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Background: Alport syndrome (AS) is a progressive renal disease characterized by hematuria 

and progressive renal failure. X-linked dominant AS (XLAS) is the major inheritance form, 

accounting for almost 80% of the cases. XLAS females have variable phenotypes, from 

microscopic hematuria to chronic renal failure. These variable phenotypes cannot be clarified 

solely by mutation features of the COL4A5 gene. X-inactivation has been suspected to be one 

of the reasons responsible for this phenomenon, but so far definite correlation has not been 

demonstrated. Moreover, it was supposed that X-inactivation ratios may vary both with age and 

between different tissues within an individual. This study analyzed the age- and tissue-specific 

variation of X-inactivation ratios in XLAS females.

Methods: Peripheral blood cells were collected from 36 XLAS females, and cultured skin 

fibroblasts were collected from 12 of them. The X-inactivation analysis was performed using 

HpaII predigestion of DNA followed by polymerase chain reaction (PCR) of the highly poly-

morphic CAG repeat of the androgen receptor (AR) gene.

Results: The rate of heterozygosity at the AR locus of the 36 female patients was 88.89%. Only 

12.50% (4/32) of females detected showed skewed X-inactivation in peripheral blood cells. No 

individual under 30 years of age had skewed X-inactivation, and 20% (4/20) of individuals over 

30 years of age had skewed X-inactivation in peripheral blood cells (χ2 = 2.743, P = 0.098). The 

X-inactivation patterns of the 12 patients showed marked variation between blood cells and skin 

fibroblasts. Seven of the 12 patients (58.33%) had similar X-inactivation ratios in both tissues, 

but the other 5 patients (41.67%) had the opposite X-inactivation ratios in both tissues. There 

was no correlation between the X-inactivation ratios of the mutant allele in skin fibroblasts and 

in peripheral blood cells (r = 0.180, P = 0.575).

Conclusion: There was no age-specific variation of X-inactivation ratios in XLAS females 

but there was tissue-specific variation, which maybe could explain the contradictory results 

between X-inactivation and the variable phenotype of XLAS females.
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Introduction
Alport syndrome (AS) is a progressive renal disease characterized by hematuria and 

progressive renal failure. AS is a genetic heterogenous disorder. X-linked dominant AS 

(XLAS) is in the majority of families, caused by mutations in the COL4A5 gene that 

encodes the type IV collagen α5 chain.1,2 XLAS males have more severe phenotypes 

and usually progress to end-stage renal disease (ESRD), whereas XLAS females show 

a wide severity of manifestations, from microscopic hematuria to chronic renal failure. 

The diverse phenotypes of XLAS females could not be clarified solely by mutation 

features of the COL4A5 gene, especially because siblings with identical COL4A5 
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gene mutation often exhibit different clinical phenotypes, 

suggesting that factor(s) other than the mutant gene may 

impact clinical phenotypes.3,4

Other groups have revealed that the phenotypic varia-

tions in carriers of some X-linked disorders were caused by 

X-inactivation.5,6 It was also speculated that X-inactivation 

was responsible for the phenotype in XLAS females,3,7,8 but 

so far the present results of few reports were contradictory, 

and no definite correlation was demonstrated.9–13 It was 

hypothesized that X-inactivation ratios may vary both with 

age and between different tissues within an individual,14–16 

which could explain the cause of contradictory results. In 

the present study, in order to confirm the age- and tissue-

specific variation of X chromosome inactivation ratios in 

XLAS females, we analyzed the X-inactivation patterns 

in peripheral blood cells in 36 XLAS females and in skin 

fibroblasts in 12 of them.

Methods
Subjects
The study consisted of 36 female patients from 32 XLAS 

families. All patients were diagnosed through the abnormal 

expression and distribution of α5 (VI) chain in the epider-

mal basement membrane (EBM), in addition to fulfilling the 

criteria for AS proposed by Wang et al and Flinter et al.17,18 

Mutations of the COL4A5 gene were analyzed by PCR ampli-

fication of cDNA of skin fibroblasts firstly, then confirmed 

by PCR amplification of genomic DNA.17 The mutations 

of the COL4A5 gene and clinical features of these female 

XLAS patients are shown in Tables 1 and 2, respectively. The 

patients were distributed to two groups. Group A included 

13 patients aged under 30 years (mean age 17.85 years, stan-

dard deviation [SD] 11.68 years); group B included 23 patients 

aged over 30 years (mean age 38.57 years, SD 6.18 years). 

Samples of peripheral blood were taken after informed con-

sent was obtained from each patient; samples of cultured skin 

fibroblasts were taken from 12 of them.

DNA isolation
Genomic DNA was extracted from peripheral blood lym-

phocytes by a simple salting out procedure.19 Genomic DNA 

from cultured skin fibroblasts was extracted using the wizard 

genomic DNA purification kit (Promega, Madison, WI, USA) 

according to the manufacturer’s instructions.

X-inactivation analysis
X-inactivation pattern was determined by PCR amplification 

of the highly polymorphic CAG repeats in the first exon 

of the androgen receptor (AR) gene. Methylation of HpaII 

sites in close proximity to these repeats correlates with 

X-inactivation. These sites were methylated on the inactive 

X-chromosome. A PCR product was obtained only from the 

inactive X chromosome after digestion with HpaII. The AR 

(CAG)n polymorphism method was performed according to 

a modified technique of Allen et al.20

PCR products from both digested and undigested reac-

tions were separated on ABI 373 automated sequencer and 

analyzed by GeneScan software (version 9.1). X-inactivation 

ratios were calculated according to the following formula: 

skewing = (d1/u1)/ (d1/u+d2/u2),16,21 where d1 and d2 rep-

resent the two peaks from the digested sample; u1 and u2 

are the corresponding bands from the undigested sample. 

An 80% or higher percentage for one allele is considered as 

indication of skewed X-inactivation.22,23

Statistical methods
The same procedure was performed twice for each individual; 

the mean value of these measurements was used for statisti-

cal analysis. Statistical analyses were performed by SPSS 

version 12.0. χ2 analyses or Fisher’s exact test were used to 

compare the proportion of females with skewed X-inactivation 

ratios in the various populations. The correlation between the 

X-inactivation ratios in skin fibroblasts and those in peripheral 

blood cells was tested by the Pearson correlation. P value of 

less than 0.05 was taken as statistical significance.

Results
One patient in group A and three patients in group B were 

uninformative for the X-inactivation assay used. The rate 

of heterozygosity at the AR locus of the 36 female patients 

was 88.89% (32/36). For each individual, two independent 

PCRs were performed, from which a mean X-inactivation 

ratio was calculated. In the majority of the patients, results 

generated from these two tests differed by only a few percent-

age points both in blood cells and skin fibroblasts, eg, mean 

difference in blood cells 3.86%, SD 3.36%; mean difference 

in skin fibroblasts 4.42%, SD 4.02%. This high degree of 

reproducibility suggests that the AR PCR assay was both 

reliable and accurate.

Variations of skewed  
X-inactivation with age
Based on an X-inactivation ratio of equal to or greater than 

80%:20% as a criterion for skewing,22,23 only 12.5% (4/32) of 

females detected showed skewed X-inactivation in peripheral 

blood cells. No individual under 30 years of age had skewed 
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Table 1 The mutation features of the COL4A5 gene

Number DNA cDNA Amino acid change

1 g. 2550_2527 del c. 2551_2574 del p. P851_P858 del
2 g. 1516+1 G . A c. 1424_1516 del p. fs K474
3 g. 1516+1 G . A c. 1424_1516 del p. fs K474
4 g. 14246–1G . A c. 1424_1516 del p. fs K474
5 g. 1928+1 G . A c. 1780_1948 del p. G594_P649 del; fs P659
6 g. 1928+1 G . A c. 1780_1948 del p. G594_P649 del; fs P659
7 g. 3080 G . T c. 3080 G . T p. G1027V
8 g. 4276 C . T c. 4276 C . T p. P1426S
9 g. 1653_1654 del C c. 1653 del C p. fs L551
10 g. 5042 G . T c. 5042 G . T p. C1681F
11 g. 796 C . T c. 796 C . T p. R266X
12 g. 1490_1491 ins G c. 1490_1491 ins G p. fs A430
13 g. 1331 T . G c. 1331 T . G p. L444S
14 g. ND c. unclear missing
15 g. 973 G . A, 2107 A . G c. 973 G . A, 2107 A . G p. G325R, I703V
16 g. 2696_2705 del c. 2696_2705 del p. fs 899
17 g. 1949 del C c. 1949 del C p. fs G647
18 g. ND c. NF
19 g. 3319 G . A c. 3319 G . A p. G1107R
20 g. ND c. NF
21 g. 1331 T . G c. 1331 T . G p. L444S
22 g. ND c. 3414_3776 del p. fs G1137
23 g. 1208 G . T c. 1208 G . U p. G403V
24 g. 2605 G . A c. 2605 G . A p. G869R
25 g. 2267 C . A c. 2267 C . A p. P756H
26 g. 4271G . A c. 4271G . A p. G1424E
27 g. 834+5 G . T c. 781_834 del p. G261_P278 del
28 g. 1423+56_1423+57 ins C c. 1387_1422 del p. G463_K474 del
29 g. 1423+56_1423+57 ins C c. 1387_1422 del p. G463_K474 del
30 g. 3088 G . A c. 3088 G . A p. G1030S
31 g. 3088 G . A c. 3088 G . A p. G1030S
32 g. 4342 G . A c. 4342 G . A p. G1448S
33 g. 2858 G . T c. 2858 G . T p. G953V
34 g. 2858 G . T c. 2858 G . T p. G953V
35 g. 3694 G . A c. 3694 G . A p. G1232S
36 g. 3481 G . A c. 3481 G . A p. G1161R

Abbreviations: DF, not found; ND, not done.

X-inactivation, 20% (4/20) of individuals over 30 years of 

age had skewed X-inactivation in peripheral blood cells 

(χ2 = 2.743, P = 0.098, Figure 1). With a less stringent crite-

rion for skewing of ratios equal to or greater than 70%:30%, 

33.3% (4/12) of individuals under 30 years old had skewed 

X-inactivation compared with 25% (5/20) of individuals over 

30 years old (χ2 = 0.258, P = 0.612).

Tissue-specific variations  
of X-inactivation
Of the 36 female patients, 4 were uninformative for the 

AR (CAG)n polymorphism. Of the remaining 32 individu-

als, skin fibroblasts were obtained from 12 of them. The 

X-inactivation patterns of the 12 patients showed marked 

variation between blood cells and skin fibroblasts. Three 

individuals showed skewed X-inactivation in skin fibroblasts 

but not in blood cells, and one individual showed skewed 

X-inactivation in blood cells but not in skin fibroblasts. 

Seven of 12 patients (58.33%) had similar X-inactivation 

ratios in both tissues, but the other 5 patients (41.67%) had 

the opposite X-inactivation ratios in both tissues (Table 2). 

There was no correlation between the X-inactivation ratios 

in skin fibroblasts and in peripheral blood cells (r = 0.180, 

P = 0.575, Figure 2).

Discussion
It is well known that the variable phenotype of XLAS 

females cannot be understood solely by analyzing mutation 
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Table 2 Clinical features and X-inactivation patterns of XLAS females

Patient
number

Age
Years

Eye  
abnormalities

EBM a5 (IV)
staining

Renal
insufficiency

Degree of
proteinuria

X-inactivation rate of the  
mutant allele

Peripheral blood Skin fibroblast

1 33 No Mosaic No 2+ Uninformative ND
2 29 No Mosaic No 1+ 73.62% 80.95%
3 27 No Mosaic Yes 3+ 49.16% ND
4 4 No Mosaic No Negative 73.45% 74.10%
5 34 No Mosaic No 3+ 19.96% 54.50%
6 57 No Mosaic No 3+ 46.36% ND
7 36 No Mosaic No Negative 39.15% ND
8 28 No Mosaic No 2+ Uninformative ND
9 36 No Mosaic No 2+ Uninformative ND
10 28 No Mosaic No 3+ 22.46% ND
11 48 No Mosaic No 3+ 65.72% 55.87%
12 46 No Mosaic No Negative 83.38% ND
13 39 No Mosaic No Negative 65.52% ND
14 37 No Mosaic No 3+ 16.74% ND
15 31 No Mosaic No 1+ 33.43% 34.34%
16 46 No Mosaic No Negative 51.13% ND
17 43 No Mosaic No Negative 54.73% ND
18 37 No Mosaic No Negative 52.18% 82.56%
19 26 No Mosaic No Negative 51.16% ND
20 30 No Mosaic No 1+ 43.33% ND
21 36 No Mosaic No Negative 55.79% 38.76%
22 32 No Mosaic No Negative Uninformative ND
23 39 No Mosaic No 2+ 34.70% ND
24 41 No Mosaic Yes 2+ 34.91% 43.41%
25 32 No Mosaic No 3+ 21.70% 68.91%
26 28 No Mosaic No 1+ 57.41% ND
27 4 No Mosaic No Negative 34.11% ND
28 5 No Mosaic No 2+ 29.72% ND
29 35 No Mosaic No 1+ 87.38% ND
30 6 No Mosaic No 1+ 37.91% ND
31 42 No Mosaic Yes 2+ 45.02% ND
32 13 No Mosaic No Negative 46.38% ND
33 4 No Mosaic No Negative 53.11% 9.56%
34 34 No Mosaic No 1+ 46.01% 21.52%
35 37 No Mosaic No Negative 67.29% ND
36 36 No Mosaic No 2+ 68.35% 39.45%

Abbreviations: EBM, epidermal basement membrane; ND, not done; XLAS, X-linked dominant Alport syndrome.

types of the COL4A5 gene. X-inactivation was speculated 

to correlate this with phenotypes, and few reports provided 

proof.9,12 However, our previous study did not find any cor-

relation between X-inactivation and the phenotype of XLAS 

females,11 as did the study of Vetrie et al and Bell et al.10,13 

The contradictory results may be due to the age and tissue 

specificity of X-inactivation, so we analyzed X-inactivation 

ratios in XLAS females of different ages and tissues.

Results showed that four patients were homozygous for 

the AR gene; the rate of heterozygosity for AR gene would 

be 88.89% in our study, which was quite similar to previous 

reports from other study groups (86.5%–90%).16,24 Based on 

an X-inactivation ratio of equal to or greater than 80%:20% 

as a criterion for skewing, only 12.50% (4/32) had a skewed 

X-inactivation pattern in peripheral blood cells, which is 

consistent with data previously reported from others using 

the AR PCR assay for studying other diseases.16

No individuals under 30  years of age had skewed 

X-inactivation, whereas 20% of individuals over 30 years 

of age had skewed X-inactivation in peripheral blood cells. 

It seems that skewed X-inactivation can be acquired with 

age in XLAS females but had no statistical significance 

(χ2 = 2.743, P = 0.098). This is consistent with recent stud-

ies that show aging to have little effect on X-inactivation.25,26 
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That is, X inactivation was stationary because aging had little 

effect on it, whereas the clinical findings on proteinuria and 

renal insufficiency in XLAS females were dynamic, given 

that X activation did correlate with the phenotype of XLAS 

females, regardless of age, clinical marker, tissue, etc. Most 

of our female patients were under 50 years old and needed 

further follow-up studies. Furthermore, the X-inactivation 

pattern in blood cells was not consistent with that in skin 

fibroblast in our study, which was similar to the previous 

studies by other groups showing tissue-specific X-inactiva-

tion variation.15,16 Although some studies reported that there 

was a correlation between the X-inactivation ratios in skin 

and blood,27,28 we did not reveal any correlation between 

blood cells and skin fibroblasts for the X-inactivation ratios in 

female XLAS patients in our study (r = 0.180, P = 0.575).

In addition, except for the age and tissue specificity 

of X-inactivation, the different methods used in analysis 

of X-inactivation may also contribute to the contradictory 

results of XLAS females. The traditional method used 

southern hybridization to analyze the heterozygosity of 

the hypoxanthine phosphoribosyl transferase (HPRT) 

gene or phosphoglycerate kinase (PGK) gene,10,27 whereas, 

recently, most studies used methylation-sensitive restriction 

endonucleas digestion and PCR of the AR gene to analyze 

X-inactivation.20,29 It is well known that heterozygosity of 

the AR gene was much higher than that of the HPRT or 

PGK gene. In addition, if there is age and tissue specificity 

of X-inactivation, maybe only the X-inactivation pattern in 

renal tissues could really explain the phenotype of XLAS 

females. Therefore, further multicentric studies are needed, 

using the same method and renal tissues, in order to have an 

accurate result on this issue.

In conclusion, there was not age-specific variation of 

X-inactivation ratios in XLAS females but there was tissue-

specific variation. Maybe only the X-inactivation pattern in 

renal tissues could really explain the phenotype of XLAS 

females. This could explain the contradictory results between 

X-inactivation and the variable phenotype of XLAS females. 

Nevertheless, we believe that there may be other mechanisms 

that impact the phenotype variations of female XLAS, such 

as DNA methylation, histone acetylation, and noncoding 

RNAs.30,31
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