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Objective: Chaihu Shugan San (CSS) has a long history for treating major depressive disorder (MDD), which has been verified 
effectively and safely in clinical studies. Deficient angiogenesis plays important roles in MDD. However, the underlying mechanisms 
of CSS on angiogenesis remain poorly understood.
Methods: Network pharmacology analysis was applied to explore the potential angiogenic targets and pathways between CSS and 
MDD. These targets would be validated in chronic unpredictable mild stress (CUMS)-induced depressive-like mice by Western blots, 
immunofluorescence, and immunohistochemistry. Then, the underlying molecular mechanisms were further investigated in brain 
microvascular endothelial cells (BMVECs) with CSS-containing serum by Western blots and immunofluorescence.
Results: Network pharmacology analysis showed that the antidepressant role of CSS was closely associated with Silent information 
regulator protein 1 (SIRT1)/Forkhead box O1 (FOXO1) axis-mediated angiogenesis. This prediction was confirmed in the following 
experiments. CSS induced angiogenesis, increased SIRT1 expression, and decreased FOXO1 expression in the hippocampus of CUMS 
mice. Five percent CSS-containing serum produced a significant increase in BMVECs proliferation, migration, and tube formation, but 
these effects were reduced by SIRT1 silencing. CSS serum could also promote FOXO1 translocation to the cytoplasm through SIRT1 
signaling, which triggered FOXO1 protein degradation. What is more, CSS upregulated VEGFA and BDNF expressions not only in 
the hippocampus of depressive mice but also in BMVECs supernatants. Of note, these trophic factors play important roles in 
promoting neurogenesis.
Conclusion: The study showed that CSS could promote angiogenesis and neurogenesis in the hippocampus of CUMS-induced mice. 
The underlying molecular mechanism involves the SIRT1/FOXO1 axis and subsequent regulation of VEGFA and BDNF. These 
findings provide novel insight into CSS drug development, and targeting the SIRT1/FOXO1 axis might be a promising strategy to treat 
MDD.
Keywords: major depressive disorder, Chaihu Shugan San, SIRT1/FOXO1 axis, angiogenesis, brain microvascular endothelial cell

Introduction
Major depressive disorder (MDD) is a serious mental disorder, characterized by a high incidence, diverse symptoms, 
complex etiologies, and unclear pathological mechanisms.1 In currently clinical practice, traditional antidepressants were 
not effective to all patients; only 40–60% of patients respond to antidepressant therapy, among which approximately one 
third achieve remission and 30% may occur treatment resistance although receiving optimal antidepressant treatment 
according to consensus guidelines.2 Furthermore, these antidepressants usually cause some side effects including 
gastrointestinal side effects, blurred vision, sexual problems, etc.3,4 Compared with traditional antidepressant drugs, 
the antidepressant effect of ketamine is obvious and quick. However, ketamine does not present an ideal profile as an 
antidepressant due to its potential psychotomimetic effects as well as abuse potential.5,6 Besides, other antidepressant 
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treatments such as psychotherapy and repetitive transcranial magnetic stimulation (rTMS) also have a certain curative 
effect but they also have some adverse effects or limitations. For example, the most common adverse effects for rTMS 
are scalp pain during stimulation (~40%) and transient headache after stimulation (~30%).7 Psychotherapy, relatively 
non-invasive to patients, is recommended to treat mild depression.8 Therefore, there is a constant need to develop novel 
antidepressants with greater efficacy, fewer side effects for MDD treatment, which has become a focus of research in 
recent years.

Chaihu Shugan San (CSS) is a classical traditional Chinese medicine (TCM) formula that is used clinically to treat 
depression in China. Evidence from meta-analysis studies revealed that CSS can effectively and safely improve 
depressed symptoms in MDD patients.9–11 Study showed that the efficacy of CSS was significantly better than 
antidepressants in reducing Hamilton Depression Rating Scale (HDRS) score and lightly increasing effective rate 
(65.1% VS 58.2%).9 More importantly, CSS was associated with less adverse events than antidepressants, such as 
anxiety, reduced/ increased appetite, dry mouth, constipation.10,11 Currently, increasing numbers of studies are endeavor
ing to explore the underlying mechanisms of CSS. Some studies have shown that CSS can stimulate adult neurogenesis 
and upregulate the expression of brain-derived neurotrophic factor (BDNF) in rats with depression-like behaviors.12,13 Of 
note, microvessels are an important medium to provide nutrients for nerve survival, growth, and differentiation. 
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Moreover, CSS induced anti-atherosclerotic effects and improved depression-like behaviors in mice with coronary heart 
disease. Interestingly, the upregulation of BDNF in endothelial cells is possibly involved in this process.14 Clinical study 
found that CSS treatment could significantly increase the regional cerebral blood flow and decrease the depressive 
symptoms in patients, which was nearly the same as Fluoxetine.15 These above studies indicated that the antidepressant 
roles of CSS were associated with brain microvessels. However, the effects of CSS on brain microvessels and the 
involved mechanisms have not been investigated.

Angiogenesis plays an important role in depression. Some studies have reported that decreased vessel density was 
observed in depressed patients.16–18 Furthermore, vascular endothelial growth factor (VEGF) and BDNF acted as 
important pro-angiogenic factors and were decreased in depressed patients and stressed mice.19–21 One study also 
showed that the angiogenesis inhibitor (VEGF receptor inhibitor, SU1498) blocked the angiogenic effect of exercise 
(non-pharmacological treatment) on stressed mice.22 Collectively, it is reasonable to speculate that angiogenesis is 
involved in the pathogenesis of depression, but this needs to be further confirmed and explored.

Silent information regulator protein 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, is 
abundantly expressed in vascular endothelial cells.23 It can modulate angiogenesis through deacetylating downstream 
Forkhead boxo1 (FOXO1). Study revealed that resveratrol, a SIRT1 agonist, promoted wound healing via SIRT1- 
dependent pro-angiogenic effects and the inhibition of FOXO1 expression.24 SIRT1 has been extensively studied for its 
connection to depression. A recent genome-wide association study with Han Chinese sample has identified two genetic 
loci for depression in SIRT1.25 Yet, the role of SIRT1 in depression remains unclear, especially in hippocampal 
angiogenesis.

In the present study, we mainly used chronic unpredictable mild stress (CUMS) mouse models, network pharmacol
ogy approaches, and brain microvascular endothelial cells (BMVECs) to investigate the potential mechanisms of CSS on 
hippocampus angiogenesis in MDD. We aimed to provide a rationale for the use of CSS as a potential therapeutic drug 
for MDD treatment.

Materials and Methods
Network Pharmacology Analysis
The compounds of CSS were obtained from the Traditional Chinese Medicine System Pharmacology Database and 
Analysis Platform (TCMSP, http://tcmspnw.com/, updated on May 31, 2014) by retrieving herb names (ex: Bupleurum 
falcatum L/chai hu/柴胡) in CSS. As suggested by the TCMSP, oral bioavailability ≥ 30% and drug likeness ≥ 0.18 were 
used as criteria to filter the bioactive compounds of CSS. In total, there were 116 components of CSS were acquired 
(Table S1, Supplementary File). Then, we transformed the active compounds into canonical SMILES by the PubChem 
database (https://pubchem.ncbi.nlm.nih.gov/). After that, we uploaded the SMILES structures into the 
SwissTargetPrediction database (http://www.swisstargetprediction.ch/, updated in 2019) for CSS target prediction. 
Species were selected as “Homo sapiens” with probability >0 as the screening condition. The targets of MDD involving 
human proteins were obtained from the Therapeutic Target Database (https://db.idrblab.org/ttd/, updated on June 1, 
2020), DisGeNET database (http://www.disgenet.org/web/DisGeNET/, updated in May 2020), and DrugBank database 
(http://www.drugbank.ca/, released on April 22, 2020), using the keywords “major depressive disorder”, “depression”, or 
“unipolar depression”. “score” ≥ mean value was used as the criterion for screening disease target genes. Then, the 
overlapped targets of compounds in CSS and MDD were obtained for the further analyses. Finally, 147 overlapping 
targets were identified (Table S2, Supplementary File).

The Database for Annotation, Visualization, and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/, updated 
in October 2016) provides systematic and comprehensive biological function annotation information for multiple genes. We 
introduced the targets of CSS for MDD treatment into DAVID and defined the species as “Homo sapiens” for Gene 
Ontology (GO) analyses. A value of p < 0.05 was considered statistically significant. Functions related to angiogenesis were 
selected and further explored. Next, the interactive relationships among the predicted targets related to angiogenesis were 
retrieved using the Search Tool for the Retrieval of Interacting Genes/Proteins database (https://string-db.org/, updated on 
August 12, 2021). “Organism” was set as “Homo sapiens” and the “combined score” ≥0.4 was selected as the threshold. 
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The visualization process was carried out with Cytoscape v3.7.0 software. The NetworkAnalyzer plug-in in this software 
was applied to mine the hub targets by calculating the node degree (number of the first interacting neighbors). What’s more, 
targets with a high degree of connectivity were selected as hub genes.

Animals
Forty male C57BL/6 mice and 20 male Sprague–Dawley rats, aged 6–8 weeks, were purchased from Beijing Vital River 
Laboratory Animal Technology Company (Beijing, China). All animals were housed in a humidity- and temperature- 
controlled environment and had free access to food and water unless otherwise indicated. The animal study followed the 
National Institutes of Health guide for the care and use of Laboratory animals, and approved by Experimental Animal 
Ethics Committee of Beijing Friendship Hospital (Grant No. 21–1008).

Drug Preparation
CSS comprises seven traditional herbal medicines, including Bupleurum falcatum L. (Chai-hu, 18 g), Cyperus × 
aurantium L. (Xiang-fu, 18 g), Ligusticum chuanxiong Hort. (Chuan-xiong, 18 g), Citrus reticulata Blanco (Chen-pi, 
18 g), Citrus × aurantium L. (Zhi-qiao, 18 g), Paeonia lactiflora Pall. (Bai-shao, 30 g), and Glycyrrhiza uralensis Fisch. 
(Gan-cao, 10 g). CSS granules were purchased from Beijing Tcmages Pharmaceutical Company (Beijing, China). 
According to the conversion ratio between mice and humans (ratio, 9: 1), the daily CSS dose (g/kg) for each mouse 
can be calculated as the following formula: 9 × a daily dose of an adult (130 g herb)/average weight of adults (60 kg) 
=19.5 g herb/kg.

Serum containing drugs was prepared as previously described.26 Ten rats in each group were randomly assigned to the 
control (CON)-containing serum and CSS-containing serum groups. The dosage for rats was 13.5 g herb/kg according to 
the conversion ratio between rats and human (ratio, 6.25: 1). The rats in the CSS-containing serum group were 
administered CSS (13.5 g herb/kg) by gavage once a day for 10 days, and rats in the CON group were given distilled 
water. Two hours after the final dose, the rats were sacrificed. Serum was collected, passed through a 0.22 μm filter, and 
stored at −80 °C until use.

Quality Control of CSS and CSS-Containing Serum
CSS and CSS-containing serum quality was determined by high performance liquid chromatography/mass spectrometry. 
The information of reference substance in CSS were provided in Table S3, Supplementary File. Weighed standards were 
dissolved in methanol. CSS granules were dissolved in water (0.1 g/mL), vortexed for 30 min, and centrifuged at 
14000 rpm for 10 min. Serum samples were also prepared. Then, the samples were separated on an Agilent Zorbax XDX 
C18 phase column (50 mm × 2.1 mm × 3.5 μm, Santa Clara, CA, USA). The gradient elution solutions consisted of 
mobile phase A (acetonitrile) and mobile phase B (0.1% formic acid aqueous solution). The gradient elution program was 
as follows: 0–0.5 min 20% B; 0.5–4 min 20–80% B; 4–5 min 80% B; 5–5.01 min 80–20% B; 5.01–6 min 20% B. The 
flow rate was 0.5 mL/min. The column temperature was 30 °C, and a 1 µL aliquot of solution was injected.

Mass spectrometry measurements were performed on a Sciex API 4000 Qtrap MS system equipped with a Turbo 
Ionspray interface (Applied Biosystems, Foster City, CA, USA). Samples were analyzed in positive electrospray 
ionization mode or negative electrospray ionization mode and monitored in the multiple reactions monitoring mode. 
High purity nitrogen was used as the curtain gas, ion source gas 1, and ion source gas 2, with flow rates of 10 psi, 55 psi, 
and 55 psi, respectively. The spray voltage was ± 4.5 kV, and the capillary temperature was 500 °C.

CUMS Procedure and Drug Administration
Mice were randomly separated into three groups: the CON group (not subjected to CUMS and CSS), the CUMS group 
(subjected to CUMS), and the CUMS+CSS group (subjected to CUMS and CSS). The CUMS and CUMS+CSS groups 
were individually housed and underwent a 6-week CUMS procedure, which was performed as previously described.27 

Briefly, mice were randomly subjected to one long-term stressor and one short-term stressor at different times of the day. 
Long-term stressors mainly included overnight exposure to damp sawdust, lights on overnight, 24 h of food deprivation, 
24 h of water deprivation, 24 h of exposure to wet bedding, and 45° cage tilt for 24 h. Short-term stressors included 10 
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min of tail pinch, 10 min of mice scream, and 2 h of restraint. The same stressor was not applied consecutively for 2 
days. CON group mice were group-housed and briefly handled daily in the housing room. During this period, the CUMS 
+CSS group was treated with CSS (19.5 g herb/kg) by oral gavage once a day. The CON and CUMS groups were given 
distilled water at an equal volume. For bromodeoxyuridine (BrdU) staining, mice were intraperitoneally injected with 
BrdU (50 mg/kg) (No. B5002-250MG, Sigma, MO, USA) once per day for 7 days prior to the beginning of behavioral 
tests.

Behavioral Tests
The sucrose preference test was used to assess stress-induced anhedonia.28 Mice were adapted to the presence of two 
water bottles placed in each cage for 3 days. After adaptation, the water and food were removed for 12 h. Then a bottle 
containing pure water and a bottle with 2% sucrose solution were presented in the cage simultaneously, and the mice had 
free access to these bottles for the next 24 h. Bottles were weighed to estimate the consumption of the liquids. The 
sucrose preference (percentage of the sucrose solution consumed relative to the total amount of liquid intake) was 
calculated.

Antidepressant activity was also assessed by the tail suspension test (TST). Each mouse was suspended 30 cm above 
the floor by the tail via tape at approximately 1 cm from the tip of the tail. The test was conducted for 10 min.29 The 
immobility time, which is indicative of helpless behavior, was recorded.30

In the forced swim test (FST), the mice swam in an open glass beaker (height 18.5 cm and diameter 14.5 cm) filled 
with water (23–25 °C) up to a height of 12 cm to prevent the mice from supporting themselves against the bottom of the 
beaker. The mice were subjected to a 10-min session to evaluate depressive behavior and were judged as immobile 
whenever they remained floating passively in the water.31

Tissue Collection and Preparation
After the behavior tests, the anesthetized mice were transcardially perfused with saline to wash away the blood. Some 
tissue samples were immediately frozen in optimal cutting temperature compound and stored at –80 °C to prepare frozen 
sections.32 Cryopreserved tissues were then cut into 10 μm cryosections, starting from the anterior hippocampus. Eight 
brain sections per animal were collected at 90-μm distances between sections for nonoverlapping multistage random 
sampling.33 Other mouse hippocampus was used for Western blots.

Western Blots
The samples were extracted with radio immunoprecipitation assay buffer, and the protein concentration was determined by 
a bicinchoninic acid assay. Proteins were separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 
blotted onto nitrocellulose membranes. The blots were blocked with 5% skim milk in tris-buffered saline and tween 20 
buffer. Two hours later, the membranes were incubated overnight at 4 °C with primary antibodies including SIRT1 (1:1000, 
ab12193, Abcam, Cambridge, UK), FOXO1 (1:500, sc-374427, Santa, Japan), acetylated FOXO1 (1:100, MBS9600633, 
MyBioSource, CA, USA), VEGFA (1:1000, ab1316, Abcam, Cambridge, UK), or BDNF (1:1000, ab108319, Abcam, 
Cambridge, UK). After washing with tris-buffered saline tween 20 buffer, the membranes were incubated with correspond
ing secondary antibodies (1:5000, ab8245 or 8226, Abcam, Cambridge, UK) for 2 h at room temperature. The blots were 
visualized with a Bio-Rad imaging system (California, USA) and quantified using Image J software (National Institutes of 
Health, Bethesda, MD, USA). All protein expression was normalized to that of GAPDH or β-ACTIN.

Immunofluorescence
The sections were dried on a slide warmer for 30 min, fixed with 4% paraformaldehyde for 10 min, and permeabilized with 
0.2% Triton-X100 for 10 min. Then, the sections were incubated in 2 N HCl at 37 °C for 1 h and blocked for 2 h with 5% 
donkey serum at room temperature. Subsequently, the slices were incubated with anti-GLUT1 (1:200, ab40084, Abcam, 
Cambridge, UK), anti-NeuN (1:200, ab209898, Abcam, Cambridge, UK), anti-CD34 (1:100, ab81289, Abcam, Cambridge, 
UK) or anti-BrdU (1:200, ab6326, Abcam, Cambridge, UK) antibodies at 4 °C overnight. After washing, the sections were 
incubated with the following corresponding secondary antibodies: anti-mouse or rabbit antibody-Alexa Fluor 488 (1:400, 
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ab150105, ab150077, Abcam, Cambridge, UK), anti-rat antibody-Cy3 (1:400, ab98416, Abcam, Cambridge, UK), or anti- 
rabbit antibody-Alexa Fluor 647 (1:400, ab150075, Abcam, Cambridge, UK). 4′,6-Diamidino-2-phenylindole (DAPI) was 
used as a nuclear counterstain. Images were obtained with a fluorescence microscope (Olympus, Tokyo, Japan). The number 
of positive cells was counted at 10× magnification, eight fields were sampled for each brain section, and 10 brain sections 
were analyzed per animal.34 Four biological replicates were performed.

Cultured cells were fixed with 4% paraformaldehyde, permeabilized with 0.2% Triton X-100, and blocked with 5% 
donkey serum. Cells were incubated overnight at 4 °C with primary antibodies against SIRT1 (1:200) and FOXO1 
(1:200). Either an Alexa Fluor-488 (1:200) or −594 (1:200, ab150116, Abcam, Cambridge, UK) conjugated antibody 
against the respective IgG was used as the secondary antibody. DAPI was used to stain cell nuclei.

Immunohistochemistry
Frozen sections were fixed with 4% paraformaldehyde for 10 min and permeabilized with 0.2% Triton-X100 for 10 min. 
Then, the sections were blocked for 1 h with goat serum at room temperature and incubated overnight at 4 °C with SIRT1 
(1:100), FOXO1 (1:50), or GLUT1 (1:100) antibodies. Subsequently, the sections were incubated with secondary goat- 
anti-mouse or rabbit IgG antibodies for 1 h at room temperature. Staining was visualized with diaminobenzidine, and 
sections were counterstained with hematoxylin.

Mouse BMVECs Culture
In order to further verify the angiogenic roles of CSS, BMVECs culture are used in the following experiments.35,36 

BMVECs obtained from Procell (Wuhan, China) were cultured in Dulbecco’s modified Eagle’s medium (Sigma, MO, 
USA) supplemented with 10% fetal bovine serum (Sigma, MO, USA) at 37 °C in a humidified incubator (5% CO2, 95% 
air). All experiments were conducted on cell lines with passage number 1 to 10.

Gene Knockdown by Small Interfering RNA (siRNA) and Cell Treatment
SIRT1 siRNA or negative control siRNA (siB14212112732-1-5 or RUIBO, SiN0000001-1-5, Guangzhou, China) were 
transfected at a final concentration of 50 nM using Lipofectamine RNAiMAX (13778150, Invitrogen, USA) according to 
the manufacturer’s instructions.

To verify the proangiogenic effects of CSS, BMEVCs were treated with 5% CSS-containing serum or 5% control rat 
serum. To further evaluate the role of CSS in promoting angiogenesis through SIRT1/FOXO1 axis, we co-transfected 50 
nM SIRT1 siRNA with 5% CSS-containing serum or 5% control rat serum into BMVECs.

CCK8 Proliferation Assay
Cells were incubated with CCK8 solution (CK04-500T, DongRen, Shanghai, China) for 2 h and assessed using 
a microplate reader. The optical density was quantified at 450 nm, and the cell viability (%) was calculated as follows: 
treatment group optical density/CON group optical density × 100%.

Scratch Assay
Cells were inoculated in six-well plates at a density of 1×106 cells per well. When the cells became confluent, a scratch 
was made in the cell monolayer with a pipette tip. The cells were photographed using an inverted microscope (Leica, 
Germany) at 0 and 12 h of incubation. The relative migration distance (relative migration distance = initial scratch width 
− the scratch width of the cells at 12 h) was assessed using Image J software.

Tube Formation Assay
Cultured cells were seeded at a cell density of 2 × 105 cells per well in a 48-well plate coated with 150 μL of growth 
factor-reduced Matrigel (352428, Corning, NY, USA). After 12 h of incubation, the capillary-like formations of 
BMVECs were photographed using an inverted microscope and quantitated by Image J software.
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Nuclear and Cytoplasmic Protein Extraction
Nuclear and cytoplasmic proteins were extracted using a Nuclear and Cytoplasmic Protein Extraction Kit (P0028, 
Beyotime, Shanghai, China). Briefly, cells were resuspended in 200 μL of cytoplasmic protein isolation solution A and 
homogenized on ice for 15 min. Next, 10 μL of cytoplasmic protein isolation solution B was added, and the cells were 
homogenized on ice. The homogenate was centrifuged at 13000 rpm for 5 min at 4 °C. The supernatant consisted of the 
cytoplasmic protein fraction. The pellet was resuspended in 50 μL of nuclear protein isolation solution C, homogenized 
on ice, and centrifuged at 13 000 rpm for 10 min. The supernatant consisted of the nuclear protein fraction.

Enzyme-Linked Immunosorbent Assay Analysis
Cell culture medium was collected after SIRT1 siRNA transfection with or without CSS-containing serum. The BDNF 
and VEGFA concentrations were assayed using commercial enzyme-linked immunosorbent assay kits (CSB-E04505m or 
CSB-E04756m, CUSABIO, Wuhan, China) based on the kit instructions.

Statistical Analysis
Statistical analysis was performed using SPSS 22.0. Data are expressed as the mean ± standard deviation. Comparisons 
were performed using one-way analysis of variance, followed by Tukey’s multiple comparisons test. A value of p < 0.05 
was considered statistically significant.

Results
Quality Control of Representative Compounds in CSS and CSS-Containing Serum
A chromatogram of CSS and drug-containing serum is shown in Figure S1, Supplementary File. The following 
representative ingredients of CSS were detected: paeoniflorin, liquiritin, ferulic acid, naringin, hesperidin, neohesperidin, 
glycyrrhizic acid ammonium salt, saikosaponin A, nobiletin, saikosaponin D, tangeretin, and α-cyperone. The concen
trations of ingredients are shown in Table S4, Supplementary File. The samples met the quality control criteria of the 
Chinese Pharmacopeia (2020 edition).

CSS Improved Depressive Behaviors in CUMS Mice
A timeline of experimental procedures is depicted in Figure 1A. Systemic treatment of CUMS mice with a dosage of 19.5 
g herb /kg/day of CSS improved the depressive-like behaviors. As shown in Figure 1B and C, the CUMS mice exhibited 
significant decrease in body weight and sucrose preference, which are typical characteristics of depression.37 However, CSS 
treatment significantly affected the changes in body weight and sucrose preference, with mice exhibiting levels similar to 
those of the CON group. CUMS mice exhibited an increased immobility time in the TST and FST compared with the CON 
mice (p < 0.01; p < 0.01), but CSS treatment ameliorated these effects (p < 0.05, p < 0.01, Figure 1D and E). These results 
indicated that CSS had a clear antidepressant effect in CUMS mice.

Hippocampal Angiogenesis is Involved in the Antidepressant Effects of CSS
Network pharmacology analysis was performed to further investigate the possible mechanisms underlying the antide
pressant-like effects of CSS treatment. As shown in Figure 2A, 147 potential shared targets for antidepressant activity 
were found between CSS and MDD. The functional enrichment analysis results were closely associated with angiogen
esis. The biological functions mainly included angiogenesis, vasoconstriction, endothelial cell proliferation, regulation of 
VEGFs, cell migration, and sprouting. Among these functions, angiogenesis was the top and most notable biological 
process involved in CSS-treated MDD (Figure 2B). Subsequently, double immunofluorescence staining for BrdU 
(newborn cell marker) and GLUT1 (vascular endothelial marker) was used to evaluate angiogenesis in the three groups. 
Chronic exposure decreased the generation of newborn vascular endothelial cells in the CUMS mouse hippocampus, as 
GLUT1+/BrdU+ cells in the CUMS group were significantly reduced compared with those in the CON group (p < 0.01). 
Conversely, administration of CSS to CUMS mice significantly increased the number of GLUT1+/BrdU+ cells in the 
hippocampus, indicating that CSS alleviated the CUMS-induced decrease in angiogenesis (p < 0.05, Figure 2C and D). 
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Consistent with the above results, the number of CD34+/BrdU+ cells (another newborn vascular endothelial marker) also 
decreased in the hippocampus of CUMS mice compared with CON mice, and CSS treatment could partly reverse this 
change (Figure 2, Supplementary File). Compared with the CUMS group, the numbers of BrdU+ cells were increased in 
the CON and CUMS+CSS groups (p < 0.01, p < 0.05, Figure 2C and E). In summary, these results indicated that 
hippocampal angiogenesis is involved in the antidepressant effects of CSS.

SIRT1/FOXO1 Axis-Mediated Hippocampal Angiogenesis is Involved in the 
Antidepressant Effects of CSS in CUMS Mice
We further explored the hub genes that participate in angiogenesis through network pharmacological analysis. Protein- 
protein interaction network analysis showed that SIRT1 and FOXO1 exhibited high degrees among the targets and 
dominated the network (Figure 3A). SIRT1 expression in the hippocampus was significantly decreased in CUMS mice 
but was increased after CSS treatment (p < 0.05, p < 0.01, Figure 3B and C). FOXO1 and acetylated FOXO1 expression 
levels were significantly increased in CUMS mice compared with the CON group (p < 0.05), whereas their expression 
levels were exhibited near-normal levels with CSS treatment (p < 0.05, Figure 3B, D and E). Immunohistochemical 

Figure 1 CSS improved depressive behaviors in CUMS mice. (A) The timeline of experimental procedures. (B–E) Behavioral tests were performed to confirm the 
antidepressant effect after CSS treatment. The bodyweight (B), sucrose preference test (C), tail suspension test (TST) (D), forced swim test (FST) (E) among three groups 
were evaluated. Data are expressed by mean ± SEM (n=12). Asterisk represents statistically significant difference (*p < 0.05, **p < 0.01).

https://doi.org/10.2147/DDDT.S370825                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2022:16 2790

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=370825.docx
https://www.dovepress.com
https://www.dovepress.com


Figure 2 The antidepressive effects of CSS were closely associated with angiogenesis. (A) Network pharmacological analysis showed that there were 147 overlapping targets between 
CSS and MDD. (B) Biological process analysis of the overlapped targets shared by CSS and MDD. Functions associated with angiogenesis was selected. Size and color of the bubble 
represent the number of genes enriched in the biological process and statistical significance, respectively. The Y axis represents the function term, the X axis represents the rich factor 
(rich factor= amount of differentially expressed genes enriched in the pathway/amount of all genes in background). (C) Confocal images to show the distribution and cell number of 
GLUT1+/BrdU+ cells in hippocampus. Newborn cells and endothelial cells labeled by BrdU (red) and GLUT1 (green) in hippocampus respectively. White arrows indicate the newborn 
endothelial cells. Quantification of GLUT1+/BrdU+ cells (D), total BrdU+ cells (E) in hippocampus of CUMS mice treated with vehicle or CSS. Data are expressed by mean ± SEM (n=3). 
Asterisk represents for statistically different (*p < 0.05, **p < 0.01).
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Figure 3 SIRT1/FOXO1 axis mediated angiogenesis is involved in the antidepressant effects of CSS. (A) The protein-protein interaction network of the targets associated 
with the biological process of angiogenesis. Nodes represent targets, lines represent the connections between targets. (B) Representative Western blots images show the 
effects of CSS on SIRT1/FOXO1 axis in CUMS mice with CSS treatment or not. (C) SIRT1, (D) total FOXO1, (E) ac-FOXO1 were quantified. β-ACTIN was used as inner 
reference. (F) Immunohistochemical staining of SIRT1, FOXO1 and GLUT1 protein in hippocampus among three groups (×200 and ×600). Black arrows indicate the positive 
signals. Data are expressed by mean ± SEM (n=3). Asterisk represents a statistical difference (*p < 0.05, **p < 0.01).
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analysis also confirmed the Western blotting findings. As shown in Figure 3F, SIRT1 and GLUT1 expression showed 
a decreased trend, but FOXO1 was obviously increased in the hippocampus of CUMS mice, and CSS treatment 
prevented these changes. Of note, SIRT1 and FOXO1 proteins were partly found in hippocampal endothelial cells. It 
is likely that CSS treatment promotes shuttling of FOXO1 protein into the cytoplasm, accelerating FOXO1 protein 
degradation.

CSS-Containing Serum Promoted BMVECs Proliferation, Migration, and Tube 
Formation by Targeting SIRT1
Dose- and time-dependent CCK8 experiments confirmed that treatment with 5% CSS-containing serum for 12 h could 
achieve a peak effect on BMVECs proliferation (Figure 4A and B). Therefore, 5% CSS-containing serum were adopted for 
subsequent cell experiments. Target-specific siRNA was employed in BMVECs to verify the role of SIRT1 protein in CSS- 
induced angiogenic activities. As shown in Figure 4C and D, CSS-containing serum promoted BMVECs proliferation at 6 
h and 12 h, but this effect was attenuated in the si-SIRT1+CSS group (p < 0.01). Migration of BMVECs was significantly 
enhanced after CSS serum treatment for 12 h compared with the CON serum group (p < 0.01). However, SIRT1 
knockdown significantly abolished the enhancement of CSS-induced BMVECs migration (p < 0.01, Figure 4E and F). 
A tube formation assay was performed to detect cell tube formation capabilities. As shown in Figure 4G–J, addition of 5% 
CSS-containing serum resulted in a significant increase in mesh formation and branching lengths (p < 0.05), and a slight 
increase in the number of nodes in BMVECs, but the effect was neutralized by SIRT1-specific siRNA treatment. Taken 
together, these results indicated that CSS can promote BMVECs angiogenesis via targeting SIRT1 protein.

FOXO1, as a Downstream Molecule of SIRT1, Participates in the Pro-Angiogenic 
Effects of CSS-Containing Serum
We further explored the downstream effectors of SIRT1 in BMVECs in vitro. As shown in Figure 5A–D, SIRT1 
inhibition in BMVECs upregulated FOXO1 and acetylated FOXO1 in groups with or without CSS-containing serum 
treatment (p < 0.01). FOXO1 expression was also detected in the nucleus and cytoplasm to further assess its activation 
(Figure 5E–G). Cytoplasmic FOXO1 expression was higher in the CSS serum group than in the CON serum group, 
whereas SIRT1 siRNA could abolish this effect (p < 0.05). Conversely, nuclear FOXO1 expression was lower in the CSS 
serum group than in the CON serum group. This inhibition was also obviously abrogated by SIRT1 knockdown (p < 
0.01). Notably, FOXO1 in the nucleus exhibited high transcriptional activity and reduced angiogenesis. We subsequently 
analyzed the subcellular localization of SIRT1 and FOXO1 by immunofluorescence staining (Figure 5H). SIRT1 was 
mainly localized in the nucleus, while FOXO1 was distributed in the cytoplasm after co-incubation with CSS-containing 
serum, which is consistent with the Western blotting results. However, the CSS serum-mediated cytoplasmic distribution 
of FOXO1 was abolished in siRNA-SIRT1 transfected BMVECs. In all, these results clearly demonstrated that CSS 
exerted angiogenic effects that were dependent on the SIRT1/FOXO1 axis.

CSS Promoted Neurotrophic Factor Expression and Secretion, Which Might Benefit 
Neurogenesis
As shown in Figure 6A–C, BDNF and VEGFA protein expression levels have a significantly decreased trend in the 
hippocampus of CUMS mice, which could be upregulated by CSS treatment (p < 0.05, Figure 6A–C). We further 
investigated whether suppression of SIRT1 influenced the neurotrophic factors expression or secretion in BMVECs. The 
Western blotting results shown in Figure 6D–F further confirmed this point. SIRT1 si-RNA decreased BDNF and 
VEGFA expression in BMVECs with CSS-containing serum treatment. Additionally, compared with the CON serum 
group, the VEGFA and BDNF contents in the cell culture supernatants were significantly increased by treatment with 
CSS-containing serum (p < 0.05). In SIRT1-deficient BMVECs, CSS-containing serum did not increase the content of 
these nutritional factors (p < 0.01, p < 0.05, Figure 6G and H). We further observed neurogenesis in the hippocampus of 
CUMS mice with CSS treatment. NeuN+/BrdU+ and GlUT1+/BrdU+ cells were simultaneously markedly decreased in 
CUMS mice compared with CON mice, while this effect was prevented by CSS treatment. These results indicated that 
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Figure 4 CSS promote angiogenic activities of endothelial cells by targeting SIRT1. (A) The proliferative capacity of BMVECs in different concentrations of CSS-containing serum from 
2.5% to 20% at 12h. (B) The proliferative capacity of BMVECs with 5% CSS-containing serum at 2h, 6h, 12h, 24h, 48h. (C and D) The role of SIRT1 in the CSS-induced proliferative 
activities at 6h and 12h. (E) Representative images showing BMVECs migration at 12h (n=6). (F) Quantitative analysis of the migration distance in scratch assay. (G) Representative images 
showing BMVECs tube formation. Images were taken at 12 h. The blue circles represent the meshes; the pink and yellow dots represent the nodes; the lines represent branches. 
Quantitative analysis of number of meshes (H), number of nodes (I) and branching lengths (J) in tube formation assay. Data are expressed by mean ± SEM (n=3). *p < 0.05, and **p < 0.01.
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Figure 5 FOXO1, as a downstream molecule of SIRT1, participates in the pro-angiogenic effects of CSS- containing serum. (A) Cell lysates of BMVECs were used to detect 
the SIRT1, FOXO1, and acFOXO1 protein levels by Western blotting. The quantitative analysis of SIRT1 (B), FOXO1 (C), acFOXO1 (D). (E) Cytosolic FOXO1 and nuclear 
FOXO1 protein levels were detected by Western blots. Quantitative analysis of cytosolic FOXO1 (F), nuclear FOXO1 (G). (H) Representative immunofluorescence with 
SIRT1 and FOXO1 in BMVECs (×600). SIRT1 showed red fluorescence, FOXO1 showed green fluorescence. DAPI is blue and represents the nuclear signal. Data are 
expressed by mean ± SEM (n=3). Asterisk represents a statistical difference (*p < 0.05; **p < 0.01).
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Figure 6 CSS promoted the expression or secretion of neurotrophic factors, which might facilitate neurogenesis. (A) BDNF and VEGFA expression in hippocampus were 
detected by Western blotting. The quantitative analysis of BDNF protein (B) and VEGFA protein (C) in hippocampus. (D) BDNF and VEGFA expression were detected in 
BMVECs by Western blotting. The quantitative analysis of BDNF protein (E) and VEGFA protein (F) in BMVECs. (G and H) The content of BDNF and VEGFA in cell culture 
supernatant were detected by enzyme-linked immunosorbent assay analysis (n=5). (I) Confocal images to show the distribution and cell number of GLUT1+/BrdU+ cells and 
NeuN+/BrdU+ in hippocampus. Newborn endothelial cells were labeled by BrdU (red) and GLUT1 (green); newborn neurons were labeled by BrdU (red) and NeuN (blue). 
White arrows indicate the newborn neurons (n=3). Asterisk represents a statistical difference (*p < 0.05; **p < 0.01).
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CSS or CSS serum treatment could promote neurotrophic factors expression /secretion in the hippocampus of CUMS 
mice or BMVECs, which might promote neurogenesis.

Discussion
CSS is a classic TCM, widely used in the clinical treatment of MDD in China. Previous studies have reported that 
treatment of depression with CSS involves several biological aspects, such as anti-inflammatory effects, hypothalamic- 
pituitary-adrenal axis regulation, neurotransmitter reuptake inhibition, and promotion of neurogenesis.38–40 However, 
because of the complex bioactive compounds in CSS, its exact mechanisms require in-depth study to expand its clinical 
applications for MDD. Our present study provides strong evidence for CSS as a potent therapeutic drug for MDD. The 
results showed that CSS improved anhedonia and behavioral despair in CUMS mice, which was consistent with previous 
studies.41,42 In addition, in the high-performance liquid chromatography/mass spectrometry analysis, Saikosaponin A in 
Bupleurum falcatum L., naringin, hesperidin, and neohesperidin in Citrus reticulata Blanco and Citrus × aurantium L., 
paeoniflorin in Paeonia lactiflora Pall., ferulic acid in Ligusticum chuanxiong Hort., and liquiritin and glycyrrhizic acid 
ammonium salt in Glycyrrhiza uralensis Fisch. were identified as the main compounds in CSS. This result will assist in 
the quality control of CSS and will contribute to determining the potential roles of these compounds.

Network pharmacology analysis establishes a “compound-protein/gene-disease” network, which was suitable for 
mining the underlying relationships across complex disease, therapeutic targets, and multiple compounds in TCM.43 The 
results suggested that CSS-induced antidepressant effects were tightly related to angiogenesis. Studies reported that 
depressive patients or animals revealed abnormal expression of angiogenic genes or proteins, such as VEGFR2, 
endoglin.44–46 Transcriptome analysis by RNA-seq in dentate gyrus cells of postmortem in MDD patients also showed 
evidence of upregulated anti-angiogenic genes.47 Clinical finding showed that increased angiogenesis was associated 
with a better response to antidepressant treatment. Electroconvulsive seizure induced a strong angiogenesis in the 
hippocampus.48 VEGFA, as a pro-angiogenic factor, has recently been described as mimicking the actions of antide
pressants and as having the potential to enhance the treatment response to conventional antidepressants.49 Whereas, the 
results of clinical trials using the angiogenesis inhibitors interferon-α and belimumab found an increase in the incidence 
of depressive symptoms among treated participants.50,51 In the present study, we found that CSS treatment could increase 
the number of new microvessels in the hippocampus of CUMS mice. This result provided key evidence for the induction 
of angiogenesis by CSS treatment in CUMS mice. Therefore, targeting angiogenic genes or proteins may be a valuable 
strategy to improve anti-depression therapy.

Angiogenesis is a complex process regulated by multiple signaling pathways. Therein, SIRT1 is a vital target that can 
deacetylate FOXO1, thus attenuating the FOXO1-induced inhibitory effects on angiogenesis. Studies have found that 
targeting SIRT1 signaling promoted angiogenesis alleviated cerebral ischemic injury,52 improved diabetic wound 
healing,24 and alleviated arthritis.53 Our network pharmacology analysis showed that SIRT1 and FOXO1 protein dominated 
in the protein-protein interaction network, implying that this pathway plays an important role in the antidepressant role of 
CSS. Therefore, it is of great significance to explore the mechanism by which CSS promotes angiogenesis in depression by 
affecting these targets. Our experiments found that SIRT1 and FOXO1 protein were mainly expressed in vascular endothelial 
cells. CSS increased SIRT1 expression, decreased FOXO1 and acFOXO1 expressions. We used SIRT1 siRNA for reverse 
verification to verify the above experimental results, to some extent, it indicated that CSS could promote angiogenesis by 
targeting SIRT1/FOXO1 axis. Furthermore, SIRT1 controls the nuclear shuttling of FOXO1 depending on different cellular 
and environmental stimuli.54,55 Particularly, in vascular endothelial cells, FOXO1 has high transcriptional activity in the 
nucleus and regulates downstream related targets, such as VEGFA, c-MYC, and CD36, thus limiting angiogenesis.56–58 In 
our present study, CSS serum promoted FOXO1 shuttling from the nucleus to the cytoplasm, reducing FOXO1 expression 
and inducing angiogenesis activity. These results suggest that the mechanism by which CSS promotes angiogenesis is closely 
related to the upregulation of SIRT1 expression. Targeting SIRT1 protein might be a promising therapeutic target in MDD 
treatment. Study has demonstrated that pharmacologic or genetic ablation of hippocampal SIRT1 resulted in an elevation in 
depression-like behavior in mice.59 Whereas, resveratrol, a potent SIRT1 activators, has a good antidepressant-like effects in 
depressed mice.60 Therefore, activating SIRT1 may open new perspectives for the development of natural compounds as 
therapeutic drugs towards MDD treatments.
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Neurogenesis is inextricably linked to angiogenesis. Neural stem cells exist in neurovascular niches where endothelial 
cells provide direct cell contacts and secrete neurotrophic factors, such as VEGFA, BDNF.61 Studies have shown that the 
release or expression of VEGFA and/or BDNF significantly increases in neurogenesis in hippocampus and alleviates 
depressive behaviors in mice.20 Our results also confirmed that CSS upregulated VEGFA and BDNF expressions not only 
in the hippocampus of depressive mice, but also in BMVECs supernatants. These results implied that CSS promoted 
neurotrophic factor expression and secretion, which were beneficial for neurogenesis. This process induces coordination 
of endogenous angiogenesis and neurogenesis, which contributes to improving depression. Our study observed this 
phenomenon which might associated with the SIRT1/FOXO1 axis. However, it was a preliminary study. More research is 
required to under the angiogenic mechanisms of CSS in CUMS mice. The deep molecular mechanisms of angiogenesis 
and neurogenesis are worthy of further exploration.

Conclusion
The present study demonstrated that CSS could improve depressive-like behaviors in CUMS mice, which might be 
caused by enhanced angiogenesis via the SIRT1/FOXO1 axis. The in vitro results showed that CSS could stimulate 
BMVECs proliferation, migration, and tube formation, and increase neurotrophic factors expression and secretion. 
However, these effects could be reduced by SIRT1 silencing. This study provides new insights into the clinical 
application of CSS and enhances our understanding of the mechanisms of depression.
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