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Abstract: The endoplasmic reticulum (ER) is responsible for structural transformation or folding of de novo proteins for transport to 
the Golgi. When the folding capacity of the ER is exceeded or excessive accumulation of misfolded proteins occurs, the ER enters 
a stressed condition (ER stress) and unfolded protein responses (UPR) are triggered in order to rescue cells from the stress. Recovery 
of ER proceeds toward either survival or cell apoptosis. ER stress is implicated in many pathologies, such as diabetes, cardiovascular 
diseases, inflammatory diseases, neurodegeneration, and lysosomal storage diseases. As a survival or adaptation mechanism, 
chaperone molecules are upregulated to manage ER stress. Chemical versions of chaperone have been developed in search of drug 
candidates for ER stress-related diseases. In this review, synthetic or semi-synthetic chemical chaperones are categorized according to 
potential therapeutic area and listed along with their chemical structure and activity. Although only a few chemical chaperones have 
been approved as pharmaceutical drugs, a dramatic increase in literatures over the recent decades indicates enormous amount of efforts 
paid by many researchers. The efforts warrant clearer understanding of ER stress and the related diseases and consequently will offer 
a promising drug discovery platform with chaperone activity. 
Keywords: endoplasmic reticulum stress, unfolded protein response, chemical chaperone, drug discovery, diabetes, cardiovascular 
disease, neurodegeneration, lysosomal storage disease

Introduction
The endoplasmic reticulum (ER) is a cellular organelle in which folding of de novo synthesized proteins occurs. The ER 
plays an important role in homeostasis of proteins and calcium.1 Ribosomes on rough ER synthesize proteins based on 
the genetic information transferred by mRNA. Smooth ER does not have ribosomes but has neighboring Golgi bodies. 
The rough ER folds nascent proteins and transports them to the Golgi. Protein homeostasis is tightly controlled by 
various cellular mechanisms, and failure or error of these quality control systems results in cellular dysfunction. The ER 
enters a stressed condition when nascent proteins are misfolded or unfolded and abnormally accumulate in the lumen of 
the ER, leading to failure to transfer to the Golgi. Upon sensing misfolded proteins, a series of cellular events known as 
unfolded protein response (UPR) or ER stress response is triggered in order to adapt to the cellular damage caused by ER 
stress. The UPR consists of canonical cellular processes2 such as a decrease in translation to prevent further production of 
misfolded proteins, upregulation of chaperones to assist the folding process, ER-associated degradation (ERAD), and 
apoptosis. A successful rescue process can result in cell survival; a failed rescue can drive cells to apoptosis in order to 
reduce the risk of wasting precious amino acids and energy (Figure 1). ER stress is especially important in cells in which 
a high level of protein synthesis constantly occurs. In this context, insulin-secreting pancreatic β-cells and cancer cells 
could be more susceptible to ER stress than other cells.

ER stress is implicated in various diseases such as diabetes, β-cell apoptosis, diabetic neuropathy, inflammation, 
cardiovascular disease, neurodegeneration, and lysosomal storage diseases.3–6 A number of studies have suggested an 
intriguing role of ER stress to induce β-cell apoptosis for initiation and maintenance of diabetes.3,7 ER stress is detected 
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by three well-conserved ER-resident sensor molecules: protein kinase RNA-activated (PKR)-like ER kinase (PERK), 
activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1α (IRE1α).8 These factors relay complex and 
interrelated downstream signaling pathways that decide cell ‘survival’ (adaptive signaling) or “suicide” (apoptotic 
signaling). The activated PERK dimerizes and phosphorylates eukaryotic translation initiation factor 2α (eIF2α), 
which attenuates protein synthesis and increases the expression of ATF4 to upregulate apoptosis-inducing factors such 
as C/EBP homology protein (CHOP). It is noteworthy that ATF4 in general relays an adaptive signal to upregulate genes 
that promote ER homeostasis and survival. ATF6 is also involved in activating the transcription of many UPR mediators 
including an ER chaperone protein, glucose-regulated protein (GRP78).9 IRE1α processes X-box binding protein 1 
(XBP1) mRNA to produce an active spliced form, which becomes a competent transcription factor for UPR-related 
genes. Chaperone molecules such as GRP78 (or BiP)10 play an important role in UPR to aid proteins in achieving 
a functional folding conformation. It is believed that chaperones partially or fully bind to the unfolded protein 
polypeptides, preventing aggregation or incorrect folding.11 Chemical versions of chaperones, chemical chaperones,12 

have been identified and implicated as potential treatments for ER stress-related pathologies. The best known examples 
of chemical chaperones are shown in Figure 2. 4-phenylbutyric acid (4-PBA, 1) and tauro-ursodeoxycholic acid 
(t-UDCA, 2) provided therapeutic value for several ER stress-related conditions such as type 2 diabetes (T2D). Both 
compounds protected against ER stress. They suppressed tunicamycin (Tm)-induced phosphorylation of PERK and 
eIF2α and JNK activation in cells. XBP-1 mRNA was also markedly reduced by both of them. Their reduction of ER 
stress and recovery of insulin sensitivity in animals were able to strongly support correlation between ER-stress and T2D, 
suggesting ER stress being pathological cause of T2D and therapeutic alternative.13–15 Salubrinal (3) has also been found 
to protect cells from ER stress by protecting eIF2α from dephosphorylation, one of the hallmark events of UPR.16 More 
recently, high throughput screening (HTS) cell-based assays have been developed to identify novel chemical 
chaperones17–21 that prevent ER stress aggregation, proteotoxicity, and UPR. Consequently, several chemical chaperones 
such as compound 4 (IBT21) were identified.17 In contrast to chaperones that reduce ER stress to rescue cells, there is 
a group of chemicals that interfere or inhibit chaperone salvaging activity and induce cell death. Representative examples 

Figure 1 ER stress and UPR process to adapt stress condition: survival or cell death?

Figure 2 Structures of representative chemical chaperones found in literature. These compounds reduced ER stress and alleviated ER stress-related pathologies such as 
metabolic diseases (4-PBA, t-UDCA, and Salubrinal) and proteotoxicity induced by chemical (tunicamycin) and proteotoxin (mutant prion proteins) (IBT29).
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of this class include heat shock protein (HSP) inhibitors, which inhibit chaperone activity of HSP7022,23 and HSP 90,24–26 

for use as anticancer agents.27,28

In this review, chemical chaperones related to pathologies caused by ER stress are described along with their 
structures and activities. A major part of the review covers synthetic compounds and synthetic derivatives of natural 
compounds as summarized in Table 1. It should be noted that Table 1 also displays the chaperone activity of those 
compounds to regulate ER stress signaling molecules.

Table 1 Activity of Compounds as Chemical Chaperones in Various Pathologies

Cpd 
No

Common 
Name

Potential Therapeutic Area Activity as Chemical 
Chaperone

EC50 (or IC50) Ref

1 4-PBA Diabetes, Anti-inflammatory GRP78, p-PERK, p-IRE1 
ATF6, CHOP, ATF4, p-eIF2alpha 
NF-kB ↓

IC50 = 63.2 μM [13–15,58]

2 t-UDCA Diabetes p-PERK, p-IRE-1, p-c-Jun, p-IRS-1 ↓ 
recover insulin resistance 
blood glucose↓

ob/ob mouse, 500 mg/kg, 
P.O.

[13]

5 – Diabetes CHOP, ATF4, XBP1u +XBP1s, 
GRP94 ↓ 
STZ-induced diabetic mouse, 5 mg/ 
kg, IP

EC50 = 32 nM 
β-cell protection 
Tm-induced INS-1 cell 
viability

[38]

6 – Diabetes Cleaved PARP 
Cleaved Caspase3 
GRP94, ATF4, CHOP ↓

EC50 = 0.56 microM 
INS-1 cell viability. β-cell 
protection

[39]

7 Vildagliptin Diabetes DPP4 inhibitor, 
Bip, p-IRE1, p-PERK 
xBP-1s, p-eIF2alpha, 
CHOP mRNA ↓

IC50 = 2.3 nM [40]

8 RH01687 Diabetes CHOP mRNA ↓ EC50 = 8.1 μM [20]

9 Telithromycin Diabetes CHOP mRNA ↓, protect β-cell EC50 = 1.6 μM [20]

10 1-HNA Diabetes p-PERK, p-IRE1 
GRP78, CHOP, XBP1-s ↓

EC50 = 460 μM 
Tm-induced GRP78-driven 
reporter assay

[19]

11 3-HNA Diabetes p-PERK, p-eIF2alpha, p-IRE1 
GRP78, CHOP, XBP1-s, 
p-JNK ↓

EC50 = 45 μM 
Tm-induced GRP78 
reporter assay 
ob/ob mouse, 150 mg/kg, 
P.O.

[21]

12 KM04794 Diabetes XBP1-s, BiP, Herpud1, ATF4 ↓ 
Enhances insulin production

EC50 = 9 ~16 μM 
Tm-induced UPRE-, AARE-, 
and ERSE-driven assay

[44]

14 Azoramide Diabetes CHOP, GRP78, ↓ 
Improve insulin secretion and 
survival in β-cells

EC50 = 9 ~16 μM 
Tm-induced assay 
ob/ob mouse

[45]

15 – Diabetes CHOP mRNA, cleaved PARP, 
cleaved caspase 3 ↓ 
blood glucose ↓

EC50 = 2.8 μM 
CHOP reporter assay. 
STZ-induced diabetic 
mouse

[46]

16 Berberine Anti-inflammatory, Hypoglycemic activity, 
Alzheimer’s disease, Anti-atherosclerosis

FNF-alpha, IL-6, IL-1beta 
MCP-1, CHOP, ATF4, XBP-1s ↓

IC50 = 6.6 μM [55]

19 Ar9273 Anti-inflammation 
sEH inhibitor 
Gastrointestinal diseases

IL-6, TNF-α, CHOP 
TRB3, IL-1beta mRNA, 
MCP-1 mRNA, ATF3 ↓

IC50 = 197 nM [62]

20 Diflunisal Anti-inflammation, NSAIDs p-PERK, p-JNK ↓ EC50 = 58 μM 
Tm-induced GRP78 
reporter assay

[63]

22 Valsartan Angiotensin receptor blocker caspase 3, GRP78, PERK, IRE1- 
alpha, 
ATF-6, eIF2α, ATF-4, CHOP ↓

IC50 = 2.7 nM [68]

(Continued)
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Type 2 Diabetes (T2D)
One of the key features of T2D is increased insulin resistance. A high incidence of T2D is observed in the obese population 
whose elevated level of free fatty acids is attributed to the pathology. Although the precise mechanism is unclear, presence 
of free fatty acids in obesity patients is a well-established risk factor of ER stress and insulin resistance.10,29–33 These fatty 
acids cause the accumulation of misfolded proteins in the ER and induce UPR, leading to insulin resistance (Figure 3).

Table 1 (Continued). 

Cpd 
No

Common 
Name

Potential Therapeutic Area Activity as Chemical 
Chaperone

EC50 (or IC50) Ref

23 Metformin Diabetes (T2D) drug cardioprotection p-IRE1α, p-PERK 
ATF6, GRP78 ↓

EC50 = 8.6 nM [70]

24 Guanabenz α2-adrenergic agonist 
Antihypertension 
Antiprion

p-eIF2α, ATF-4, BIP 
GRP94, CHOP

IC50 = 4.85 mM [73,89]

25 Fasudil Rho-kinase inhibitor 
Neurodegenerative 
Diseases

GRP78 
BMPR2 ↓

IC50 = 10.7 mM [81]

28 – IRE1α kinase 
Inhibitor 
Rhodopsin protection

p-IRE1α, m-RNA splicing IC50 = 160 nM [91]

Figure 3 Mechanism of ER stress and insulin resistance. (A) insulin signal pathway is blocked due to ER stress-induced phosphorylation of JNK1 followed by 
phosphorylation of serine moiety of IRS1 to inhibit glucose influx as a result (B) ER stress is triggered by various risk factors that interrupt Ca2+ homeostasis. 
Accumulation of misfolded proteins in lumen of ER induces ER-resident membrane sensor molecules, such as PERK, ATF6 and IRE1, to initiate the UPR signal starting 
with dimerization and autophosphorylation of the sensing molecules. UPR signals lead to inhibition of translation, activation of UPR genes such as chaperones and CHOP, or 
degradation of misfolded protein by ER-associated protein degradation (ERAD) process.
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Under normal conditions, binding of insulin to its receptor initiates a signaling pathway via autophosphorylation of 
tyrosine residues of the receptor and consequent phosphorylation of tyrosine residues of the insulin receptor substrate 
(IRS1). These initial events result in relocation of cytosolic glucose transporter 4 (GLUT4) to the cell membrane where it 
transports plasma glucose into cells through complex signaling. Under ER stress, however, IRE1 phosphorylation caused 
by UPR induces phosphorylation of serine moieties of IRS1 via c-Jun N-terminal kinase 1 (JNK1) phosphorylation, 
which inhibits the phosphorylation of tyrosine residues of IRS1 (IRE1-JNK-IRS signaling axis). This sequence leads to 
blockage of the signaling pathway, causing failure of glucose influx, namely insulin resistance (Figure 3A). With 
increased insulin resistance, pancreatic β-cells produce additional insulin beyond the folding capacity of the ER, leading 
to ER stress. The pancreatic β-cell function is diminished in the T1D condition mainly via an autoimmune process, but 
ER stress is also implicated in deterioration of β-cell function, and some chemical chaperones have been shown to protect 
β-cells.8,14,34,35 There is a group of ER stress reducing chemicals that have shown anti-diabetic indications such as 
protection against insulin resistance and of β-cells (Figure 3).

Figure 4 lists compounds with chaperone activity as well as anti-diabetic activity. Salubrinal (3) is a well-known ER 
stress inhibitor and eIF2α-dephosphorylation inhibitor16 and extends inhibition of translation. However, its activity is 
controversial and cell-type dependent. It was reported that 1 protects pheochromocytoma PC12 cells against ER stress- 
induced apoptosis but triggers apoptosis in pancreatic β-cells.27,36 Duan et al synthesized a series of benzamide 
derivatives and screened for potential ER stress inhibiting activity.37 Of the derivatives, a benzamide 5 was found to have 
EC50 = 32 nM in protecting INS-1 cells from Tm-induced ER stress. 5 showed remarkable activity to protect β-cells from 
Tm-induced ER stress and downregulated ER stress markers including ATF4, CHOP, XBP1s, and BiP. In addition, 5 
significantly lowered blood glucose and increased β-cell survival in a streptozotocin (STZ)-induced diabetic mouse 
model. Another report by that group disclosed a 2,4-diaminoquinazoline 6 with an EC50 value in the micromolar range. 6 
also downregulated ER stress markers such as ATF4, CHOP, XBP1s, and BiP and cleaved PARP and caspase 3.38 

Compound 7 (Vildagliptin) is a marketed drug that acts as a dipeptidyl peptidase-4 (DPP-4) inhibitor in diabetes. It 

Figure 4 Chemical structures of compounds that attenuated ER stress as chemical chaperone and showed anti-diabetic activity. Many of them demonstrated anti-diabetic 
activity in vivo (4-PBA, t-UDCA, Azoramide, compound 5, 3-HNA, KM04794, compound 15). Note that Vildagliptin (7), a marketed anti-diabetic drug and DPP-4 inhibitor, 
showed chaperone activity to reduce ER stress.
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inhibits the DPP-4 enzyme, increases GLP-1 activity, and stimulates insulin release. Thapsigargin (Tg)-induced ER stress 
in the liver was alleviated by Vildagliptin.39 Chemical chaperones that protect pancreatic β-cells from ER stress-induced 
apoptosis were searched through an HTS campaign based on the viability of the mouse insulinoma β cell line (βTC6) 
upon treatment with Tm. Of 17,600 compounds screened, 8 (RH01687) and 9 (Telithromycin) were identified as active 
hits.20 Both compounds modulated ER stress induced by Tm and protected β-cells, with EC50 = 8.1 and 1.6 μM, 
respectively. Telithromycin (9) is an erythromycin analogue antibiotics known to be an effective treatment for 
pneumonia.40 Another HTS assay consists of the rLuc reporter driven by the human GRP78 promoter harboring three 
consecutive ER stress response elements. Using the cell-based assay system, Jeong et al identified a series of hydro
xynaphthoic acids as chemical chaperones.19 Compound 10 (1-hydroxy-3-naphthoic acid, 1-HNA) inhibited Tm- and 
palmitate-induced ER stress, with EC50 = 460 μM and 60 μM, respectively. ER stress markers such as p-PERK, p-IRE1, 
GRP78, CHOP, and XBP1-s were decreased accordingly. The anti-diabetic activity of compound 11 (3-HNA) was further 
studied by Park et al.21 The compound showed Tm- and palmitate-induced ER stress inhibition, with EC50 = 570 μM and 
45 μM, respectively, and downregulated ER stress markers. Oral administration of 11 (150 mg/kg) to ob/ob mice resulted 
in resolution of insulin resistance and protection of β-cells from apoptosis induced by glucolipotoxicity. t-UDCA (2) is 
a bile acid that has proven to have medicinal effects in T2D, various heart diseases, and neurodegenerative diseases 
(Alzheimer’s and Amyotrophic lateral sclerosis (ALS)).41–43 Compounds 1 (4-PBA) and 2 (t-UDCA) showed anti- 
diabetic activities such as i) recovery of insulin sensitivity and ii) decreases in blood glucose and insulin secretion levels 
after oral administration to ob/ob mice at a dose of 500 mg/kg.13–15

Miyake et al established a series of cell-based assays to identify ER stress inhibitors.44 They used ER stress response 
element (ERSE)-, unfolded protein response element (UPRE)-, and amino acid-response element (AARE)-based assay 
systems for parallel monitoring of three major ER stress signaling pathways: IRE1, PERK, and ATF6 pathways. 
Compound 12 (KM04794) was identified as an ER proteostasis modulator that inhibited UPR signaling caused by ER 
stress induced by diverse chemicals. KM04794 (12) alleviated protein aggregation and enhanced insulin production in 
pancreatic β-cells. In addition, compound 13 was prepared by replacing the terminal 4-chlorophenyl group of the parent 
compound, 12, with a pull-down moiety. Benzophenone and propynyl groups were tethered onto 13 as a photoaffinity tag 
and click reaction tag, respectively. Using 12 as a competitor molecule, a pull-down experiment was carried out and 
revealed BiP as the most probable binding partner of compound 13. BiP is one of the most important chaperones and 
seems to directly bind to 12 to produce an improvement of ER proteostasis. Another HTS assay consisting of cLuc 
activity driven by ATF6α identified 14 (Azoramide) as a modulator of UPR with anti-diabetic activity.45 14 decreased 
CHOP and GRP78 under Tm-induced ER stress. In ob/ob mice and high fat diet-induced obese mice, administration of 
14 improved insulin secretion and survival of β-cells. Duan et al reported a 1,2,3-triazole derivative (15) that protected 
pancreatic β cells against endoplasmic reticulum stress-mediated dysfunction and death through inhibition of C/EBP- 
homologous protein expression.46

Inflammatory Diseases92

As shown in Figure 5, there are a number of compounds that possess chaperone activity as well as anti-inflammatory 
activity. Compound 16 (Berberine) is a naturally occurring compound that has various physiological effects such as 
hypoglycemic, anti-microbial, anti-inflammatory, anti-Alzheimer, and anti-atherosclerosis activities.47–52 Among its 
derivatives, 17 was reported to have anti-breast cancer activity, which also displayed ER stress inhibition.53 Study of 
ER stress reduction on mitochondrial dysfunction and inflammation have been reported.54 Berberine (16) inhibited 
palmitate (PA)- and lipopolysaccharide (LPS)–induced inflammation through modulation of ER stress.55

Compound 1 (4-PBA) is an inhibitor of histone deacetylase (HDAC),56 which is involved in various diseases such as 
metabolic syndrome (obesity, T2D), misfolding diseases (cystic fibrosis), inflammatory disorder (diabetic nephropathy), 
neurological disorder (Parkinson’s), tissue diseases (fibrosis), and cancers (gastric carcinoma, colon cancer). HDAC is 
also known to inhibit platelet aggregation and is associated with β-globin disorders.57 ER stress suppression was 
examined in male C57BL/6J mouse hyperoxia-exposed lung epithelial cells. Hyperoxia-induced lung injury was 
attenuated by treatment with 4-PBA (1), which modulated inflammation-related markers (IkB-α, NF-kB).58 Soluble 
epoxide hydrogenase (sEH) converts epoxyeicosatrienoic acid (EET) to dihydroxytrienoic acids (DiHETrES), which 
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triggers the inflammation cascade.59 Compound 18 (Ar9281)60,61 has a potent IC50 = 8.0 nM against sEH; however, due 
to its low water solubility, a more hydrophilic analogue was synthesized (19, AR9273). Although the IC50 of 19 was 
lower than that of 18 (197 nM), water solubility, microsomal stability, sEH enzyme selectivity, and blood-brain barrier 
(BBB) penetration were improved. ER stress reduction was observed in the Ce (cerulean)-induced pancreatitis AR42J 
cell model.62 In a continuing study on salicylate-related ER stress chaperones, our group found that 3-HNA (11), which 
contains a naphthoic acid scaffold, improves glucose lowering activity through ER stress amelioration.21 Compared to the 
parent salicylate (EC50=5.07 mM),19 a standard anti-inflammatory drug, extended aromaticity provided by the naphtha
lene moiety of 3-HNA (11) was credited with its remarkable anti-ER stress activity (EC50=0.57 mM).21 In addition, 
salicylate analogues with a biphenyl scaffold were synthesized. Of these, 20 (Diflunisal), an anti-inflammatory drug with 
a biphenyl ring harboring a fluorine substituent, exhibited the best anti-ER stress activity. The EC50 value (EC50 = 58 
μM) of Diflunisal (20)63 was approximately 6- and 90-fold higher than 3-HNA (11) (EC50 = 328 μM) and t-UDCA (2) 
(EC50 = 5.2 mM),64 respectively. Moreover, Diflunisal (20) ameliorated palmitate-induced ER stress and decreased UPR 
markers.63

Cardiovascular Diseases65,66

Chemical chaperones that inhibit ER stress and provide cardioprotective activity are shown in Figure 6. Doxorubicin 
(Dox) is an anticancer drug, but it induces cardiotoxicity, resulting in apoptosis of cardiomyocytes, which has been 

Figure 5 Chemical chaperones to relieve the ER stress with anti-inflammatory activity.

Figure 6 Chemical chaperones to relieve the ER stress with cardioprotection activity.

Drug Design, Development and Therapy 2022:16                                                                             https://doi.org/10.2147/DDDT.S393816                                                                                                                                                                                                                       

DovePress                                                                                                                       
4391

Dovepress                                                                                                                                                             Jeon et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


attributed to ER stress.66,67 Compounds 21 (Sacubitril) and 22 (Valsartan) have been used as a combination therapy for 
treatment of heart failure. Sacubitril is a prodrug and a neprilysin inhibitor, and valsartan is an angiotensin II receptor 
blocker (ARB). Administration of the Sac/Val combination suppressed ER stress induced by treatment with Dox; UPR 
markers caspase 3, GRP78, PERK, IRE1α, ATF-6, eIF2α, ATF-4, and CHOP were all decreased.68 Another study 
investigated the anti-ER stress activity of Valsartan (22) in tubular epithelial cells of diabetic cardiomyopathy rats.69

Compound 23 (Metformin) is effective in T2D treatment, especially when co-administered with sulfonylureas, and is 
especially beneficial for obese diabetic patients. It has also been shown to be effective in the treatment of cardiovascular 
disease (CVD).70 The cardioprotective effect of Metformin (23) through ER stress reduction on human coronary artery 
endothelial cells (HCAEC) has been reported. Metformin (23) suppressed Tm- and high dextrose-induced ER stress by 
regulating p-IRE1α, p-PERK, and ATF6 activities, leading to cardioprotection.70 Compound 24 (Guanabenz) is an α-2 
adrenergic receptor agonist that is used as an antihypertensive drug. Albeit somewhat controversial, it is believed that 
Guanabenz (24) interferes with dephosphorylation of elF2α-P’ by disrupting the PPPIR15-PP1 complex.71,72 Guanabenz 
(24) did not show any noticeable effect alone, but when used with ER stress inducer (tunicamycin), it provided lower 
levels of ER stress markers such as p-eIF2α, ATF4, BiP, GRP94, and CHOP and eventual cell protection.73

Neurodegeneration and Neuroprotection74,75

Figure 7 shows chemical chaperones that possess neuroprotective activity and anti-neurodegenerative activity. 
Compound 25 (Fasudil), a Rho-kinase inhibitor, is used as a treatment for cerebral vasospasm, pulmonary hypertension, 
cardiovascular diseases, age-related neurodegenerative memory loss, corneal neovascularization, and other 
conditions.75–80 It improves motor function and has been approved in Japan for treatment of cerebral vasospasm 
following subarachnoid hemorrhage.81 Several ER stress modulating functions of Fasudil (25) have been reported; i) 
ischemia/reperfusion injury through SERCA activity,82 ii) inhibition of vascular cellular adhesion molecule (VCAM-1) 
expression by modulating UPR,83 and iii) inhibition of leukocyte-endothelial interaction through modulation of GRP78 and 
BMPR2 expression.84 Compound 26 is an HSP70 agonist showing chaperone activity. It produced a clear reduction in  
α-synuclein aggregation in neuroglioma cells, which is a hallmark of Parkinson’s disease.85–87 Oxindole 27 suppressed 
protein aggregate accumulation in vitro and in hippocampal HT22 neuronal cells and prevented ER stress-induced cell 
death as a chemical chaperone.88 Guanabenz (24), a antihypertensive drug, promoted ovine PrPsc clearance in a cell- 
based assay, increasing the survival of treated mice significantly. Interestingly, other α2-adrenergic agonists did not show 
such anti-prion activity.89

Miscellaneous Diseases
In addition to the diseases discussed above, ER stress is involved in other pathologies, and compounds with chaperone 
activity have been developed and characterized (Figure 8). It would be rather appropriate to consider IRE1 kinase as 
a core UPR component whose inhibitors can make a huge subset collection of kinase inhibitors. It will be beyond the 
scope of this review to describe the vast list of IRE1 kinase inhibitors. We here would like to provide a few examples of 
IRE1 kinase inhibitors that showed ER stress inhibition. Inhibitors of IRE1α kinase, a major signaling molecule of UPR, 
were developed to treat neurodegenerative cancer, diabetes, lipidemia, and inflammatory diseases.8,90 Compound 28 was 

Figure 7 Chemical chaperones to inhibit ER stress with neuroprotection activity.
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discovered through docking studies and has IC50 = 160 nM and 80 nM against IRE1α kinase and IRE1α RNAse, 
respectively. It is highly selective for IRE1α kinase over the IRE1β isoform, although interference of kinase activity by 
compound 28 was marginal in a kinome assay.91 ER stress can occur in photoreceptors as well. Ocular protein 
conformational diseases such as retinitis pigmentosa can be caused by misfolded or mistrafficked rhodopsin, 
a complex of opsin protein and retinal, which aggregate and accumulate in the ER, leading to photoreceptor cell 
death. Compound 29 binds to opsin, a visual pigment, as a chemical chaperone, assisting its proper folding and 
trafficking to the outer cell membrane and preventing the loss of photoreceptors under ER stress conditions.93

Chemical chaperones have further been implicated in lysosomal storage disorders such as Gaucher disease,94 Fabry 
disease, and Tay-Sachs disease, in which trafficking of proteins or lipids is disrupted. Compound 25 was synthesized and 
tested in Niemann-Pick disease type C195 (NPC1), a disease characterized by abnormal accumulation of lipids and 
cholesterol in lysosomal and late endosomal compartments. Compound 30 alleviated the folding defect of the NPC1 
protein I1061T mutant, resulting in transport of misfolded mutant NPC1 to late endosomes similar to normal NPC1. 
Compound 31 is an imino sugar analogue that inhibited β-glucosidase or β-glucocerebrosidase (GCase) that cleaves 
glucose from gluco(syl)ceramide (sphingolipid). Defects of this enzyme cause accumulation of glucoceramide, the 
genesis of Gaucher disease. Compound 31-assisted folding of mutant enzyme prevents its degradation by the ER 
proteostasis function.96 Compound 32 also strongly inhibited β-glucosidase.97 Similarly, a defect in lysosomal α- 
galactosidase A (α-Gal A) causes Fabry disease due to accumulation of neutral glycosphingolipids bearing a terminal α- 
galactosyl residue. Compound 33 showed a chaperone effect for several α-Gal A mutants in COS7 cells and lymphocytes 
of the N215S Fabry patient-derived cell line.98

In the late-onset form of Tay-Sachs disease, defects were found in N-acetyl-β-hexosaminidase A (HexA) that 
catalyzes the removal of terminal, non-reducing N-acetyl-β-D-glucosamine (GlcNAc) or galactosamine (GalNAc). 
Mutational defects impair folding of the enzyme, resulting in its normal trafficking to lysosome. Compound 34 was 
found to be a competitive inhibitor of HexA and rescued disease-causing mutant HexA, showing potential as a chemical 
chaperone. It increased the activity of lysosomal HexA in Tay-Sachs patient fibroblasts containing the G269S mutation, 
the most prevalent mutation in late-onset Tay-Sachs disease.99

Conclusion and Perspectives
ER stress is implicated in various diseases and pathologies. We listed in this review chemical versions of chaperone 
molecules and categorized them into potential therapeutic areas such as diabetes, inflammatory diseases, cardiovascular 
diseases, and neurodegeneration. In addition, lysosomal storage diseases have shed new light on the therapeutic value of 
chemical chaperones. Many compounds with chaperone activity have shown therapeutic potential in rescuing misfolded 
proteins caused by ER stress or genetic defects. Various HTS assays are currently available, which may inspire 

Figure 8 Chemical chaperones to inhibit ER stress with therapeutic implications in other diseases.
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researchers to conduct phenotypic screening using large volume chemical libraries. Target-based medicinal chemistry 
efforts can also be undertaken against specific targets. ER stress sensing molecules such as PERK inhibitors have been 
developed and examined clinically.100,101 Recent studies have shown that PERK signaling plays a critical role in 
immunosuppression in macrophages, opening a new era into the role of chemical chaperone inhibitors in the immune 
system.102 It was also reported that STING-PERK signaling can be an alternative innate immune pathway, which plays 
a critical role in fibrotic diseases.103 Other prevalent targets of chemical chaperones include HSP’s as mentioned in this 
review. Inhibitors of HSP’s have mostly been pursued for their therapeutic value as anticancer agents. Targets including 
GRP78 or BiP could also be novel candidates. BiP was identified as a direct binding partner of a chemical chaperone 
during a target identification effort using the pull-down probe, compound 13. An increasing number of chemical 
chaperones is being developed, and we hope this review and concise list of currently identified structures provides 
structural inspiration for new chemical chaperones.
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