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Purpose: Photobiomodulation (PBM) promotes diabetic wound healing by favoring cell survival and proliferation. This study aimed 
to investigate the potential of PBM in stimulating cellular migration, viability, and proliferation using the transforming growth factor- 
β1 (TGF-β1)/Smad signaling pathway.
Methods: The study explored the in vitro effects of near infrared (NIR) light on cell viability (survival) and proliferation as well as 
the presence of TGF-β1, phosphorylated TGF-β receptor type I (pTGF-βR1) and phosphorylated mothers against decapentaplegic- 
homolog (Smad)-2/3 (p-Smad2/3) in different fibroblast cell models.
Results: Results show a significant increase in cellular migration in wounded models, and increased viability and proliferation in 
irradiated cells compared to their respective controls. An increase in the presence of TGF-β1 in the culture media, a reduction in 
pTGF-βR1 and a slight presence of p-Smad2/3 was observed in the cells.
Conclusion: These findings show that PBM at 830 nm using a fluence of 5 J/cm2 could induce cell viability, migration and 
proliferation to favor successful healing of diabetic wounds. This study contributes to the growing body of knowledge on the 
molecular and cellular effect of PBM and showcases the suitability of PBM at 830 nm in managing diabetic wounds.
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Introduction
Globally, diabetes mellitus (DM), which was initially dubbed as a disease of the rich, is ravaging low- and middle- 
income populations. According to the 2021 International Diabetes Federation (IDF) report, 537 million adults are living 
with diabetes globally (75% of these adults live in low- and middle-income countries) and this figure is expected to 
increase to 643 million by 2030 and 753 million by 2045.1 Africa has seen a significant increase in the incidence of DM, 
with an estimated 19.4 million adults living with diabetes (3.9% prevalence rate).2 Unfortunately, the African region has 
the highest proportion of individuals living with diabetes who are unaware of their condition (approximately 54%; that is 
1 in 2 persons).1 There is a postulated increase of 129% in diabetic cases in Africa by the year 2045.1 Data has suggested 
that this increase is connected to rapid demographic, sociocultural and economic transitions.3

With an increase in diabetes comes a rise in micro- and macrovascular complications, which could negatively impact 
the health of diabetic patients. This together with neuropathy leads to further complications and an increase in the 
incidence of lower limb amputations due to non-healing diabetic foot ulcers (DFUs).4 Globally, it is estimated that 25% 
of the diabetic patients develop a DFU,5 with a high recurrence rate of up to 70% within 5 years, and with statistics 
showing that 85% of the amputations in diabetics starts with ulcers.6,7 Diabetic foot amputation is one of the most 
common and most feared complication of diabetes.8 In certain parts of the world, like the USA, over one billion dollars is 
spent annually on managing chronic diabetic wounds.9 Under diabetic conditions, alterations in any stage of wound 
healing could lead to slow or non-healing of even the most minor wounds, particularly on the body’s lower extremities.10 

Wound healing in healthy individuals usually occurs through four clear-cut phases: hemostasis, inflammation, prolifera-
tion, and maturation (remodeling).11 However, in DM, the wound healing process typically ceases at the inflammatory 
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phase,12 probably due to hyperglycemia which causes glucose to clog up the arteries and impede blood circulation, 
induce hypoxia, and inhibit collagen production.13,14 A hyperglycemia-induced increase in reactive oxygen species 
(ROS) further promotes diabetic complications by increasing oxidative stress which could lead to tissue damage, 
weakened skin, and slow wound contraction.15,16

Growth factors, such as transforming growth factor beta (TGF-β) are involved in the process of wound closure 
through stimulation or inhibition of growth, proliferation and differentiation of fibroblast cells into myofibroblasts, 
thereby improving the formation of the extracellular matrix (ECM).17 TGF-β together with its receptor and Smad 
constitute the TGF-β/Smad signaling pathway which can facilitate collagen synthesis, skin remodeling, and improve 
wound healing in fibroblast cells.18 These activities are performed through isoforms of TGF-β which elicit their role via 
the Smad signaling pathway.19 Cross-talk of the Smad signaling pathway with other signaling pathways (such as Wnt, 
Notch, Hippo, Hedgehog (Hh), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)-Akt, 
nuclear factor kappa B (NF-κB), and JAK-STAT) play a role in the regulation of various biological processes, including 
wound healing.19 The phosphorylation and recruitment of TGF-β receptor type I (TGF-βR1) occurs through the binding 
of TGF-β to its cell surface receptor TGF-β type II (TGF-βR2) to form a heterometric receptor complex.20 The formed 
complex then phosphorylates Smad 2 and Smad 3 which in turn binds to Smad 4, initiating its nuclear translocation and 
expression of alpha smooth muscle actin (α-SMA) concomitantly activating genes responsible for cell proliferation, 
survival, and differentiation, which favors the healing of diabetic wounds.21

The impact of delayed wound healing, and ultimately loss of a limb in diabetic patients, creates a need for strategies to 
speed up the wound healing process. Most methods employed involve wound debridement (clean up and excision of infected 
and dead skin) to encourage migration and proliferation of healthy cells and to eliminate the spread of infection in the wound 
area.22,23 A practical and alternate method in the treatment of diabetic wounds is the administration of low-energy light in the 
form of lasers or light-emitting diodes (LEDs) in a process known as photobiomodulation (PBM).24 This process is painless 
and modulates cellular and biological pathways to speed up wound healing and is effective only when the correct fluence and 
wavelength/s are used in the correct combination.25,26 Furthermore, PBM has been reported to alleviate oxidative stress by 
increasing antioxidant activity and reducing the intracellular production of ROS.27 Specifically, research has been conducted 
on red (620–750 nm) and near-infrared (NIR) (780–950 nm) wavelengths to influence wound healing.28 NIR light is found to 
be effective and is widely studied in the area of wound healing since this wavelength can penetrate deeper into tissues.25 An 
increase in cell viability, migration, and proliferation has been reported to be induced by PBM at a wavelength of 660 nm 
(visible red light) and fluence of 5 J/cm2 in vitro.29,30 A study by Mokoena et al, 201931 showed that irradiation at 
a wavelength of 660 nm with a fluence of 5 J/cm2 was successful in accelerating wound healing via the differentiation of 
fibroblasts into myofibroblasts, although this was done without activation of the TGF-β/Smad pathway. Considering the 
complexities that typify the wound healing process, there is a need to further understand how wavelength and fluence 
modulate molecular pathways during PBM. This will assist researchers and medical practitioners in choosing a suitable 
wavelength and dosage for effective diabetic wound healing. The rationale for using a NIR wavelength in this study is to add 
to the body of knowledge since most studies conducted in vitro were reported using red light and more studies on the 
biological effects of PBM using NIR light is required.29–31 This study therefore aims to investigate the potential of PBM 
using a NIR wavelength at 830 nm and a fluence of 5 J/cm2 in modulating TGF-β/Smad signaling pathway and improving 
wound healing process in normal, diabetic, and hypoxic in vitro wound models.

Materials and Methods
Cell Culture and Laser Irradiation
A human skin fibroblast cell line, WS1 (ATCC®, CRL-1502™), was used for this study and ethical clearance was obtained 
from the Faculty of Health Sciences, University of Johannesburg, Research Ethics Committee (REC-538-2020). Cells were 
grown in supplemented minimum essential media (MEM), as previously reported.16 Five cell models were utilized in this 
study, namely normal (N) unstressed cells; normal wounded (NW); diabetic (D); diabetic wounded (DW); and hypoxic 
diabetic wounded (HDW). A diabetic model was induced by continuously growing cells in complete MEM with an 
additional 17 mM D-glucose (which brings the total glucose concentration to 22 mM).26 Prior to irradiation, the hypoxic 
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diabetic model (HDW) was attained by growing cells in media without fetal bovine serum (FBS) for 24 h and then followed 
by incubating the cells in an anaerobic jar for 4 h; an anaerobic indicator was used to validate the process.32 For all 
experiments, except the proliferation assay, cells at a seeding density of 6×105 were irradiated in 3.4 cm diameter tissue 
culture plates followed by incubation at 37 °C in 5% CO2. For the proliferation assay, 1×106 cells were seeded and kept under 
the same conditions. Thirty minutes pre-irradiation, a wound was stimulated via the central scratch using a 1 mL pipette in 
wounded models.16,33,34 Creating a scratch on the cell monolayer serves as a valuable tool for understanding the effect of the 
experimental assays for promoting wound healing.35 The scratch assay is cost effective and involves a simple experimental 
design thereby making it an invaluable method for understanding cell migration favoring the quantification of cell migration 
under controlled experimental conditions. A scratch assay is done by growing the cells to confluence and creating a “wound” 
(cell-free zone) on the cell monolayer to which the cells can migrate.36

The experimental groups were irradiated with a continuous wave diode laser provided by the Council for Scientific 
and Industrial Research (CSIR) – National Laser Centre (NLC) of South Africa (wavelength 830 nm; Fremont, 
California, RGBlase, TE-CIRL-70G-830 SMA), laser parameters are reported in Table 1. Cells (in 1 mL of culture 
medium) were irradiated in the dark with the laser beam targeted overhead the 3.4 cm diameter culture dish. 
A wavelength of 830 nm and a fluence of 5 J/cm2 was used, as it has been reported to stimulate wound healing in 
WS1 cells in earlier studies.26,37 An irradiation time of 7 min 10s was calculated based on the power output and power 
density of the laser (Table 1) to achieve the desired fluence of 5 J/cm2. Non-irradiated cells (0 J/cm2) functioned as 
controls. Cells were incubated for 24, 48 and 72 h post-irradiation.

Cellular Migration Rate
Cellular migration in the direction of the central scratch was observed. The rate of cell migration towards the central 
scratch was investigated in normal wounded (NW), diabetic wounded (DW) and hypoxic diabetic wounded (HDW) cells 
at 0, 24, 48 and 72 h through periodic microscopy via the Carl Zeiss Axio Observer Z1. The measurements were taken on 
the same spot in three different images, and the mean distance used for the calculations. Migration rate is expressed in 
percentage using the following equation:

Atoh � Attimeð Þ=Atoh � 100 (1) 

where At0h represents measurements between boundaries of the scratch at 0 h and Attime is the measurement within the 
boundaries of the scratch at different times.38

CellTiter-Glo® Luminescent Cell Viability Assay
The CellTiter-Glo luminescent assay (Promega, G7571) is a consistent technique for measuring cell viability through the 
quantification of adenosine triphosphate (ATP) present in metabolically active cells. This technique measures luminescence 
obtained through the transformation of intracellular ATP to adenosine monophosphate (AMP) by the enzymatic action of 
luciferase, which signals the presence of metabolically active and viable cells.28 Post-irradiation (24, 48 or 72 h), cells were 
detached and resuspended at 50,000 cells per 50 µL and the same volume of reagents were mixed in a 96-well plate for 2 

Table 1 Laser Parameters

Variables Current Study

Wavelength (nm) 830
Light source Diode laser

Wave emission Continuous wave

Spot size (cm2) 9.1
Power output (mW) 105

Power density (mW/cm2) 11.54

Irradiation time 7 min 10s
Energy density (J/cm2) 5

Energy (J) 45.5
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min to generate cell lysis followed by 10 min incubation at room temperature. Luminescence was recorded on a Victor3™ 
multilabel plate reader (PerkinElmer) in relative light units (RLU).

ApoTox-Glo™ Triplex Assay
The ApoTox-Glo triplex assay (Promega, G6320) is more complex and is centered on the proteolytic action of biomarkers present 
in the cell. It was used to evaluate cell viability, cell cytotoxicity, and caspase 3/7 activation (a marker of apoptosis) 24, 48 or 72 
h post-irradiation. Briefly, 100 µL of cell suspension (containing 20, 000 cells per 100 µL) was introduced into an opaque-walled 
96-well plate and 20 µL of mixed glycyl phenylalanyl-amino fluorocoumarin (GF-AFC) and bis-alanylalanyl-phenylalnyl- 
rhodamine 100 (bis-AAFR110) substrate (viability/cytotoxicity reagent) was added. This mixture was combined for 30 s by 
orbital shaking (350 rpm) followed by incubation at 37 °C for 1 h, then fluorescent signals were measured using the PerkinElmer 
Victor3™ multilabel plate reader at 400EX/505EM (filters for viability) and 485EX/520EM (filters for cytotoxicity). Caspase 3/7 
activity was subsequently quantified by adding 100 µL Caspase-Glo® 3/7 reagent to all wells, followed by incubation for 30 min at 
room temperature and measurement of luminescence in RLU. Background fluorescence was eliminated by subtracting the 
fluorescence of media without cells.

Cell Proliferation
The BD Pharmingen™ BrdU FITC Flow Kit (BD Biosciences, 559619/557891) was utilized to evaluate cell prolifera-
tion. The assay was performed according to the manufacturer’s protocol and analyzed through flow cytometry using the 
BD Accuri C6. Following laser irradiation (24, 48, or 72 h), cells were stained with 30 μL of 1 mM BrdU for 1 h (BrdU 
incorporates into freshly synthesized DNA during the S-phase of the cell cycle), then detached from the culture plates 
using TrypLE™ Select (Gibco, 12563–029). Cells were suspended in BD Cytofix/Cytoperm™ buffer followed by 30 min 
incubation on ice. Cells were then washed with BD Perm/Wash™ buffer and centrifuged for 5 min at 300 g. Pellets were 
re-suspended in BD Cytofix/Cytoperm™ buffer followed by incubation on ice for 10 min. Cells were then washed and 
centrifuged as before and the pellet resuspended and incubated in DNase (300 μg/mL) in phosphate-buffered saline 
(PBS) for 1 h at 37 °C. Cells were washed as before and BD Perm/Wash™ buffer containing diluted fluorescent anti- 
BrdU antibodies was added, and incubated at room temperature for 20 min. A repeat washing process preceded the 
suspension of cells in 1 mL staining buffer mixed with 20 μL of 7-amino-actinomycin D (7-AAD). BrdU-labelled cells 
were counted via flow cytometry at a frequency of 400 events per second, with a sample limit set at 500 μL.

ELISA Assays
The release of TGF-β1 into the culture medium was analyzed using the Human TGF-β1 DuoSet® ELISA kit (R&D 
Systems; DY240), while the phosphorylation of Smad2/3 in the cells was detected using the InstantOne™ ELISA kit 
(Invitrogen, 85–86192). Both assays were performed using the kit protocol, and colometric reactions were measured 
spectrophotometrically at 450 nm using the PerkinElmer Victor3™ multilabel plate reader.

The presence of pTGF-βR1 in cultured cells was detected using a cell-based ELISA. Briefly, 100 µL of cell 
suspension (containing 20,000 cells per 100 µL) was introduced into 96-well microplates and incubated overnight to 
favor adherence of the cells. Then, the cells were fixed at room temperature for 15 min with 8% paraformaldehyde 
followed by washing with phosphate buffer and 0.1% tween-20 (PBS-T) and blocking with 5% bovine serum albumin, 
BSA and 0.05% sodium azide in PBS-T at room temperature for 2 h. Thereafter the cells were washed with PBS-T and 
a polyclonal primary antibody (1:200) for phosphorylated TGF-βR1 (Elabscience, ENO1191) was added. The mixture 
was incubated for 2 h at room temperature. This was followed by a washing step and then incubation with a secondary 
antibody 1:1000 (R&D Systems HAF008) for 2 h at room temperature. Then, the plates were washed and incubated for 
20 min with 3,3′,5,5′-tetramethylbenzidine (TMB) and measured at 450 nm using a spectrophotometer (Victor3™ 
PerkinElmer).

Statistical Analysis
All experiments were performed in triplicate (n = 3), and results are expressed as the mean ± standard error of mean 
(SEM). Statistical significance was analyzed using SPSS version 27. Significant differences were determined by the 
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Student’s t-test (control vs experiment) and one-way analysis of variance (ANOVA) (comparing between cell groups) and 
two-way ANOVA (comparing between irradiation and non-irradiation, irrespective of cell models). In all cases, p values 
of less than 0.05 were considered statistically significant.

Results
Cellular Migration Rate
The rate of cellular migration was investigated at 24, 48 and 72 h following laser irradiation and is shown in Table 2. The 
WS1 cells grown in a confluent monolayer appeared thin and spindle-like (Figure 1A).

Irrespective of the cell model, the rate of migration in irradiated cells was significant at both 24 and 48 h (p = 0.0181 
and p = 0.0001) compared to non-irradiated cells (Table 2). At 24 h, the rate of migration in the NW cells was not 
significant (p = 0.887) compared to the DW cells, while compared to the HDW (p = 0.05), there was a slight significance 
increase in the rate of migration. At 48 h, the rate of migration in irradiated NW cells was significantly (p = 0.016 and p = 
0.0001) lower in comparison to both irradiated DW and HDW cells.

Irradiated NW, DW and HDW cells displayed faster migration towards the central scratch compared to their non- 
irradiated control cells (Figure 1A-C). The distance written on the figures is the representative mean of the distance 
measured for each group. DW and HDW cells irradiated at 830 nm with 5 J/cm2 depicted complete wound closure at 48 
h, while NW cells only became fully confluent at 72 h (Figure 1A). Unirradiated control cells only showed complete 
wound closure at 72 h. In general, cellular migration was significantly improved in irradiated cells.

CellTiter-Glo Luminescent Cell Viability Assay
Cellular viability was determined using the CellTiter-Glo luminescent cell viability assay in all non-irradiated and irradiated 
cell models, and results can be seen in Figure 2. In general, there was a significant increase in ATP bioluminescence in 
irradiated cells irrespective of cell model when compared to non-irradiated cells at 24, 48 and 72 h (p = 0.001, p = 0.01 and 
p = 0.001, respectively). At 24 h, irradiated NW cells showed a significant (p = 0.025 and p = 0.001) increase in viability 
when compared with irradiated DW and HDW cells. There was also a significant increase in viability in irradiated N cells as 
compared to irradiated D and HDW cells (p = 0.04 and p = 0.0001), indicating the debilitating effect of hyperglycemia and 
hypoxia on cellular viability (as expected). At 48 h, irradiated NW cells showed a significant (p = 0.001) increase in 
viability as compared to irradiated HDW cells, while at 72 h, viability was significantly (p = 0.0001) higher in irradiated 
NW cells in comparison with DW and HDW cells.

ApoTox-Glo Triplex Assay
The ApoTox-Glo triplex assay was used to measure cellular viability, cytotoxicity and apoptosis in all non-irradiated and 
irradiated cell models, and results can be seen in Figures 3-5, respectively. Cell viability was significantly increased due 
to irradiation irrespective of cell model (Figure 3), at 24, 48 and 72 h (p = 0.001, p = 0.002 and p = 0.0001, respectively). 
At 24 and 48 h there was a significant (p = 0.001) increase in viability in N cells as compared to D cells. Furthermore, 

Table 2 Cell Migration Rate (%) in Normal Wounded (NW), Diabetic Wounded (DW) and Hypoxic Diabetic 
Wounded (HDW) Cells After Irradiation at 830 Nm with 5 J/cm2 at 24, 48, and 72 h Compared with Their 
Corresponding Non-irradiated (0 J/cm2) Wounded Models

Incubation Time After Irradiation

24 h 48 h 72 h

Models 0 J/cm2 5 J/cm2 0 J/cm2 5 J/cm2 0 J/cm2 5 J/cm2

NW 26.8 ± 1 43.2 ± 3* 80.7 ± 2 84.1 ± 1 100 100

DW 19.0 ± 2 43.1 ± 3* 78.4 ± 1 100*** 100 100
HDW 40.1 ± 4 44.2 ± 1 73.5 ± 2 100** 100 100

Note: *p < 0.05, **p < 0.01 and ***p < 0.001 (±SEM) represents statistical significance when compared to non-irradiated cells.
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viability was significantly (p = 0.0001 and p = 0.002) higher in irradiated NW cells compared to the irradiated HDW cells 
at 24 and 48 h. At 72 h irradiated NW cells showed a significant increase in viability in comparison with irradiated DW 
and HDW cells (p = 0.0001).

Figure 1 (A) Normal wounded (NW), (B) Diabetic wounded (DW) and (C) Hypoxic diabetic wounded (HDW) WS1 fibroblast cells at 0, 24, 48, and 72 h post-irradiation 
at 830 nm with 5 J/cm2 (magnification 200x, scale bar = 200 µm), non-irradiated (0 J/cm2) cells served as controls.
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Just as irradiation increased cell viability, it was also able to reduce cell cytotoxicity irrespective of the models at 
24, 48 and 72 h (p = 0.0001, p = 0.001 and p = 0.0001, respectively) (Figure 4). At 24 h, irradiated NW cells showed 
a significant (p = 0.001 and p = 0.007) decrease in cytotoxicity compared to irradiated DW and HDW cells, while at 
48 h no significant difference (p = 0.750 and p = 0.161) was observed. However, at 72 h, cytotoxicity in irradiated 
NW cells was significantly (p = 0.001 and p = 0.0001) increased compared to in irradiated DW and HDW cells.

Irrespective of cell model, irradiation at 830 nm resulted in a reduction in caspase 3.7 activation at 24, 48 and 72 h (p = 0.0001, 
p = 0.027 and p = 0.02, respectively) (Figure 5). At 24 h, irradiated N cells showed a significant increase in the activation of 
Caspase 3/7 compared to the irradiated D cells (p = 0.01), while there was no significant (p = 1.00 and p = 0.569) difference in 
irradiated NW cells compared to DW and HDW cells. At 48 h, irradiated NW cells showed no significant (p = 1.00 and p = 0.756) 
difference in caspase 3/7 activation as compared to irradiated DW and HDW cells. While at 72 h irradiated NW cells showed 
a significant (p = 0.046 and p = 0.017) decrease in caspase 3/7 activation as compared to irradiated DW and HDW cells.

Cell Proliferation
BrdU incorporation into non-irradiated and irradiated cells was used to determine cell proliferation, and changes were 
observed at 24, 48 and 72 h (Table 3) post-irradiation using a flow cytometer. Irrespective of cell model, irradiation at 830 
nm with 5 J/cm2 produced no significant difference in the percentage of cells in the G0/G1 (resting/gap) phase at 24, 48 and 72 
h (p = 0.581, p = 0.829, and p = 0.094, respectively), which signals the continuous activity of these cells. At 24 h, the 

Figure 2 Cellular viability as evaluated by the CellTiter-Glo luminescent cell viability assay (ATP luminescence measured in relative light units, RLU). 
Notes: Luminescence was recorded in irradiated (5 J/cm2) and non-irradiated (0 J/cm2) normal (N), normal wounded (NW), diabetic (D), diabetic wounded (DW) and 
hypoxic diabetic wounded (HDW) cells and analyzed 24, 48 and 72 h post-irradiation (830 nm). *p < 0.05 and **p < 0.01 (±SEM) represent statistical significance when 
compared to non-irradiated cells.
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percentage of cells in the G0/G1 phase in the irradiated NW group was significantly (p = 0.003) higher compared to irradiated 
HDW cells, while there was no significant (p = 0.258) difference when compared to DW cells.

In the S-phase, irradiation at 830 nm with 5 J/cm2 resulted in a significant increase in cell proliferation compared to 
non-irradiation at 24, 48 and 72 h (p = 0.001, p = 0.0001, and p = 0.0001, respectively), irrespective of cell model. At 24 
h, irradiated NW cells showed a significant (p = 0.002) decrease in proliferation compared to irradiated DW cells; no 
significant (p = 0.952) difference was seen when compared to irradiated HDW cells. However, at 48 and 72 h, 
proliferation was significantly (p = 0.001) higher in irradiated NW cells compared to irradiated DW and HDW cells.

In the G2/M (checkpoint for mitotic activity) phase, irradiation produced no significant (p = 0.459, and p = 0.893) 
difference at 24 and 48 h irrespective of cell model, while at 72 h there was a significant increase in irradiated cells (p = 
0.0001) compared to non-irradiated cells. At 24 h, the percentage of cells in the G2/M phase in irradiated NW cells was 
significantly (p = 0.0001) higher compared to irradiated HDW cells. At 48 h, no significant (p = 0.999 and p = 1.00) 
difference was seen when irradiated NW cells was compared to irradiated DW and HDW cells, while at 72 h the difference 
in irradiated NW cells was significantly (p = 0.001 and p = 0.0001) higher compared to irradiated DW and HDW cells.

ELISA Results
ELISA was used to determine TGF-β1 levels in the culture media, and results can be seen in Figure 6. Irrespective of 
cell groups, irradiation at 5 J/cm2 caused a significant reduction in TGF-β1 levels (p = 0.001) at 24 h, while at 48 h and 
72 h, TGF-β1 levels increased (p = 0.0001) significantly. At 24 h, irradiated NW cells showed no significant difference 
(p = 0.059 and p = 0.139) in TGF-β1 levels compared to irradiated DW and HDW cells. At 48 h there was no significant 
(p = 0.272 and p = 0.066) difference in TGF-β1 levels in irradiated NW cells compared to irradiated DW and HDW 

Figure 3 Cellular viability as assessed by the ApoTox-Glo triplex assay in WS1 cells. 
Notes: Cell viability was measured in irradiated (5 J/cm2) and non-irradiated (0 J/cm2) normal (N), normal wounded (NW), diabetic (D), diabetic wounded (DW) and 
hypoxic diabetic wounded (HDW) cells and analyzed 24, 48 and 72 h post-irradiation (830 nm). *p < 0.05, **p < 0.01 and ***p < 0.001 (±SEM) represent statistical 
significance when compared to non-irradiated cells.
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cells. At 72 h, irradiated NW cells showed a significantly (p = 0.003) higher level of TGF-β1 compared to irradiated 
HDW cells.

The presence of phosphorylated (and hence activated) pTGF-βR1 was also measured via ELISA (Figure 7). Irrespective of 
cell groups, irradiation caused a significant reduction in pTGF-βR1 levels at 24 h, 48 h and 72 h (p = 0.0001, p = 0.004, and 
p = 0.004, respectively). At 24h, there was no significant (p = 0.547 and p = 0.936) difference in pTGF-βR1 levels in NW cells 
compared to DW and HDW cells, while at 48 h there was a significantly (p = 0.001) lower level of pTGF-βR1 in irradiated NW 
cells compared to irradiated DW cells. At 72 h, there was no significant (p = 187 and p = 0.161) difference in pTGF-βR1 levels in 
irradiated NW compared to irradiated DW and HDW cells.

Levels of phosphorylated (activated) p-Smad2/3 was measured via ELISA (Figure 8). Irrespective of cell groups, 
irradiation caused a significant (p = 0.0001) increase in p-Smad2/3 levels at 24 h only, while at 48 and 72 h there was no 
significant (p = 0.179 and p = 0.258, respectively) difference. In addition, at 24 h, irradiated NW cells showed a significantly 
(p = 0.0001) higher level of p-Smad2/3 compared to irradiated DW and HDW cells. At 48 h, irradiated NW cells showed 
significantly (p = 0.003 and p = 0.00002) higher p-Smad2/3 levels compared to irradiated DW and HDW cells. At 72 h, 
irradiated NW cells showed significantly (p = 0.002) lower p-Smad2/3 levels compared to irradiated DW cells.

Discussion
Many in vitro studies have highlighted the efficacy of PBM in altering processes for effective wound healing in diabetic 
cells.28,30 These successes are likely due to PBM stimulating enhanced collagen synthesis and release of growth factors 
that facilitate successful wound repair processes.28 Most findings on the effectiveness of PBM in diabetic wound healing 
utilize light in the red and NIR region of the electromagnetic spectrum. This is because tissue chromophores such as 
hemoglobin and melanin take up wavelengths shorter than 600 nm, thereby making the red and NIR region an optical 
therapeutic window where the efficiency of light penetration in the tissue is maximum.39,40 The success of PBM is based 

Figure 4 Cell cytotoxicity as assessed by the ApoTox-Glo triplex assay in WS1 cells. 
Notes: Cytotoxicity was measured in irradiated (5 J/cm2) and non-irradiated (0 J/cm2) normal (N), normal wounded (NW), diabetic (D), diabetic wounded (DW) and 
hypoxic diabetic wounded (HDW) cells and analyzed 24, 48 and 72 h post-irradiation (830 nm). *p < 0.05, **p < 0.01 and ***p < 0.001 (±SEM) represent statistical 
significance when compared to non-irradiated cells.
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on using the correct wavelength, dose and fluence, although the exact dimensions of these parameters have not been 
ascertained. Studies using PBM at a visible red wavelength (660 nm) has shown an improvement in cell migration, 
viability, and proliferation in human diabetic fibroblast cells.28,29 Cell viability and proliferation has been reported to be 
increased through PBM by increased production of nucleic acids for protein synthesis with an absence of cell damage or 
cytotoxicity.33

For this study, a NIR wavelength (830 nm) was used to investigate the release of TGF-β1 and subsequent activation 
of its receptor TGFβR1 and downstream p-Smad 2/3 and its effect on migration, viability and proliferation in relation to 
wound healing, since there is sparse information on the influence of this wavelength in promoting cell viability and 
proliferation. Also, irradiation at a NIR wavelength has been reported to improve diabetic wound healing in an in vivo 
animal study due to its depth of penetration into skin.41 A fluence of 5 J/cm2 was used for this study since it has been 
reported to be effective in improving diabetic wounds in WS1 fibroblast cells in vitro in earlier studies.35,36,42

Studies have shown that the migration and proliferation of dermal fibroblasts are essential to the formation of new 
tissue and remodeling in cutaneous wound healing.43,44 The migration of fibroblasts and repopulation of cells at the 
wound site is an important step in wound healing,45 and this is better understood using the central scratch assay. This 
assay allows for recolonization and monitoring of the scratched region to quantify cell migration.46,47 This experimental 
technique of the scratch assay aids in the understanding of the molecular mechanisms that influence cell migration and 
identifying pharmaceutical compounds (or in this case light) that can induce cell migration.48 One of the limitations of 
the scratch model include the absence of other cells that may be present at the site of a wound and the lack of cellular 
interactions with fibroblasts. Nevertheless, valuable information is obtained to better understand cellular mechanisms in 
an in vivo environment. Using microscopy, we investigated the rate of migration of cells into the central scratch in 
normal wounded, diabetic wounded, and hypoxic diabetic wounded cells 24, 48, and 72 h post-irradiation. The observed 

Figure 5 Caspase 3/7 activation as assessed by the ApoTox-Glo triplex assay in WS1 cells (expressed in RLU). 
Notes: Caspase 3/7 activation was measured in irradiated (5 J/cm2) and non-irradiated (0 J/cm2) normal (N), normal wounded (NW), diabetic (D), diabetic wounded (DW) 
and hypoxic diabetic wounded (HDW) cells and analyzed 24, 48 and 72 h post-irradiation (830 nm). *p < 0.05 and **p < 0.01 (±SEM) represent statistical significance when 
compared to non-irradiated cells.
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general physical appearance of the fibroblast cells in all the models seems consistent with the results reported in a similar 
study.29 The cells appeared spindle-shaped with bi- or multipolar protrusions, and both the control and irradiated cells 
looked the same. Their migration was in the same direction with total closure of the “wound” seen at 72 h in the wounded 
cell models. A faster rate of migration was seen in the diabetic wounded and hypoxic diabetic wounded cells, with 
complete wound closure at 48 h. These results show that irradiation at 830 nm with 5 J/cm2 significantly increases the 
migration rate of fibroblast cells and suggests that the stressed models reacted better to PBM. Irradiation at 5 J/cm2 

accelerated the rate of wound closure in our study, which is similar to results from studies that used the same wavelength 
(830 nm).26,49 Fibroblast cells usually react to the disorganization of cell-to-cell communication by producing more 
growth factors at the wound site to facilitate healing through activation of both migration and proliferation.45,50

Our results from the cell viability assay using ATP luminescence showed a substantial increase in cell viability in all 
treated cell models over time. As expected, cell viability was reduced in the diabetic wounded and hypoxic diabetic 
wounded cells as compared to the normal and normal wounded cells. Hyperglycemia and hypoxia are stressors that 
induce cellular damage and senescence, hence the decrease in viability recorded in the stressed models. The ApoTox-Glo 
triplex assay further investigated the effect of laser irradiation at 830 nm on cytotoxicity and caspase 3/7 activation, 
which are markers of cell damage and progression to apoptosis, respectively. Our results showed that irradiation could 
reduce cytotoxicity and alter the activation of caspase 3/7, indicating that irradiation at 830 nm with 5 J/cm2 had 
a protective effect on cell integrity. Increased cytotoxicity and activation of caspase 3/7 are triggers of apoptosis which 
signals cell death, irradiation mitigated the incidence of cell death while favoring cell viability. Interestingly, our results 
show a higher cytotoxicity and caspase 3/7 activity in non-irradiated cells compared to irradiated cells, this shows (in 
combination with the viability results) how PBM in general, significantly decreases cellular apoptosis with a concomitant 

Table 3 Cell Proliferation Was Determined by Flow Cytometry (% Cells in S, G0/G1 and G2/M Phase) in 
Non-Irradiated (0 J/cm2) and Irradiated (5 J/cm2) Normal (N), Normal Wounded (NW), Diabetic (D), 
Diabetic Wounded (DW) and Hypoxic Diabetic Wounded (HDW) Cells 24, 48 and 72 h Post-Irradiation at 
830 Nm

G0/G1 Phase S Phase G2/M Phase

24 h 0 J/cm2 5 J/cm2 0 J/cm2 5 J/cm2 0 J/cm2 5 J/cm2

N 70.3 ± 2 76.7 ± 5.2 7.9 ± 0.3 13.2 ± 1.9 5.7 ± 1.5 7.8 ± 1.5

NW 73.5 ± 5.6 74.4 ± 1.9 8.1 ± 0.3 9.7 ± 0.7* 11.4 ± 1.5 11.2 ± 2.2
D 72.4 ± 3.2 71.4 ± 3.2 10.7 ± 0.4 13.3 ± 0.5*** 9.1 ± 0.2 8.0 ± 1.0

DW 68.6 ± 2.1 65.5 ± 2.1 13.1 ± 0.7 13.9 ± 0.9 9.8 ± 0.3 12.8 ± 0.4*

HDW 58.9 ± 1.7 61.5 ± 0.3 8.4 ± 0.6 10.8 ± 0.4 3.7 ± 1.1 3.4 ± 0.6

48 h

N 54.6 ± 4.7 46.5 ± 3.8* 16.0 ± 0.4 18.1 ± 1 4.8 ± 1.0 5.7 ± 1.1

NW 54.9 ± 3.6 54.3 ± 3.7 13.5 ± 0.5 16.7 ± 0.6** 4.5 ± 0.3 6.7 ± 1.2

D 50.8 ± 3.6 54.6 ± 4.5 10 ± 0.3 12.1 ± 0.6** 6.6 ± 1.2 4.9 ± 1.0**
DW 47.9 ± 4.4 50.4 ± 1.6 5.2 ± 0.4 7.6 ± 0.7** 6.9 ± 0.6 3.6 ± 1.0

HDW 50.8 ± 0.7 50.2 ± 1.7 4.2 ± 0.5 7.1 ± 0.9 4.6 ± 0.6 6.2 ± 0.5**

72 h

N 54.3 ± 2.3 61.6 ± 2.0** 20.4 ± 0.7 26.1 ± 1.7* 2.5 ± 0.5 9.3 ± 0.4**
NW 53.1 ± 1.5 53.7 ± 1.5 17.1 ± 0.3 18.1 ± 0.2 5.2 ± 0.5 6.7 ± 1.0

D 49.6 ± 3.7 53.2 ± 1.8 11.9 ± 1.0 15.5 ± 0.4 4.3 ± 0.5 7.5 ± 0.4*
DW 54.1± 3.1 52.0 ± 2.0 8.1 ± 0.2 9.3 ± 0.4 4 ± 0.6 2 ± 0.2

HDW 48.3 ± 0.8 53.7 ± 1.0 6.0 ± 0.1 7.8 ± 0.3** 1.7 ± 0.2 2.6 ± 0.5

Note: *p < 0.05, **p < 0.01 and ***p < 0.001 (±SEM) represents statistical significance when compared to non-irradiated cells.
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Figure 6 Presence of TGF-β1 in culture media measured using ELISA in irradiated (5 J/cm2) and non-irradiated (0 J/cm2) normal (N), normal wounded (NW), diabetic (D), 
diabetic wounded (DW) and hypoxic diabetic wounded (HDW) cells and analyzed 24, 48 and 72 h post-irradiation (830 nm). 
Note: *p < 0.05 and **p < 0.01 (±SEM) represent statistical significance when compared to non-irradiated cells.

Figure 7 Presence of pTGF-βR1 measured using ELISA in irradiated (5 J/cm2) and non-irradiated (0 J/cm2) normal (N), normal wounded (NW), diabetic (D), diabetic 
wounded (DW) and hypoxic diabetic wounded (HDW) cells and analyzed 24, 48 and 72 h post-irradiation (830 nm). 
Notes: *p < 0.05, **p < 0.01 and ***p < 0.001 (±SEM) represent statistical significance when compared to non-irradiated cells.
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increase in cell viability and survival. Other studies have also reported that PBM using a NIR wavelength favors cell 
viability without generating any cytotoxic effects.51,52

The proliferation of fibroblast cells is an important factor in achieving successful wound healing. Increased cell 
migration and proliferation favor epithelial movement to cover the wound site.53 Several changes occur in the expression 
pattern of key regulators of the cell cycle. Cell proliferation studies based on the cell cycle is successful when there is 
a surge in the S and G2M phase, which signals an advancement from the G1/S phase to a mitotic phase.54,55 Our results 
showed that irradiation stimulated cells to enter and initiate the S and G2/M phase from the G0/G1 phase, which is an 
indication of the distribution of cells in different phases to favor the proliferation of the fibroblast cells, and it confirms 
findings from other studies using a different wavelength (660 nm).16 These findings also support the results seen in the 
cell migration rate, wound closure, and viability assays. Studies have shown that the process of wound repair involves the 
interrelated activity of cell migration, viability, and proliferation.56 The diabetic (D and DW) and HDW cells also showed 
an alteration in the G0/G1 phase, showing that their stressed state did not prevent them from partaking in the process of 
cell proliferation, which could indicate that irradiation improved their homeostasis that could aid in wound repair. 
Maintaining a balance between cell proliferation and cell death is crucial for tissue development and favors wound repair.

A better understanding of the cellular pathways involved in wound healing is key for the development of effective 
therapies for diabetic patients with chronic wounds. TGF-β acts as a growth factor that is effective in stimulating wound 
repair processes.57 The major intracellular mediators of TGFβ family members are the Smad proteins which makes the 
TGFβ/Smad signaling pathway important for wound healing.58 In this study, the observed increase in TGF-β1 levels at 
48 and 72 h in irradiated cells suggests that TGF-β was released into the culture media. In vivo studies have reported that 
TGF-β-mediated chemotaxis can improve fibroblast proliferation and extracellular matrix (ECM) remodeling, and 
increase the accumulation of fibronectin and collagen at the wound site to favor successful wound healing.59–61 

Interestingly, some exogenous TGF-β-targeted in vitro experiments using monolayer cell cultures have reported that 

Figure 8 Presence of p-Smad2/3 measured using ELISA in irradiated (5 J/cm2) and non-irradiated (0 J/cm2) normal (N), normal wounded (NW), diabetic (D), diabetic 
wounded (DW) and hypoxic diabetic wounded (HDW) cells and analyzed 24, 48 and 72 h post-irradiation (830 nm). 
Note: *p < 0.05 and **p < 0.01 (±SEM) represent statistical significance when compared to non-irradiated cells.
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the differentiation of fibroblasts into myofibroblasts can be induced by the presence of TGF-β and associated expression 
of alpha smooth muscle actin (α-SMA).62,63 TGF-β has been reported to play a role in cell proliferation, differentiation, 
and proliferation in fibroblastic cells during angiogenesis.64–66 Receptor-specific Smads (Smad 2 and Smad 3) are 
important proteins for TGF-β mediated signaling. The binding of TGF-β to its type I/type II receptor induces the type 
I receptor to phosphorylate the receptor-specific Smads which then forms an oligomeric complex with the common Smad 
(Smad 4) and subsequently aids in its translocation to the nucleus to regulate gene expression.67 In our study, the decrease 
in the levels of pTGF-βR1 might suggest that the ELISA assay was not sufficient in detecting the presence of the 
activated receptor, Western blots and flow cytometry techniques could be used to better quantify the levels of the receptor 
in the cells. We could also suggest the possibility of TGF-β induced wound repair by binding to receptors other than 
TGF-βR1 to activate other non-Smad signaling pathways such as MAP kinase (MAPK), Rho-like guanosine tripho-
sphatase (GTPase), and phosphatidylinositol-3-kinase (PI3K)/AKT.68 The slight increase in p-Smad2/3 levels in the cells 
at 24 h is also not enough reason to justify that the TGF-β/Smad signaling pathway was activated and is responsible for 
viability and proliferation the cells. Other pathways initially mentioned might be responsible for the successful activation 
of the wound healing process. More research is needed to validate the initiation of the pathway.

This study has limitations in that it is done on a 2D cell culture model using a single-cell line, and the results 
represented here could be different in vivo.

Conclusion
The findings of this study confirm that PBM at a NIR wavelength of 830 nm and a fluence of 5 J/cm2 improves the rate of 
cellular migration, viability, and proliferation most especially in diabetic, and excessively stressed hypoxic diabetic 
wounded cells (which had an absence of oxygen and presence of glucose), and decreases cellular apoptosis in stressed 
cells, contributing to the increase in cell viability. These observations could have occurred via the activation of another 
pathway other than the TGF-β/Smad signaling pathway, and further studies on other cellular signaling pathways using 
NIR light are warranted to better understand the mechanisms involved in PBM. These results show that PBM could serve 
an indispensable role in healing wounds of diabetic patients in dire conditions.
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