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Abstract: Eukaryotic cells release different types of extracellular vesicles (EVs), including exosomes, apoptotic bodies and
microvesicles. EVs carry proteins, lipids and nucleic acids specific to cells and cell states. Autophagy is an intracellular degradation
process, which, along with EVs, can significantly affect the development and progression of neurological diseases and, therefore, has
been the hotspot. Generally, EVs and autophagy are closely associated. EVs and autophagy can interact with each other. On the one
hand, the level of autophagy in target cells is closely related to the secretion and transport of EVs. In another, the application of EVs
provides a great opportunity for adjuvant treatment of neurological disorders, for which autophagy is an excellent target. EVs can
release their cargos into target cells, which, in turn, regulate the autophagic level of target cells through autophagy-related proteins
directly and the non-coding RNA, signal transducer and activator of transcription 3 (STAT3), phosphodiesterase enzyme (PDE) 1-B,
etc. signaling pathways indirectly, thus regulating the development of related neurological disorders.
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Introduction
Extracellular vesicles (EVs) are lipid-binding vesicles secreted by cells into the extracellular space, mainly composed of
microvesicles (MVs), exosomes and apoptotic bodies.1,2 They transport the cargos of proteins, nucleic acids, lipids,
metabolites and organelles from the parent cell, and take an important role in biological functions.3,4 EVs are released by
nearly all cell types, such as oligodendrocytes, neurons, astrocytes, microglia and endothelial cells in the central nervous
system (CNS).5–7 EVs can stimulate neuronal development by facilitating neuron-glia contact and take a role in the
pathophysiology of several neurological diseases, including stroke, multiple sclerosis (MS), Alzheimer’s disease (AD),
Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), traumatic brain injury
(TBI) and prion diseases.8–11 Autophagy is a self-degradation process, which is a dynamic process that plays a key role in
cell homeostasis by adapting cell metabolism to a stressful environment.12 There are different types of autophagy,
including typical macroautophagy, chaperone-mediated autophagy, and less studied microautophagy.13 Meanwhile,
autophagy is also associated with other inner membrane systems and signaling pathways to regulate endocytosis,
exocytosis, and even the hydrolysis of biomolecules.14 Growing evidence indicated that EVs participate in the excretion,
degradation, and recovery of biomolecules, and play an important role in autophagy to promote cell survival.15,16 Recent
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studies have reported the ability of EVs to cooperate with autophagy flux for maintaining cell homeostasis. For example,
adipose-derived mesenchymal stem cells (ADMSCs) or ADMSC-secreted EVs could induce neuroprotection by regulat-
ing autophagic flux through secreting EVs containing microRNA (miR) in ischemic stroke.8 The present state of research
into the involvement between EVs and autophagy in neurological disorders is summarized in this section, and describes
the signaling pathways involved in mediating EVs-modulated autophagy.

EVs and Neurological Disorders
The Brief Course on Biogenesis of EVs
EVs, which serve as membrane-enclosed nanoscale particles, carry a variety of cargo, such as peptides, lipids, proteins
nucleic acids (DNA, mRNA, short non-coding and long non-coding RNAs).17 They act as regulation factors by their
phenotypic effects on recipient cells and deliver information between cells both in a paracrine or endocrine manner.18

These small bioactive molecules can also bear biomolecules of their parent cell of origin and may provide diagnostic and
prognostic value in CNS diseases.19,20 Multiple types of EVs exist, which can be categorized into 3 different types, the
basis on their biogenesis, size, and isolation method: exosomes, microvesicles, and apoptotic bodies.21 The exosomes
with heterogeneous sizes (30–150nm) and compositions that elicit differential molecular and biological properties are
generated from multivesicular bodies (MVB) in the endosomal system, which bud directly from the cell membrane.22

Regarding the microvesicles (50–1000nm), they are generated by an outward budding from the plasma membrane of the
cell and occur selectively in the lipid-rich microdomains of the membrane.21 Apoptotic bodies (50–5000nm) are another
type of EVs that are larger than exosomes and microvesicles, which are exclusively released from the cells undergoing
apoptotic cell clearance during the last steps of the apoptosis process including cell dismantling and recycling of
biomolecule building blocks.23,24

The Vital Role of EVs in Neurological Disorders
Studies on EVs have contributed to broadening our current acknowledge of the physiology and pathology of nervous
system disease. Depending on a cell of origin, microenvironment and the status of the disease, EVs can present a variety
of functions. EVs, derived from neurons, astrocytes, microglia and oligodendrocytes, serve as regulators and mediate cell
to cell communication.25 Under neurophysiological conditions, neuronal EVs can regulate the differentiation of neural
axons by transferring neuron-specific cargoes to a variety of glial cells and regulating relevant functions.26 For instance,
miR-124-3p can be delivered by neuronal EVs from primary neurons to astrocytes and increase the expression of the
glutamate transporters.27 Moreover, EVs secreted by microglia can transfer nervous growth factors to neurons.28

Microglia also absorbs myelin debris through oligodendrocytes-derived EVs.29 Nevertheless, EVs show several different
properties under pathological conditions. On the one hand, EVs exert protective effects on neurons and remove
pathological deposition proteins. For example, the relationship between alternative EVs molecules and prognosis of
stroke has already been explored.30 This characteristic can be utilized to distinguish several substyles of stroke with high
accuracies, such as spontaneous intraparenchymal hemorrhage, aneurysmal subarachnoid hemorrhage and ischemia
stroke.31 Additionally, EVs have great potential in the treatment of stroke, compared to the narrow time window of
the traditional method. Neural progenitor cell (NPCs)-EVs, as a critical factor, participate in neurogenesis and neural
restoration in post-stroke.32 Furthermore, the effect of NSC-EVs has also been evaluated in an animal ischemia stroke
model.33 The result of pathologic and symptomatic status improved significantly after administrating EVs after 24 hours,
including alleviating lesion volume and brain swelling. Likewise, Xin et al have demonstrated that gene-modified EVs
can enhance neuroplasticity and function recovery after MCAO treatment in rat.34 On the other hand, EVs can accelerate
the pathological process of neurological disorders including inflammation, apoptosis, and autophagy. Microglia transfers
EVs to astrocytes during neuroinflammation, which initiates the trigger to activate A1 astrocytes, leading to neuronal
damage.35 Besides, ceramide-containing EVs from astrocytes can cause neural apoptosis during AD pathological
proteins.36
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Autophagy and Neurological Disorders
The Brief Course on Autophagy
Autophagy is a general term that mainly refers to self-eating cellular catabolism,37 which is a process induced by changes
in the internal conditions of cells,38 such as starvation, hypoxia nutrient deficiencies, and infection,39 resulting in degrade
toxic proteins, damaged organelles and invading pathogens via the lysosomal pathway.40 It plays a vital role in stabilizing
cell homeostasis by orderly degradation and recycling cellular components. As much as we know, three different kinds of
autophagy are found in mammalian cells according to their methods of substrate delivery: macroautophagy, micro-
autophagy and chaperone-mediated autophagy (CMA).41 Macroautophagy is an intracellular degradation system for the
majority of proteins and some organelles,42 which means it can break down cargo and then allow for the recycling of the
resulting macromolecules, and the recycling of substrates through macroautophagy has an important role in maintaining
cellular homeostasis.43 Microautophagy, in which the lysosomal degradative process uses autophagic tubes to mediate
both invagination and vesicle scission into the lumen by direct engulfment of cytoplasmic cargo.44 It also exerts an effect
on cellular homeostasis. The major role of CMA in cellular metabolism is supposed to supply amino acids after protein
degradation. However, some recent researchers find that the energy metabolism can also be significantly altered after the
function of CMA impairment.45

A Double-Edged Sword Role of Autophagy and Possible Signaling Pathway
In mammals, cells in the CNS are especially vulnerable to damage. Autophagy is the main response against aggregate-
prone proteins, defective organelles and insoluble protein aggregates, which plays an important housekeeping role in the
CNS.46 Despite it has been unclear whether autophagy plays a potential beneficial or harmful role in the CNS, there is no
doubt that autophagy critically contributes to neuronal fate.47 Under the ischemic condition, neurons are particularly
vulnerable and autophagy is thought to be activated by the clearance of protein aggregates and damaged mitochondria
and preservation of energy balance.48 Meanwhile, numerous direct evidence has been verified that autophagy could be a
therapeutic target in ischemic stroke. Researchers reported that rapamycin stimulates autophagy, which then improves
mitochondrial function and reduces infarct volume, brain edema, and motor impairments resulting from ischemia.49,50

However, this function could be reversed by administrating 3-methyl-adenine (3-MA) through intracerebroventricular
injection, an autophagy inhibitor.51 Some other studies find that autophagy is also related to the promotion of cell death.
It is possible that excessive up-regulation of autophagy and long-term autophagy eventually result in self-digestion or
have harmful effects.52 Interestingly, in some AD and PD patients, accumulation of autophagy vesicles (autophagosomes
and lysosomes) has been observed, leaving the question of whether the suppressive or excessive autophagy leads to the
accumulation of vesicles.53,54 Multiple signaling pathways can be activated under the stressed condition that subse-
quently feeds into the autophagy pathway47 mainly in neurodegenerative diseases. ULK1/2 forms a complex with
ATG13, ATG101, and focal adhesion kinase family-interacting protein of 200 kDa (FIP200). Mammalian target of
rapamycin complex 1 (mTORC1) and AMP-dependent protein kinase (AMPK) can be activated by nutrients, growth
factors, and AMP/ATP respectively, which, regulate the ULK1/2 complex through a series of phosphorylation events,55

thereby in response to the autophagy activation. Some studies suggest that the PI3K/Akt/mTOR pathway could regulate
ischemia injury.56,57 One research also has elaborated that knockout of p50 (NF-κB1) enhanced autophagy by repression
of mTOR in cerebral ischemic mice58 and hypoxia-inducible factor 1 (HIF-1), reactive oxygen species (ROS), and AMP-
activated protein kinase (AMPK) are all involved in response to hypoxia during cerebral ischemia.59,60 One analysis of
brain tissue from AD patients found the role of Keap1 in autophagosomes.61 Besides, in HD models, overexpression of
IRE1 kinase leads to impaired autophagic flux62 and IRE1 can recruit TRAF2/ASK same as activation of JNK, disrupting
its interaction with BECN1, therefore activating autophagy.63

The Crosstalk of Impact of Autophagy on EVs
Cells use EVs to communicate with the environment and surrounding cells by carrying information such as lipids,
proteins, or nucleic acids.64,65 Autophagy plays a vital role in the synthesis and degradation of EVs. The mechanism of
EVs secretion and transport seems to be closely related to the formation of autophagosomes.64 It has been reported that
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extracellular components can be degraded through the endo/exosome pathway, while intracellular components can be
delivered to lysosomes through the process of autophagy, ultimately leading to the degradation of lysosomal contents.66

In addition, autophagosomes not only have a strong ability to fuse with lysosomes but also can fuse with multivesicular
bodies to form amphiphiles, which eventually fuse with lysosomes and dissolve the inner material of intraluminal
vesicles (ILVs).64 Therefore, intracellular autophagy plays a decisive role in the secretion and transport of EVs. Elevated
levels of autophagy significantly inhibited EVs release due to increased fusion of multivesicular bodies with autophagic
vacuoles.67 In contrast to the release of EVs, the precursor MVBs of exosomes can be cleared through the autophagy-
lysosome pathway by direct fusion with lysosomes or autophagosomes. This is because multivesicular bodies directly
enter the autophagy pathway after autophagy activation, and then significantly reduce the release of EVs68(Figure 1).

In neurodegenerative diseases, the aberrant protein aggregation of α-synuclein is thought to be critical.69 EVs are
considered to serve as a vehicle for this abnormal protein to transport from cell to cell. The current studies showed that
EVs with α-synuclein are fully capable of inducing abnormal protein aggregation in recipient neurons, impairing
autophagic flux by upregulating PELI1, which in turn leads to the degradation of LAMP-2.69–71 Willén et al indicated
that AD-linked β-amyloid (Aβ) causes EV enlargement and that amyloid fibrils can act in the endocytic pathway of
neurons. In turn, altering EVs can also lead to the accumulation and aggregation of Aβ.72 In addition, the EVs containing
α-synuclein and beta-amyloid, as well as other pathogenic proteins, are involved in mediating autophagy and inflamma-
tion, and a similar discovery of their potential role is also confirmed in AD.73–77 Houtman et al77 and Ahmed et al76

found that the inflammatory response promoted by the NLRP3-Caspase-1 inflammasome pathway triggers autophagy
dysfunction and Aβ accumulation, and can be amplified and regulated by LC3-positive vesicles, further confirming the
important role of autophagy in AD pathological progression. Furthermore, recent evidence suggests that aggregation of
α-synuclein and the resulting cytotoxicity are hallmarks of PD. The secretory pathway of α-synuclein oligomers is

Figure 1 EVs biogenesis and autophagy in neurological diseases. Existing studies have shown that abnormal protein accumulation and aggregation are hallmarks of various
neurological diseases, while exosome release and autophagic degradation are two ways to clear them, and there are multiple possible interactions between autophagy and
exosome biogenesis: (I) Macroautophagy begins with phagophore formation and expansion: phagocytosis of cytoplasmic proteins and organelles when VPS34, beclin-1 and
ATG14 form a complex and initiate phagophore nucleation and formation. Then, with the assistance of ATG12, Rab11 and LC3 proteins, it leads to the formation of
autophagosomes. The autophagosome moves along microtubules, during which it can fuse with MVBs and exchange substances to form two bodies. Both autolysate and
amphibian formation are controlled by ESCRT proteins. It then fuses with the lysosome to degrade the engulfed contents.120 (II) Maturation of early endosomes produces
MVBs, late endocytic compartments containing numerous ILVs. Fusion of MVBs to the plasma membrane results in the release of ILVs into the extracellular space as
exosomes. (III) Amphisomes can fuse with the plasma membrane and secrete their contents. Shown is the autophagy-dependent secretion of ANXA2, where the amphisome
intermediate is required for ANXA2 release in exosomes. This image is adapted from previous studies64,120,121 published under the Creative Common Attribution License.
Abbreviations: ANXA2, annexin A2; ESCRT, endosomal sorting complexes required for transport proteins; MVBs, multivesicular bodies; ILVs, intraluminal vesicles.
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strongly influenced by autophagic activity. Compared with free α-synuclein oligomers, exosome-associated α-synuclein
oligomers are more readily taken up by recipient cells and can induce more toxicity. Therefore, preventing α-synuclein
exosomes release and regulating autophagy may be a novel approach to preventing disease transmission in PD.69,78,79

More importantly, by purifying microglia/macrophage EVs from the cerebrospinal fluid of PD patients, they confirmed
the presence of α-synuclein oligomers in CD11b+ exosomes and that such exosomes inhibit autophagy by impairing
autophagic flux, thereby disrupting intracellular homeostasis and exacerbating neurotoxicity, further supporting the
involvement of exosomes in α-synuclein-related pathological processes.80 Taken together, the level of autophagy in
target cells is closely related to the secretion and transport of EVs.

EVs are Involved in Regulating Autophagy in Neurological Disorders
Stroke
It is known that EVs play multiple roles in ischemic stroke, including inhibiting neuronal apoptosis, regulating
autophagy, and reducing inflammation.9,34,81–84 Especially, recent researches show that EVs and EV-cargos can be
used as biomarkers for the different ischemic stroke stages and inhibit abnormal autophagy to improve neuroregeneration
in preclinical ischemic stroke model.34,85–87 Hence, we summarized EVs secreted from several kinds of cells, such as
astrocytes, adipose-derived stem cells (ADSC), MSC and microglia, can alleviate neurological deficits by regulating
autophagy in ischemic models (Table 1). Most studies showed theses effects of EVs by using a rat or mouse model in
their researches. Pei et al reported that EVs derived from astrocytes could enhance neuron viability, and inhibit OGD-
induced apoptosis and levels of TNF-α, IL-6, and IL-1β via regulating autophagy.88 In addition, inhibition or knockdown
of PDE1-B significantly enhanced the autophagic flux in BV2 cells, promoted M2, and inhibited the M1 phenotype.89

These EVs derived from conditioned microglia are expected to regulate cortical neuronal survival under ischemic
conditions. On the other hand, many EV-miRNAs that improve ischemia-induced neuronal damage via regulating
autophagy have been found. Chen et al demonstrated exosomes secreted from ischemic-preconditioned astrocyte
(IPAS-EXOs) cultured with neurons exert neuroprotection.90 They observed that these effects depend on circSHOC2
in IPAS-EXOs, suppressed neuronal apoptosis, and ameliorated neuronal damage by regulating autophagy and acting on
the miR-7670-3p/SIRT1 axis in vivo model.90 In addition, other researchers also indicated that EVs derived from
astrocytes transferred miR-190b or miR-361 could inhibit OGD-induced autophagy and neuronal damage by targeting
Atg7 or downregulating the AMPK/mTOR pathway, respectively.91,92 Besides, EVs secreted from ADSCs have been
widely researched and shown to exert beneficial effects in reducing infarct size by an intravenous injection.8,9 Kuang et al
indicated that miR-25-3p is the highest expressed miRNA in ADMSC-EVs that interacts with the p53 pathway, and miR-
25-3p oligonucleotide mimics reduce cell death while anti-oligonucleotides regulate P53-BNIP3 signaling in primary
neurons to increase autophagy flux and cell death in cerebral ischemia. Hence, AD-MSCs induce neuroprotection by
improved autophagic flux through secreted EVs containing miR-25-3p.8 In addition, miR-30d-5p-enhanced EVs derived
from ADSCs inhibit autophagy-mediated microglia polarization to M1, promote M2 microglia/macrophage polarization
and reducing infarct size and brain damage.9 Finally, EVs derived from humans are also effective for ischemic
impairment. miR-21-3p is significantly down-regulated in human umbilical vein endothelial cell (HUVECs)-EVs during
hypoxia/reoxygenation (H/R). The miR-21-3p knockdown can activate autophagy and inhibit cell apoptosis, showing a
protective effect on neuron cells treated by H/R.93 Xia et al also illustrated that EVs secreted by MSCs inhibited
autophagy and promoted angiogenesis by regulating and activating signal transducer and activator of transcription 3
(STAT3), reducing the infarct size, enhancing angiogenesis and reducing long-term neurological deficits.85

Neurodegenerative Diseases
Current research has demonstrated that EVs are related to disease progression in neurodegenerative diseases. These EVs
may have multiple and important physiological functions in AD and PD, from deregulating synaptic activity, promoting
demyelination, modulating autophagy impairment and regulating microglia activity.94,95 Recently, research into the effects
of EVs on autophagy and the therapy of AD and PD has also been extensively studied (Table 2). EVs isolated from
umbilical cord MSCs conditioned medium (ucMSCs-CM) exposed to BV2 microglial cells, showed that ucMSCs-EVs
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Table 1 Preclinical Studies Assessing the Effect of EVs on the Activation of Autophagy in Stroke

Author, Year Country Species Model Route Cell Source Effect Autophagy Marker Mechanism

Pei et al88 2019 China Mice, Cells MCAO, OGD IV, co- incubation AS Inhibition LC3, Beclin-1, P62 NA

Zang et al89 2021 China Mice, Cells MCAO, OGD SI, co-incubation BV2 Inhibition LC3, P62 PDE1-B

Liu et al113 2021 China Mice, Cells MCAO, OGD IV, co-incubation M2 microglia Inhibition LC3, LAMP-1, Beclin-1, P62 miRNA-135a-5p/TXNIP/NLRP3

Chen et al90 2020 China Mice, Cells MCAO, OGD IV, co-incubation IPAS Inhibition LC3, Beclin-1, P62 miR-7670-3p/SIRT1

Pei et al91 2019 China Cells OGD Co-incubation AS Inhibition LC3, Beclin-1, P62 miR-190b

Kuang et al8 2020 Germany Mice, Cells MCAO, OGD IV, co-incubation ADMSCs Inhibition LC3 miR-25-3p

Jiang et al9 2018 China Rats, Cells MCAO, OGD IV, co- incubation ADSCs Inhibition LC3, Atg5, Beclin-1, P62 miR-30d-5p

Jiang et al93 2018 China Cells H/R Co-incubation HUVECs Inhibition LC3, Atg12, Beclin-1 miR-21-3p

Xia et al85 2020 China Rats, Cells MCAO, OGD IV, co-incubation MSC Inhibition LC3, Beclin-1, P62 STAT3

Abbreviations: MCAO, middle cerebral artery occlusion; OGD, oxygen-glucose-deprivation; ADSCs, adipose-derived stem cells; H/R, hypoxia/reoxygenation; HUVECs, human umbilical vein endothelial cells; AS, astrocytes; IPAS,
ischemic-preconditioned astrocyte; ADMSCs, Adipose-derived mesenchymal stem cells; iPSC, induced pluripotent stem cells; MSC, mesenchymal Stem Cells; IV, intravenous injection; SI, stereotaxic injection.
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promoted the phagocytosis of BV2 cells, affected the level of autophagy-related proteins (LC3, Beclin-1 and p62) and
finally inhibited the proliferation and decreased cell death of BV2 cells induced by Aβ25–35.96 Furthermore, injection of
EVs derived from hypoxic MSCs could decrease the activation of astrocytes and microglia, down-regulate proinflammatory
cytokines (TNF-α and IL-1β), and up-regulate anti-inflammatory cytokines (IL-4 and IL-10) via regulating the activation of
signal transducer and activator of transcription 3 (STAT3) and NF-kB.97 On the other hand, a study uncovered that α-
synuclein-containing EVs released by microglia were able to induce protein aggregation in recipient neurons, whereas
depleting microglia dramatically suppressed the transmission of α-synuclein in PD. Moreover, α-synuclein also impaired
autophagy flux by upregulating PELI1, resulting in degradation of LAMP2 in activated microglia.80 These results suggest
that regulation of autophagy, blocking microglial delivery of α-synuclein via exosomal pathways, has the potential to serve
as a therapeutic target for PD.98 Zhou et al indicated that enhancing the expression of miR-19a-3p in exosomes derived
from SH-SY5Y cells inhibited the autophagy of recipient microglia through the AKT/mTOR signaling pathway.99

Furthermore, using miR-188-3p-enriched EVs derived from ADSC could suppress autophagy and Pyroptosis, whereas
increased proliferation via targeting CDK5 and NLRP3 in mice and MN9D cells.100 Other studies have also revealed that α-
synuclein secretion in EVs can be affected by regulating autophagy.70,101–103 Finally, substances such as rapamycin,
curcumin and manganese can also affect the release of EVs from dopaminergic neurons by regulating autophagy, thereby
reducing the aggregation of α-synuclein.71,101,104

TBI
There is growing evidence that EVs and autophagy play important roles in TBI, therefore, abnormal EVs secretion and
autophagy may lead to further neuronal damage over time.105–107 Recent studies have shown that the autophagy pathway
is continuously activated after TBI, which may lead to aggravated neural damage (Table 3). For example, the level of
miR-21-5p in neuronal exosomes increased from the acute phase of TBI. The use of this miR-21-5p-enriched neuronal
exosomes could inhibit neuronal autophagy activity by inhibiting neuronal autophagy targeting Rab11a, thereby

Table 2 Preclinical Studies Assessing the Effect of EVs on the Activation of Autophagy in Neurodegenerative Diseases

Author, Year Country Species Animal
Model

Route Cell
Source

Effect Autophagy
Marker

Mechanism

Xu et al96

2018
China Cells NA Co-incubation ucMSCs Inhibition LC3, P62, Beclin1 Autophagy - Aβ25-

35

Guo et al80

2020
China Cells NA Co-incubation Microglia Inhibition LC3, P62, LAMP2 a-synuclein

transmission

Xia et al98

2019
China Mice,

Cells
NA SI, co-incubation Plasma Inhibition LC3, Beclin-1,

P62
a-synuclein
transmission

Zhou
et al992019

China Cells NA Co-incubation SH-SY5Y Inhibition LC3, P62 miR-19a-3p

Li et al100

2020
China Mice,

Cells
MPTP IP, co-incubation ADSC Inhibition LC3, P62 miR-188-3p

Abbreviations: LAMP2, lysosome-associated membrane protein 2; ADSC, adipose-derived stem cell; IP, intraperitoneal injection; α-syn, alpha-synuclein; IN, intranasal
administration; SI, stereotaxic injections.

Table 3 Preclinical Studies Assessing the Effect of EVs on the Activation of Autophagy in Traumatic Brain Injury

Author Year Country Species Route Source Autophagy Marker Effect Mechanism

Wang et al107 2020 China Rat, Cells NA Plasma NA Inhibition NA

Li et al105 2019 China Mice, Cells Co-culture, IV HT22, BV2 P62, LC3 Inhibition miR-21

Li et al106 2019 China Cells IV HT22 P62, LC3 Inhibition miR-124-3p

Abbreviations: TBI, traumatic brain injury, IV, intravenous injection; NA, not available.
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attenuating trauma-induced autophagy-mediated neural damage in vitro.105 Similarly, the increase of miR-124-3p in
microglial exosomes after TBI might inhibit neuronal autophagy and prevent neuronal damage by translocating it into
neurons.106 Overall, treatment with these miR-enriched EVs may represent a new therapeutic strategy for the treatment of
nerve damage after TBI. A schematic illustration of EVs derived from different cell sources and their respective roles in
neurological diseases is shown in Figure 2.

The Mechanism of EVs in the Effect of Regulating Autophagy
ncRNAs in EVs are Key Players in Regulating Autophagy
Non-coding RNAs (ncRNAs), such as miRs, long non-coding RNAs and circular RNAs (circRNAs), are a large class of
RNA transcripts that are transcribed from the genome, however, lack the function of encoding proteins.108 At the RNA
level, they can conduct their respective biological effects and play a vital role in cell growth, differentiation, replication,
and apoptosis.108,109 ncRNAs are also uncovered in the extracellular milieu, plenty of ncRNAs selectively sorted into
EVs potentially regulate specific aspects of autophagy, thus protecting from degradation. Current shreds of evidence have
demonstrated that ncRNAs are effective treatment candidates owing to their capacity of promoting neuronal recovery.
Studies have demonstrated the effects of autophagy regulation of specific ncRNAs, especially for miRs, which are highly
expressed in EVs.110 miRs, the biggest family of ncRNAs containing 20–25 nucleotides, play key roles in the remodeling
process under neurological disorders.110 It is reported that miR-21-3p can attenuate brain injuries via multiple
mechanisms.111,112 Interestingly, the miR-21-3p expression was downregulated in HUVECs after a hypoxic condition,
suggesting that miR-21-3P might be a potential effector.93 To explore its involvement in autophagy pathways played by
miR-21-3p in the protective effect of HUVECs-exosomes on hypoxia-treated neural cells, the pathway mediating the

Figure 2 Schematic illustration of EVs derived from different cell sources and their respective roles in neurological diseases. In the central and peripheral system, different
donor cells including neurons, microglia, and astrocyte can modulate their respective recipient cells by transferring various extracellular vesicle-cargos through modulating
autophagy, thus regulating central nervous system diseases progression and recover.
Abbreviations: ADSCs, adipose-derived stem cells; MSCs, mesenchymal stem cells; EVs, extracellular vesicles; AD, Alzheimer’s disease; TBI, traumatic brain injury.
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effect of miR-21-3p was explored by focusing on the activity of ATG12 protein. Jiang et al conducted a dual-luciferase
assay and revealed that miR-21-3p can directly bind to the 3ʹUTR sequence of the ATG12 gene and suppresses ATG12
signaling.93 Likewise, Li et al indicated that the expression of miR-21-5p was increased in EVs derived from HT-22
neurons extracted from the TBI mice brain. EV-miR-21-5p produced a protective effect by suppressing autophagy in HT-
22 neurons after scratch injury via directly targeting the Rab11a 3ʹUTR region to inhibit Rab11a-mediated neuronal
autophagy.105 Besides that, multiple miRNAs, such as miR124-3p,106 miR19a-3p,99 miR188-3p,100 miR-30d-5p,9 miR-
190b,91 miR-7670,90 miR-258 and miR-135a,113 shuttered in respective EVs are involved in regulating autophagy various
cell as shown in Tables. Hence, a plethora of miRNAs are found in EVs of which the precise signaling cascades that are
regulated are not fully known, yet.

mRNA, Such as STAT3 and PDE1-B, Play an Important Role in the Effect Regulating
Autophagy
Phosphodiesterase enzyme (PDE) 1-B is the best characterized among 11 groups of the superfamily of PDE enzymes
in mammals.114 PDE, a calcium and calmodulin-dependent phosphodiesterase, limits the intracellular levels of cyclic
nucleotides by catalyzing the hydrolysis of cAMP and cGMP. Recently, it has been revealed that PDE1-B is involved
in the regulation of autophagy and exosome release.89 Zang et al89 demonstrated a novel mechanism by which
vinpocetine, an inhibitor of PDE1-B, regulated microglia-neuron communication via altering autophagy in BV2
cells. Firstly, the PDE1-B expression in microglia was progressively elevated in the peri-infarct region after MCAO.
Using vinpocetine can inhibit BV2 microglia M1, promote M2 phenotype, and enhance autophagy in OGD-condi-
tioned BV2 cells, which is associated with the release of exosomes that protects neurons against OGD-induced
damage. With regard to signal transducer and activator of transcription 3 (STAT3), located on chromosome 17q21,
which was first reported as a transcriptional enhancer of acute-phase genes activated by interleukin 6.115 STAT3, the
only embryonic lethal family member of the STAT family, is a prominent nuclear transcription factor that regulates
more than 1000 gene expressions.116 STAT3 protein becomes transcriptionally activated primarily by tyrosine
phosphorylation, in turn, translocates to the nucleus and targets sequence-specific DNA elements for consequent
transcription of target genes.115,116 A great number of studies have endorsed the growing evidence of an important role
of STAT3 in autophagy regulation.117–119 Interestingly, the current study has demonstrated that EVs can regulate
autophagy as the upstream of STAT3. For example, Xia et al85 indicated that the expression of the LC3-II/LC3-I and
Beclin-1 was significantly increased while the P62 protein level was decreased after the stroke model. However,
MSCs-EV markedly reversed the levels of autophagy-associated protein levels induced by MCAO. Besides that, the
specific autophagosomes characterized by double-membrane structure were increased after MCAO. Notably, the EV
group found fewer autophagosomes by TEM. Furthermore, EVs can significantly activate STAT3 after stroke.
Xia et al85 used static, a STAT3 inhibitor, to further confirm the role of STAT3 in the preventative effects of EVs
on stroke-induced autophagy, and revealed suppression of STAT3 can abolish EV-induced inhibition of autophagy in
vivo and in vitro. MSCs-EVs might therefore contribute to inhibiting autophagy by activating STAT3. The ability of
EVs from other cells to suppress autophagy, information regarding this aspect, however, is scarce and appears to be
limited, for which additional and reliable data is urgently necessary.

Conclusions and Prospects
Generally, EVs and autophagy are closely associated. Cells use EVs to communicate with the environment and
surrounding cells by carrying information such as lipids, proteins, or nucleic acids. Autophagy plays a vital role in the
synthesis and degradation of EVs, which is closely related to the formation of autophagosomes. In another, the
application of EVs provides a great opportunity for adjuvant treatment of neurological disorders, for which autophagy
is an excellent target. Although EVs exist in extracellular fluid, they can release their cargos into target cells via
endocytosis, receptor-ligand binding, and membrane fusion, which, in turn, regulate the autophagic level of target cells
through autophagy-related proteins directly and the ncRNA, STAT3, PDE1-B, etc. signaling pathways indirectly, thus
regulating the development of related neurological disorders.
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