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Abstract: Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, is known to have anti-inflammatory 
and anti-oxidant effects on the brain, and its clinical potential in the treatment of cognitive impairment in diseases such as Alzheimer's 
disease (AD) and Parkinson disease (PD) is currently being explored. This review focused on the reported beneficial effects of 
pioglitazone on cognitive dysfunction and summarized the associated mechanisms associated with pioglitazone-induced improvement 
in cognitive dysfunction. Our review of the relevant literature indicated that there is conclusive evidence of the effect of pioglitazone 
on improving cognitive impairment via its agonistic effect on PPAR-γ. Further, several mechanisms of action have been reported, and 
these include enhanced NF-kB and p38 activity; regulation of the pro-inflammatory cytokines IL-1, IL-6, and TNF-α; inhibition of Aβ 
production; alterations in the levels of mitochondrial proteins such as mitoNEET; regulation of protein kinases such as CDK5 and 
JNK; regulation of ROS and MDA levels and the levels of the antioxidant proteins TRX1 and PON2; and increased expression of 
thyroid hormone receptors. Despite these promising findings, pioglitazone treatment is also associated with cardiovascular risks, such 
as weight gain and edema, which subsequently increase the risk of mortality. Further, it has been documented that pioglitazone may be 
unable to cross the blood–brain barrier when administered in certain forms, and it can also cause cell death when administered at high 
concentrations. Therefore, further research is required to explore the effects of acute and chronic pioglitazone treatment on memory 
function and the associated risks, in order to determine its clinical applicability in the treatment of cognitive disorders. Nonetheless, the 
current literature does demonstrate that pioglitazone promotes the function of PPAR receptors in ameliorating inflammation, oxidative 
stress, amyloidogenesis, and hypothyroidism, and enhancing neurogenesis, synaptic plasticity, and mitochondrial function. Therefore, 
these mechanisms of PPAR receptors warrant further investigation in order to establish the clinical applicability of pioglitazone in the 
treatment of cognitive disorders, such as PD and AD, and neuronal impairment in conditions such as diabetes. 
Keywords: peroxisome proliferator-activated receptor gamma agonist, cognitive impairment, neuroinflammation, mitochondria

Introduction
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily and are comprised of 
three isoforms: PPAR-α, PPAR-β, and PPAR-γ. PPAR-γ is considered to be a regulator of glucose metabolism and fatty acid 
synthesis via the activation of factors that promote adipocyte differentiation.1 PPAR-γ is also known to be involved in the 
regulation of several physiological processes, such as the increased response of insulin receptors to insulin, lipid metabolism, 
and cellular proliferation.2 Therefore, PPAR-γ is an interesting therapeutic target for the treatment of metabolic disorders.

Pioglitazone is a thiazolidinedione that acts as an activator of PPAR-γ and is commonly used to treat hypoglycemia. 
Recent studies have shown that certain pioglitazone formulations can cross the blood–brain barrier and improve the 
response of insulin receptors to insulin, regulate glucose metabolism in the brain, and reduce neuroinflammation.3,4 

Attenuation of neuroinflammation can improve cognitive impairment. Accordingly, pioglitazone administration has been 
shown to lead to improvement in cognitive impairment caused by Alzheimer's disease (AD) and Parkinson disease (PD), 
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as well as improvement in dopaminergic neuronal survival in the brain.5–11 However, although the results of preclinical 
studies on model animals and cells lines have been promising, there is not enough evidence to conclusively support the 
application of pioglitazone for the treatment of cognitive disorders in the clinical setting. In order to understand its 
clinical potential, it is important to further explore its mechanisms of action that affect cognitive function.

With regard to its mechanism of action in improving cognitive impairment, pioglitazone has been shown to ameliorate 
inflammation, oxidative stress, amyloidogenesis, and hypothyroidism, as well as enhance neurogenesis, synaptic plasticity, 
and mitochondrial function via its effects on the relevant PPAR-mediated pathways. Some of these effects of pioglitazone 
include promoting the anti-inflammatory NF-kB and p38 pathways; inhibiting the expression of beta-secretase 1, which is 
important for Aβ production; enhancing the expression of proteins that are important for mitochondrial function, such as 
PGC-1α and mitoNEET; inhibiting the increase in the production of the pro-inflammatory cytokines IL-1, IL-6, and TNF-α 
induced by bacterial lipopolysaccharides; regulation of the expression of protein kinases such as AKT and JNK; modulation 
of the antioxidant proteins TRX1, BDNF, and calcium–calmodulin-dependent protein kinase II (CaMKII); inhibition of ROS 

Table 1 Effect of Pioglitazone on Different Organ System

Sl.No. Organ Effect of Pioglitazone

1 Liver ↑ Insulin sensitivity

↓ Liver steatosis

↓ VLDL secretion/↑ HDL-C

↑ Hepatic glucose production

2 Bone ↑ Osteoclastogenesis

↓ Osteoblastogenesis

↑ Adipogenesis

↑ Osteocyte apoptosis

3 Heart ↑ Exacerbation of diastolic dysfunction

↓ Coronary atherosclerosis

4 Kidneys ↑ Increase plasma volume

↑ Plasma renin activity

↑ Sodium reabsorption

5 Muscle ↓ Muscle lipotoxicity

↑ Insulin sensitivity

6 Ovaries ↓ Systemic hyperinsulinemia

7 Adipose tissue ↑ Adiponectin

↑ Insulin sensitivity

↑ TG synthesis

↓ Adipokine release

8 Arterial wall ↓ Inflammation

↓ Macrophage recruitment

↑ Cholesterol efflux

Abbreviations: VLDL, Very low density lipoproteins; HDL-C, High density lipoprotein cholesterol; TG, 
Triglycerides.
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and MDA production; promotion of thyroid function via increased activation of thyroid hormone receptors; and modulation 
of the LRP1, GSK-3β, and Nrf2/ARE pathways, which are involved in synaptic transmission (Table 1). Despite these 
promising findings, PPAR-γ activation has been reported to increase cardiovascular risks. Therefore, it is important to be 
cautious about cardiovascular complications in patients receiving drugs that target PPAR-γ.

This review focused on studies that report the beneficial effects of pioglitazone on cognitive impairment and the 
associated mechanisms, such as changes in the expression or activity of proteins, mitochondrial function, neuroinflam-
mation, oxidative stress, synaptic transmission, and thyroid function (Figure 1) (Table 2). We hope that our review will 
guide researchers to investigate these mechanisms in depth in the future and shed light on the potential clinical 
applications of pioglitazone for the treatment of cognitive disorders.

Pioglitazone and Neuroinflammation
Neuroinflammation plays a key role in the pathogenesis of brain diseases12 and has been implicated in the development 
of neurodegenerative diseases and cognitive decline.13 In the central nervous system, inflammatory effectors derived 
from immune systems, as well as glial cells, specifically, microglia, act as sensors of disturbed brain tissue homeostasis 
and accumulate locally in response to neuronal cell injury.14 The production of inflammatory and neurotoxic mediators, 
such as cytokines, has been commonly linked to intracellular mechanisms, such as protein degradation, mitochondrial 
dysfunction, axonal transport defects, and apoptosis, which contribute to the progression of neurodegenerative diseases.12

The activation of PPARγ has been demonstrated to reduce neuroinflammation.15,16 PPARγ upregulates cluster of 
differentiation 36 or CD36, which is involved in the modulation of microglial activation and phenotypic differentiation, 
and this promotes the phagocytosis of apoptotic cells and contributes to the resolution of inflammation.15,17 Moreover, 
PPARγ mediates the downregulation of proinflammatory genes and reduces the production of proinflammatory chemo-
kines, cytokines, and interleukins.15,18,19 Accordingly, PPARγ agonists have been found to exert anti-inflammatory 
effects by inducing an increase in the expression of anti-inflammatory-related genes in activated microglia and 
macrophages.20 In particular, the beneficial effects of the PPARγ agonist pioglitazone in the reduction of brain 

Table 2 Subtypes of PPAR Receptors and Their Distribution

Sl. No. Organ/Tissue PPAR-α PPAR-β/δ PPAR-γ

1 Adipose tissue – ↑ FFA oxidation ↑ Adipogenesis

↑ fatty acid storage

↓ Body weight ↑ adiponectin

↓ TNF-alpha

2 Muscle ↑ FFA oxidation ↑ FFA oxidation ↑ Insulin mediated glucose uptake

↑ Reverse cholesterol transport

↓ Inflammation

3 Liver ↑ FFA oxidation ↑ FFA oxidation ↑ Fatty acid storage

↑ HDL

↓ Triglycerides

↓ LDL ↓ Body weight

↓ VLDL

4 Vessel wall ↑ Reverse cholesterol transport ↓ Inflammation ↑ Reverse cholesterol transport

↓ Inflammation ↓ Inflammation

Abbreviations: FFA, Free fatty acid; TNF, Tumor necrosis factor; HDL, High density lipoprotein; LDL, Low density lipoprotein; VLDL, Very low 
density lipoprotein.
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inflammatory responses have been detected in different in vivo and in vitro models of neurological conditions, such 
as AD, PD, Huntington’s disease, schizophrenia, and autism spectrum disorders.21–23 With regard to the mechanisms of 
pioglitazone, through its effect on PPARγ, it has been found to induce an antioxidant effect and reduce the levels of 
inflammatory molecules by inhibiting common inflammatory signaling pathways. For instance, pioglitazone reduced the 
inhibition of both nuclear factor kinase B (NF-kB) and p38 mitogen-activated protein kinase activity,24,25 which are 
known to ameliorate the neuroinflammatory response and oxidative stress.26,27

Apart from neuroinflammation, increased amyloid-β (Aβ) levels, oxidative stress, and mitochondrial dysfunction are other 
mechanisms associated with cognitive impairment in neurodegenerative diseases such as AD.21,28–30 The combination of 
pioglitazone with fenofibrate was found to be effective in ameliorating the behavioral, neurochemical, and histopathological 
changes associated with amyloidogenesis induced by increased Aβ levels in model AD mice, and the data indicate that this is 
a promising therapeutic approach in the management of AD complicated by diabetes and hypercholesterolemia.29 In another 
study, administration of pioglitazone was found to provide protection from lipopolysaccharide (LPS)-induced neuroinflammation 
and amyloidogenesis via targeting the glutamatergic and inflammatory pathways.30 Based on similar reports by several studies, it 
is speculated that pioglitazone causes a reduction in Aβ levels by decreasing Aβ formation or increasing its clearance.26,27,31

The literature so far indicates that downregulation of the levels of PPARγ and activation of microglia, brain 
inflammation, and amyloidogenesis are involved in the onset of cognitive deterioration in PD.32,33 Pioglitazone has an 
ameliorative effect on PD by decreasing microglial activation, downregulating PPARγ phosphorylation, increasing 
PPARγ expression, inhibiting beta-secretase 1 expression, and inhibiting Aβ production.34 There is considerable literature 
on the mechanisms of pioglitazone in improving cognitive dysfunction associated with PD, and discussing all of these is 
beyond the scope of the current review. Nonetheless, these mechanisms of cognitive impairment and its improvement by 
pioglitazone are likely to be true for other cognitive diseases too. Therefore, these findings warrant careful consideration 
for the treatment of cognitive decline associated with neurological diseases.

Pioglitazone and Mitochondria
Mitochondrial respiration is the main source of energy in cells.35 Mitochondria also regulate Ca2+ signaling, the 
generation of reactive oxygen species, synaptic function and plasticity, and the arbitration of cell survival,36 and 
mitochondrial dysfunction contributes to ageing and neurodegenerative diseases.37,38 Mitochondria are also involved 

Figure 1 Mechanisms of pioglitazone in the improvement of memory impairment. The diagram depicts the factors that cause memory impairment (red lines) and the 
potential protective effects of pioglitazone (black lines).
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in the long-term potentiation of synaptic transmission, a significant process in memory and learning.39–41 Cognitive 
impairment has been associated with increased brain mitochondrial oxidative stress, cellular energy depletion, impair-
ment of mitochondrial electron transport and systems, and decreased mitochondrial integrity.42–44

Alterations in mitochondrial Ca2+ efflux, Aβ plaque accumulation, and intracellular deposition of hyperphosphorylated tau 
are known to accelerate memory deficits in AD.45 In addition, reduced levels of peroxisome proliferator-activated receptor- 
gamma coactivator 1 alpha (PGC1-α), along with decreased ATP levels in the AD brain, trigger a decrease in mitochondrial 
density in different brain regions, but earlier data contradict this finding.46 Further, the level of PPARγ protein was found to be 
increased in the temporal cortex of AD patients.47,48 Therefore, this line of research requires further research in the future.

The activation of PPARγ stimulates the PGC1 signaling pathway, thus increasing mitochondrial function and mass 
and counteracting cognitive dysfunction.49 Through its agonistic effect on PPARγ, pioglitazone has been shown to 
improve mitochondrial bioenergetics and maintain mitochondrial function, thus promoting cognitive recovery.50,51 In 
particular, pioglitazone improves learning and memory by improving synaptic activity and reducing amyloid and tau 
pathologies.23 With regard to the underlying molecular mechanisms, pioglitazone was found to increase the expression of 
PGC-1α and the production of uncoupling protein 2, a mitochondrial protein that reduces reactive oxygen species, as well 
as COX-1, and prevents tumor necrosis factor-α (TNFα)-mediated effects.21,52

According to small-scale pilot studies on type 2 diabetes mellitus (DM2), pioglitazone increases cerebral blood flow 
and delays the onset of dementia; the findings indicate that its effects on cognition interacted with its insulin-lowering 
effects, even in cases without DM2.23 Several clinical trials conducted along this line have indicated that pioglitazone 
administration improved cognitive function.26 Further, combining pioglitazone with other antidiabetic drugs, as well as 
lowering its dose, had beneficial effects in terms of enhancing memory parameters.41,42 However, a recent study 
conducted on randomly selected participants of all age groups suggested that pioglitazone did not slow down the 
memory impairment and, in fact, was associated with deaths in test populations.23,53 This study indicated that cardio-
vascular risks, such as weight gain and edema, which increased the load on the system, were the major causes of 
mortality.23 Further, the lack of any effect of pioglitazone on dementia parameters was attributed to its unavailability in 
the brain cells due to its inability to cross the blood–brain barrier.15,23,53

MitoNEET is a protein in the mitochondrial outer membrane that plays a central role in the regulation of mitochon-
drial function and metabolism.54 Overexpression of mitoNEET has been found to lead to a significant reduction in 
inflammation and provide protection against oxidative stress.55 A recent study demonstrated that pioglitazone exerts 
neuroprotective and functional benefits following traumatic brain injury by targeting mitoNEET.56 Further, delayed 
pioglitazone treatment was found to be more effective in improving mitochondrial bioenergetics and attenuating brain 
atrophy, thus improving cognitive and motor performance.55 These findings could mean that the ameliorative effect of 
pioglitazone on cognitive impairment might involve its effect on mitoNEET. Therefore, it would be interesting to explore 
the mitoNEET-targeting mechanisms of pioglitazone in the treatment of cognitive disorders.

Role of Pioglitazone in Neurogenesis
Adult neurogenesis is defined as the formation of mature functional neurons from neural stem cells in the brain.57 It involves 
several events that begin with the division of a precursor cell and end with the presence of new mature functional 
neurons.57,58 Triggers, such as stress,59 bacterial LPS,60 and ischemia,17 cause neuroinflammatory processes in different 
brain regions such as the hippocampus and cortex.61 Microglia are immune cells located within the central nervous system 
that play a crucial role in the neuroinflammatory response.62 The activation of microglia and neuroinflammation can 
seriously affect the regeneration of neurons in different brain regions.63 Microglial activation caused by LPS administration 
or elevated levels of proinflammatory cytokines, such as interleukin-6 (IL-6) and TNFα, can disrupt hippocampal neurogen-
esis and thus affect cognitive and olfactory function, contributing to many neurodegenerative diseases.64

PPARγ is involved in the proliferation and differentiation of neural stem cells, controls the production of inflammatory 
mediators, and is essential in the regulation of brain development and repair following injury. PPARγ exists in most cell types, 
neurons, vessels, and astrocytes, where it performs multiple functions.65 In one study performed on experimental mice 
subjected to diesel exhaust, which causes microglial activation and neuroinflammation, it was found that diesel exhaust 
reduced adult hippocampal neurogenesis, with male mice showing fewer new neurons in the hippocampal subgranular zone, 
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the olfactory bulb, and the subventricular zone, and female mice showing fewer new neurons in the olfactory bulb.66 However, 
administration of the PPARα agonist pioglitazone suppressed the effects of diesel exhaust on microglia and 
neuroinflammation.67 In another study, rats were administered LPS, which is known to cause inflammation by promoting 
the synthesis of the cytokines IL-1, IL-6, and TNF-α, leading to cognitive impairment in rats.64,68 Administration of 
pioglitazone prior to LPS exposure protected rats from LPS-induced learning and memory impairment through the regulation 
of secreted cytokines and the improvement of oxidative stress and brain-derived neurotrophic factor (BDNF) levels.69 

However, despite the well-documented anti-inflammatory effects of pioglitazone, it can cause cell death when administered 
at high concentrations.70 Therefore, its application in the treatment of PD, AD, DM2, and other diseases associated with 
cognitive impairment should be assessed with caution.

Effect of Pioglitazone on Protein Kinases
Protein kinases and phosphatases are phosphotransferase enzymes that catalyze the transfer of phosphates between 
substrates. A protein kinase catalyzes the transfer of γ-phosphate from ATP (or GTP) to its protein substrates, thus 
regulating the reactions that modulate the structures and functions of many cellular proteins within cells.71 An imbalance 
between kinase and/or phosphatase functions has been considered to be the primary cause of deregulated protein 
phosphorylation. AD is a progressive neurodegenerative disorder characterized by severe impairment of memory and 
cognitive function72 that results from the accumulation of misfolded Aβ and phosphorylated tau proteins in the aging 
brain.73 These misfolded proteins form intraneuronal neurofibrillary tangles74 that lead to oxidative and inflammatory 
damage, resulting in energy failure and synaptic dysfunction.75

In the AD brain, the expression or activity of kinases, such as Akt, extracellular signal-regulated kinase 1 and 2 (ERK1/2), 
cAMP-dependent protein kinase (PKA), glycogen synthase kinase-3β (GSK-3β), p70S6 kinase, and cyclin-dependent protein 
kinases 5 (Cdk5), was found to be increased, whereas that of several protein phosphatases, such as PP1, PP2A, and PP5, was 
found to be decreased.76,77 One study demonstrated that pioglitazone could inhibit the in vitro phosphorylation of PPARγ by 
inhibiting the expression of cyclin-dependent kinase 5 (CDK5), which increases the expression of the insulin-degrading 
enzyme and inhibits β-amyloid cleavage enzyme 1 through PPARγ target genes, leading to Aβ degradation and reduced Aβ 
production.78 In accordance with these findings, reduction of Aβ levels in the brain exerted neuroprotective effects in an AD 
model.33 Importantly, the use of pioglitazone improved spatial learning, enhanced AKT signaling, and attenuated tau 
hyperphosphorylation and neuroinflammation79 through enhanced microglial uptake of Aβ.80,81

PD is a neurodegenerative disorder characterized by non-motor and motor symptoms caused by a depletion of striatal 
dopamine owing to the degradation of dopaminergic neurons in the substantia nigra.82,83 The available data from several 
previous studies strongly implicate the dysfunction of kinase activities and phosphorylation pathways in the pathogenesis 
of PD.6,32 Some of the important protein kinases associated with increased risk of PD are PTEN (phosphatase and tensin 
homolog)-induced putative kinase 1 (PINK1), and leucine-rich repeat kinase 2 (LRRK2).29,32 In particular, PINK1 and 
LRRK2—along with their associated protein kinase B (AKT) and c-Jun N-terminal kinase (JNK) signaling pathways— 
are being intensively studied with respect to their relationship to PD.31,77

Some studies have demonstrated that treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine acti-
vates caspase-3, leading to neuronal death by apoptosis; however, treatment with neuroprotective drugs such as pioglitazone 
inhibits the activity of caspase-3 and reduces neuronal damage.84,85 Previous studies have also indicated that pioglitazone 
protects dopaminergic neurons by inhibiting abnormal microglia activation, interfering with the phosphorylation of JNK and 
NF-κB, and suppressing cyclooxygenase 2 expression and subsequent prostaglandin E(2) synthesis.86

Thus, the beneficial effects of pioglitazone in PD and AD seem to be linked to its effects on the regulation of protein kinases, 
and therefore, its protein kinase-related mechanisms should be explored further in the treatment of cognitive disorders.

Pioglitazone and Oxidative Stress
Chronic exposure to stress increases the levels of stress hormones, such as cortisol, and leads to several health complications, 
including alterations in brain functions.87,88 In addition, severe and long-term elevation in the levels of stress hormones can 
induce changes in normal brain structure and function,89 ultimately affecting cognitive function and leading to memory 
impairment.90,91 Several studies conducted in experimental rats have revealed that stress alters the expression and function of 
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proteins, such as BDNF and CaMKII, which affect cognitive function.92–94 Earlier studies indicated that activation of the 
NMDA receptor in glutamatergic excitatory pathways following a behavioral experience is essential for long-term memory 
(LTM) storage.95 When this receptor is activated, calcium enters into the neurons and binds to calmodulin to form the Ca2C/ 
CaM complex, which is recognized by multiple enzymes and induces a molecular signaling cascade whose main function is to 
reshape synaptic structure and physiology, as well as regulate the expression of genes necessary for the formation of LTM.100 

It is considered that CaMKII is one of the main targets of Ca2C/CaM, and accordingly, CaMKII activity is increased in 
response to learning and its inhibition causes LTM impairment.

Interestingly, pioglitazone has been reported to exert antioxidant activity,96 and treatment with pioglitazone was found 
to rescue the cardiovascular system and cognitive impairment caused by elevated levels of oxidative stress.97 The 
underlying mechanisms of the cardioprotective effects and improvement in memory impairment induced by pioglitazone 
were found to be mediated via modulation of the antioxidant protein TRX198 and increased expression of BDNF and 
CaMKII. In particular, CaMKII binding and pioglitazone-induced phosphorylation has been found to regulate autono-
mous activity and the location and/or transport of proteins in the post-synaptic density, including the NMDA receptor, 
synapsin 1, F-actin, and calcium channels, to regions of interest.99 In addition, the expression of p47phox and gp91phox, 
which is increased under conditions of oxidative stress, was reduced following treatment with pioglitazone.96 Further, 
several studies have pointed to the effect of pioglitazone on increased expression of the antioxidant protein PON2.100,101

Malondialdehyde (MDA) is one of the products generated from the peroxidation of fatty acids, and an increase in the levels 
of reactive oxygen species has been positively correlated with overexpression of MDA.102,103 Pioglitazone has also been 
found to reduce oxidative stress through a reduction in the levels of MDA and inhibition of ROS production and inflammatory 
pathways; this further verifies its potent antioxidant activity.104 All these findings indicate the role of pioglitazone against 
stress in the brain via regulation of TRX1, p47phox, and gp91phox activity, and the levels of MDA and ROS.

Pioglitazone and Thyroid Function
Thyroid hormones, such as thyroxine (T4) and triiodothyronine (T3), regulate many physiological functions.105 These 
hormones play essential roles in brain development, particularly in neurogenesis and synaptogenesis.106,107 More 
specifically, T3 and T4 are produced by thyroid follicular cells in the thyroid gland and then released into the blood-
stream, from where they are capable of crossing the blood–brain barrier108,109 and ultimately binding to thyroid hormone 
receptor (THRs). THRs are nuclear receptors that can be classified into two isoforms, THRα and THRβ,110 the 
distribution of which differs among tissues. The THRα1 receptor is predominantly expressed in the heart and skeletal 
muscle,111 whereas THRβ1 is primarily expressed in the liver, kidney, and brain.112 Of note, THRs are abundantly 
expressed in the hippocampus, the structure within which memory is formed in the brain.107 THRα-knockout mice 
exhibited memory impairment; this confirms the role of THRα in memory processes.113,114 Hence, in hyperthyroidism, 
hypothyroidism, and cretinism, which are characterized by abnormal levels of thyroid hormones,115 hippocampal 
functionality might be altered and potentially result in cognitive dysfunction.116 Indeed, neuroimaging studies have 
reported that in patients with hypothyroidism, the structure and function of the hippocampus were altered.117–119

Treatment with pioglitazone has been shown to enhance the activation of THRs and, thus, learning and memory 
processes.112 Memory impairment caused by hypothyroidism was improved by pioglitazone via a reduction in oxidative 
stress that was attributed to the increased expression of superoxide dismutase and catalase.120 In addition, pioglitazone 
treatment in patients with DM2 was associated with reduced levels of T4 and increased levels of TSH; this indicates the 
possible activation of THRs through the activation of PPARγ. Thus, one of the mechanisms by which pioglitazone 
improves memory impairment caused by diabetes and hypothyroidism may involve the activation of THRs. However, the 
details of these mechanisms underlying improvement in cognitive impairment by treatment with pioglitazone in patients 
with hypothyroidism require further investigation.

Pioglitazone and Synaptic Transmission
Synaptic transmission is a physiological process via which neurons communicate with other cells through synapses.121 

This communication occurs via chemical and electrical synaptic transmission.122 Chemical synaptic transmission occurs 
when a neurotransmitter is released into the synapse and binds to specific postsynaptic receptors, whereas electrical 
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synaptic transmission occurs when electrical signals transferred through neurons are involved in neurotransmitter 
release.122,123 In learning and memory processes, neurons are stimulated and lead to the firing of other neurons with 
action potential, thus enhancing the release of neurotransmitters through the activation of calcium channels in presynaptic 
neurons.124,125 Alterations in these processes, whether they occur in pre- or postsynaptic neurons, can impair memory 
function.126 For instance, changes in the expression and function of proteins have been observed in both pre- and 
postsynaptic neurons in AD and PD.127

Synaptic transmission in ischemic neurons is impaired as a result of the reduction in the activity of PI3K/Akt and 
Nrf2/ARE pathways, and pioglitazone treatment has been found to increase the pro-survival PI3K/Akt pathway by 
increasing the phosphorylation of Akt in Ser473 and GSK-3β in Ser9 residues. This further improved the activity of the 
Nrf2/ARE antioxidant pathway.128 It has also been shown that lipoprotein receptor-related protein 1 (LRP1) and nuclear 
factor kappa B (NF-κB) p65 were downregulated in AD, but they were upregulated by pioglitazone treatment.6,129 All 
together, these findings demonstrate that pioglitazone can improve synaptic transmission by increasing the expression 
and phosphorylation of LRP1, NF-κB p65, Akt in Ser473, and GSK-3β in Ser9 residues, and increasing the activity of the 
Nrf2/ARE pathways. Thus, the mechanisms via which pioglitazone improves memory impairment in AD and PD, and 
perhaps metabolic diseases such as DM2, might involve its effects on the LRP1, NF-κB p65, Akt, GSK-3β, and Nrf2/ 
ARE pathways, so these pathways warrant further research in the future with regard to the identification of potential 
treatment targets.

Conclusion
The findings reported in the studies included in the current review demonstrate that pioglitazone can improve memory 
function via the activation of PPAR receptors. The included studies have indicated that PPAR receptors play a role in 
ameliorating inflammation, oxidative stress, amyloidogenesis, and hypothyroidism, and enhancing neurogenesis, synaptic 
plasticity, and mitochondrial function; further, the effects of pioglitazone on these processes are also evident. Based on 
these findings, we believe that further in-depth investigations into these mechanisms will help establish the potential of 
pioglitazone in terms of its clinical applicability in the management of cognitive disorders (Figure 2).

Figure 2 Mechanism of protective effect of pioglitazone on memory impairment.
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