhibiting a predictive relationship with major depressive episodes.122,126,127 Together, data from 
cortisol studies suggest that HPA axis impairment can result from either too much or too little cortisol, and HPA 
axis response and disease characteristics may depend on a variety of moderating influences such as features of the 
stressor, the person, and timing. As a measure of HPA axis function, therefore, cortisol may be a useful biomarker 
for identifying distinct types of patients with depression who may benefit from treatments that modulate HPA axis 
activity.68

Treating Depression and Other Neuropsychiatric Disorders by Targeted 
HPA Axis Modulation
In the approximately 4 years since the onset of the COVID-19 pandemic, global prevalence rates of depressive symptoms 
have increased from 1.3–11.5% to 18.3–33.7%.128–140 However, because only one-third of patients with depression 
achieve remission with their first antidepressant and a further third of patients fail to achieve remission with any 
antidepressant and will be considered treatment resistant, a significant unmet need still remains for new treatment 
approaches with novel mechanisms of action.141–144 To this end, modulating HPA axis activity with targeted treatments 
may be a promising approach for patients with depression and other neuropsychiatric disorders associated with HPA axis 
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impairment.109,145 A meta-analysis of 16 randomized clinical trials and 7 open-label studies evaluating HPA axis– 
targeted therapies reported significant clinical benefits compared with controls, underscoring the potential of this 
approach for treating patients with depression.145 Also, some individual historical clinical trials of HPA axis–targeted 
therapies did not show clinical benefits in the overall study population, although post hoc subanalyses of these trials have 
shown benefit in some patient subgroups with HPA axis hyperactivity.75,146,147 Historically, failure of individual clinical 
trials to demonstrate efficacy of HPA axis–targeted therapies in patients with depression and other neuropsychiatric 
disorders may reflect the heterogeneity of the disorders and the broad patient populations enrolled.6,109,147,148 However, 
careful selection of patients with biomarkers reflecting HPA axis impairment, such as elevated cortisol levels, may be 
helpful in identifying which patients would benefit most from HPA axis–targeted treatment approaches.6,147

Research is ongoing to identify promising therapeutic targets within the HPA axis.149–151 Studies of CRH 
receptor antagonists have not reported significant improvements in depression, and the effects of glucocorticoid 
receptors in the treatment of depression are inconsistent.6,75,152 On the other hand, targeted antagonism of the V1b 

receptor is a promising treatment approach in patients with depression.6,146 In animal models, antagonism of the 
V1b receptor has been shown to attenuate depressive-like and anxiety-like behaviors, particularly in stressful 
situations.6,153 For example, the Brattleboro rat strain, which is characterized by a spontaneous AVP deficiency 
caused by a single nucleotide deletion in the AVP gene, exhibits reduced depressive-like and anxiety-like 
behaviors.153,154 Moreover, among Wistar rats that have been selectively bred for high anxiety-like behavior 
(HAB) or low anxiety-like behavior (LAB), the HAB lines exhibit higher AVP expression in the paraventricular 
nuclei of the hypothalamus than the LAB lines.155 In male HAB rats, dexamethasone suppression of the diurnal 
increase in circulating ACTH levels was significantly less efficient and subsequent CRH-stimulated plasma ACTH 
and corticosterone responses were significantly higher than in male LAB rats; pretreatment with a selective V1a/b 

receptor antagonist abolished the CRH-stimulated response in dexamethasone-pretreated male HAB rats, demon
strating that vasopressinergic activation accounts for the disrupted HPA axis response in male HAB rats.155 

Additional animal model studies have shown that antagonism of the V1b receptor attenuates depressive-like and 
anxiety-like behaviors.6,19–22,146,153,156–171 Consistent effects of V1b receptor antagonism were not observed in 
2 studies; although the reason for this discrepancy is unknown, the researchers speculated that methodological 
differences in the behavior assays used may have been a contributing factor.6,161,167

In humans, the V1b receptor antagonist ABT-436 has demonstrated reduction of HPA axis parameters such as plasma 
ACTH, serum and urine cortisol, and urine total glucocorticoids in healthy adults.172 In patients with MDD, research has 
suggested that ABT-436 was associated with reduced levels of plasma ACTH and cortisol, suggesting potential attenuation of 
HPA axis activity; further, this study showed statistically significant improvements with ABT-436 over placebo on 2 of the 5 
Mood and Anxiety Symptom Questionnaire (MASQ) subscales (ie, subscales “General Distress-Depressive Symptoms” and 
“General Distress-Mixed Symptoms”) but not in Hamilton Depression Rating Scale [HDRS]) scores following 1 week of 
treatment.173 The V1b receptor antagonist SSR149415 failed to clearly demonstrate effective treatment of symptoms in patients 
with generalized anxiety disorder or MDD, although doses used in these trials may have been insufficient to block HPA axis 
activity and achieve therapeutic effects; these failures may also reflect the heterogeneity of the illness or the broad patient 
populations enrolled.6,61,174 Using doses determined based on V1b receptor occupancy and nonclinical behavioral models,175,176 

adjunctive treatment with the V1b receptor antagonist TS-121 reduced depressive symptoms as assessed by the Montgomery- 
Åsberg Depression Rating Scale (MADRS), Clinical Global Impression of Severity (CGI-S), and Strengths and Difficulties 
Questionnaire (SDQ) measures in patients with MDD and inadequate response to their current antidepressant, although the 
number of patients analyzed was small and these reductions were not statistically significantly different from placebo.146 

However, post hoc analyses showed that adjunctive treatment with TS-121 was associated with greater separation in efficacy 
outcomes compared with placebo among patients with MDD and higher cortisol levels consistent with elevated HPA axis 
activity.6,146 These observations suggest that, within the subset of patients with MDD who had been screened and met trial 
inclusion criteria, V1b receptor antagonists may be more efficacious in patients with elevated cortisol levels, consistent with 
HPA axis hyperactivity, relative to an unscreened population of patients with MDD. Based on these ANC-501 (formerly TS- 
121) findings and favorable ANC-501 safety and tolerability, a phase 2 trial of adjunctive ANC-501 (NCT05439603) is 
currently in progress in adults with MDD with history of inadequate response to standard antidepressants and disrupted HPA 
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axis function as indicated by elevated cortisol levels.146,177,178 Based on the results from the phase 2 trial, a double-blind, 
placebo-controlled trial of ANC-501 is planned for 2023 in patients with depression.179

Although HPA axis dysfunction has been consistently demonstrated in patients with depression and other 
neuropsychiatric disorders, specific aspects of this dysfunction (eg, hyper- vs hypofunction) have differed across 
studies, which may be due to the unique pathological characteristics of different neuropsychiatric diseases and the 
heterogeneity and syndromal nature of many illnesses, as well as the methods employed to study them.61,180,181 

Regarding V1b receptors specifically, their activity and the potential efficacy of antagonists in treating neuropsy
chiatric disorders may also depend upon contextual effects. In rats exposed to acute stress, V1b antagonism 
reduced ACTH response following lipopolysaccharide injection and restraint stress, but not noise stress.182 In 
addition, glucocorticoids are subject to regulation by both pituitary-dependent and -independent regulation of the 
adrenal gland: in a rat chronic stress model, increases in basal corticosterone levels and enhanced rapid 
corticosterone secretion following exposure to acute stress were both unaffected by CRH antagonism but were 
sensitive to sympathetic ganglion blockade.183 These findings suggest a role for the sympathetic nervous system in 
regulating stress-induced glucocorticoid levels.183 In those patients enrolled in the MDD trial of ANC-501 
described above, the potential association of ANC-501 efficacy with the clinical biomarker of elevated cortisol 
may suggest that HPA axis–targeted therapies may only be able to demonstrate clinical treatment effects in 
patients with measurable HPA axis dysfunction.146 Thus, seemingly inconsistent findings across studies may 
indicate differences in the nature of HPA axis disturbances specific to the illness under investigation, the study 
design, or the influence of other contextual factors. Under those circumstances, differing results observed across 
clinical trials may be more indicative of inherent heterogeneity and the need to accurately identify appropriate 
testing conditions and more specific patient subgroups than of irregularities in V1b antagonist effects.

Unmet Need in Global Mental Health
In 2019, depressive disorders were among the 10 leading noninfectious drivers of increasing global disease burden.184 In 2020, 
the estimated global prevalence of MDD (unadjusted) was 193 million people, but many determinants of poor mental health 
outcomes were exacerbated that year by the emergence of the COVID-19 pandemic, increasing the resulting global MDD 
prevalence (adjusted) by 28% to 246 million people (Box 1).185 Among patients with depression who receive treatment, research 
has suggested that up to one-third do not achieve remission of symptoms, even after attempting up to 4 different sequential lines 
of therapy.186 Therefore, significant unmet needs remain not only for treatment of the global burden of depressive disorders, but 
also for new treatment approaches with novel mechanisms of action for patients with depression and other neuropsychiatric 
disorders.

Conclusions
Despite early favorable indications in animal models for targeting HPA axis dysfunction for the treatment of depressive 
disorders, translation of these findings into clinical efficacy has been challenging,6,23,148 particularly given the hetero
geneity and syndromal nature of these diseases.3,187 Therefore, confronting this heterogeneity3 by utilizing an appropriate 
clinical biomarker,188 such as elevated cortisol, to identify the subset of patients with impaired HPA axis function is 
a promising next step in modulating HPA axis activity via targeted antagonism of the V1b receptor, facilitating a more 
tailored approach to the treatment of depression and other neuropsychiatric disorders.
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