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Aim: Several cases of small cell lung cancer (SCLC) patients demonstrate resistance to the treatment initiatives such as cisplatin after
platinum chemotherapy. It is crucial to the improvement of the overall survival (OS) of SCLC patients to discover the gene mutation
inducing platinum resistance within this cohort.
Patients and Methods: We analyzed the gene mutations significantly associated with the OS from 2 cohorts of SCLC platinum-
treated patients. And then we screened out THSD7B mutation. In order to understand the mechanism between THSD7B mutation and
platinum resistance, we designed gene mutation co-occurrence and mutual exclusivity analysis, gene set enrichment analysis (GSEA)
and gene set variation analysis (GSVA) analysis, and Connectivity Map (CMap) analysis.
Results: The poor prognosis of THSD7B mutant patients may be related to the inhibition of cell death-related pathways, the up-
regulation of cell invasion and metastasis pathways, and the down-regulation of immune response pathways. Lovastatin and
cyclooxygenase inhibitors could be used as potential target compounds in THSD7B mutant patients, which provides reference for
future research on platinum resistance.
Conclusion: THSD7B can be considered a reliable biomarker that effectively facilitates the prediction of poor survival in SCLC
platinum-treated patients.
Keywords: small cell lung cancer, gene mutation, platinum, chemotherapy resistance, prognosis

Introduction
Small cell lung cancer accounts for 15% of all lung cancers. It occurs particularly in elderly men and smokers and is
prone to involve early distant metastasis.1 Many patients with small cell lung cancer exhibited a wide range of diseases at
the time of treatment, along with substantially poor prognoses.2 Patients with extensive metastasis are primarily treated
with concurrent chemoradiotherapy. At present, cisplatin or carboplatin combined with etoposide remains the first-line
chemotherapy for SCLC. Many patients with extensive stage SCLC (ES-SCLC) frequently relapse, and rarely survive for
over 2 years (10–20%),3 exhibiting a median survival time of only 7–10 months.4 Platinum therapy has been identified
for its lack of efficacy in treating ES-SCLC, as the majority of patients quickly develop chemotherapy resistance
following first-line chemotherapy. Moreover, platinum therapy fails to meet the efficacy standards of second-line
chemotherapy, and is subsequently not found to be suitable.5 Thus, overcoming SCLC patients’ chemotherapy resistance
has become a major obstacle in clinical therapeutics.

Recently, the rapid development of second-generation sequencing has led to the discovery of gene mutation’s role as a
mechanism of cisplatin resistance.6 Zhang et al found that a TP53 K351N mutation was related to acquired cisplatin
resistance in ovarian cancer.7 BRCA mutant cancer cells demonstrate abnormal DNA homologous recombination (HR)
repair related to PARP, and some studies have also shown that PARP inhibitors sensitize cancer cells to DNA damaging
drugs such as platinum.8 Hirai et al reported that WEEL inhibitors enhance the anti-tumor effect of DNA damaging drugs
such as platinum drugs.9 They indicated that cancer cells with TP53 mutations are susceptible to the combination of
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WEEL inhibitors and platinum drugs.10 In contrast, Van et al indicated that this effect is somewhat independent of p53ʹs
function.11 At present, the relationship between the SCLC high-frequency mutation gene and cisplatin resistance remains
unclear.

Platinum-related gene mutation does not establish a complete and rich connection with signaling pathways. Many
studies focus on classical oncogenes or tumor suppressor genes. However, it remains necessary to further analyze SCLC
genomic data, explore potential biomarkers for predicting cisplatin resistance, and enrich the understanding of biomar-
kers in platinum resistance.

In this study, the use of WES, clinical data from the Zhujiang Hospital, and the George et al cohort1 were analyzed to
screen biomarkers of poor survival in SCLC platinum chemotherapy-treated patients. The potential biomarkers’ drug
resistance mechanism was explored from the perspective of multi-omics. In addition, we investigated the potential
targeted compounds of platinum chemotherapy-treated patients with poor survival, which can provide further evidence in
the improvement of the treatment approach for platinum resistance.

Materials and Methods
Clinical Samples and Data Acquisition
The research design of this paper is illustrated in Figure 1.

Briefly, we selected 52 treatment-naïve SCLC patients from the Zhujiang Hospital. All of these patients were
diagnosed at as stage IV SCLC patients, and received first-line chemotherapy treatment for SCLC in the form of
cisplatin combined with etoposide. 39 patients were finally included in the Zhujiang cohort, inclusive of WES and OS
information. In addition, we used 101 patient samples with WES and OS information from the George et al cohort.1 A
majority of these patients were treatment-naive, with only five cases recorded at the time of relapse. The therapeutic
treatment for patients in the George et al cohort1 was comprehensive, with 59 receiving chemotherapy, 42 receiving
radiotherapy, and 5 receiving neoadjuvant chemotherapy. Accordingly, we removed synonymous mutation in the WES
data in both cohorts, and retained non-synonymous mutation data.

Screening Gene Mutations Significantly Related to OS
In the Zhujiang and George et al cohorts,1 we identified mutant genes with significant OS correlation via a univariate Cox
proportional hazard regression model (mutant frequency> 5%). Then, we selected the intersection of mutant genes from
the two cohorts that were significantly related to OS, and only the THSD7B mutation was obtained.

Analysis of Gene Mutation Co-Occurrence and Mutual Exclusion
First, we analyzed the co-occurrence or mutual exclusivity of the top 20 frequently mutated genes. Then, by Fisher’s
exact test, we detected the difference in the mutation frequency of the driver genes between the THSD7B-mutated group
(THSD7B-MUT) and the wild type THSD7B group (THSD7B-WT) and selected the top 20 mutated driver genes for
gene mutation co-occurrence and mutual exclusivity analysis. The driver genes were obtained from the NCG6.0
(Network of Cancer Genes & Healthy drivers 6.0) database (http://ncg.kcl.ac.uk).12 The R package “maftools”13

analyzed gene mutations’ co-occurrence or mutual exclusivity and visualized the results.

Gene Enrichment Analysis
We employed the expression matrix of George et al cohort1 and quantified the expression levels as log2(TPM+1). The
differentially expressed genes (DEGs) were calculated by R package “limma”,14 and the cutoff value of logFC was
calculated as mean (ABS (log FC))+2 * SD (ABS (log FC)). R package “ggplot2”15 was used to draw a volcano plot
showing significant DEGs with P<0.05 (Supplementary Figure 1A). In THSD7B-MUT and THSD7B-WT, the expression
of top20 shared DEGs is shown in Supplementary Figure 1B.

We used the canonical pathways of curated gene sets (C2 gene set) obtained from the Broad Institute Molecular
Signatures Database (MSigDB)16 for gene enrichment analysis, and P<0.05 indicated a significant difference in these
canonical pathways. The gene set enrichment analysis (GSEA) was carried out using the R package “clusterprofiler”.17
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We then selected the cancer-associated pathways using the PubMed dataset (https://pubmed.ncbi.nlm.nih.gov/). The
GSVA score of each cancer-associated pathway of a single sample was calculated by the GSVA algorithm. The top 10
pathways with differences between the THSD7B-MUT group and the THSD7B-WT group were screened out. In order to
further screen out the core genes of the pathways, we intersected the DEGs between THSD7B-MUT and THSD7B-WT in
the George et al cohort,1 in addition to the top 10 pathways’ gene sets.

Prediction of Potential Targeted Compound
We introduced 66 SCLC cell lines from Genomics of Drug Sensitivity in Cancer (GDSC) as verification sets. The WES
data and expression matrices were obtained from GDSC1000 (https://www.cancerrxgene.org/gdsc1000/GDSC1000_
WebResources/Home.html),18 and the gene expression matrix was obtained from the RMA file. Based on the WES
data and the expression matrix of GDSC-SCLC cell lines, the differentially expressed THSD7B-MUT genes and cell
lines were calculated via the same method. The DEGs of GDSC-SCLC cell lines and their respective analyses are shown
in Supplementary Figure 2. Subsequently, we selected the top 500 up-regulated and down-regulated genes from the
George et al cohort1 and GDSC-SCLC cell lines and sorted them in the input file (grp file) required by the Connectivity

Figure 1 Workflow of the bioinformatic analysis.
Abbreviations: SCLC, small cell lung cancer; WES, whole exome sequencing; NCG6.0, Network of Cancer Genes & Healthy drivers 6.0; GSVA, gene set variation analysis;
GSEA, gene set enrichment analysis; CMAP, Connectivity Map; GDSC, Genomics of Drug Sensitivity in Cancer.
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Map (CMap). We uploaded the file to the CMap build 02 query (https://portals.broadinstitute.org/cmap/) to analyze the
data and determine the drugs with apparent enrichment. MoA files were obtained from https://clue.io/ to explore the
mechanism of action of significant drugs.

Statistical Analysis
The full-text bioinformatic analysis was carried out in R 3.6.3. R package “ggplot2”,15 and was used to draw a bubble
chart and visualize a multivariate Cox proportional hazards regression model. We analyzed the OS of THSD7B-MUT and
THSD7B-WT using the Kaplan-Meier method, while the survival analysis was visualized by the R packages “survival”19

and “survminer”.20 The R package “venn” was used to draw a Venn diagram to show the intersection between genes
significantly related to OS (mutation frequency > 5%) in the Zhujiang cohort and George et al cohort.1 Likewise, the R
package “ComplexHeatmap”21 was used to illustrate the mutational landscape of gene mutations. The package
“maftools”13 was used to draw a lollipop plot. The package “forest” was used to illustrate the forest map of univariate
Cox proportional hazard regression. GSVA scores in the THSD7B-WT and THSD7B-MUT groups were compared
through a t-test. Here, P<0.05 indicates that the difference is statistically significant, and all statistical tests are bilateral.

Results
THSD7B Mutation is Associated with Poor Prognosis of SCLC Patients Treated with
Platinum
We collected both WES and clinical data from 39 SCLC patients in the Zhujiang cohort and calculated the
correlation between gene mutations and OS via a univariate Cox regression model. We screened out 67 genes
with gene mutation frequencies greater than 5% that were significantly correlated with OS. These all showed a
significant negative correlation with OS (Figure 2A, Supplementary Figure 3A, P<0.05, HR>1). Similarly, we
calculated the influence of gene mutations on OS in 101 samples from the George et al cohort1 by univariate
Cox proportional hazard regression model. Then, we screened out 42 genes with gene mutation frequency greater
than 5% and significantly correlated with OS, among which 39 genes were significantly negatively correlated with
OS (Figure 2B, Supplementary Figure 3B, P<0.05, HR>1). After considering the intersection of the above results,
only the THSD7B mutation was obtained (Figure 2C).

In order to explore whether THSD7B mutation is an independent factor affecting the survival of patients, we
conducted a multivariate Cox proportional hazard regression model on the clinical information and the mutation status
of THSD7B from patients in the Zhujiang and George et al cohorts.1 The results indicated that THSD7B mutation can
affect the survival of patients, although the result was not unique (P<0.05, Figure 2D and E). In the Zhujiang cohort, the
OS of patients with THSD7B-MUT was significantly shorter than that of patients with THSD7B-WT (P=0.02,
Figure 2G). Similarly, in the George et al cohort,1 THSD7B mutation was also found to be significantly associated
with poor prognoses (P=0.046, Figure 2F).

We then explored the relationship between THSD7B mutation and THSD7B expression in George et al cohort.1 No
significant differences of THSD7B expression between THSD7B-WT group and THSD7B-MUT group were found
(Supplementary Figure 4A). Further, no significant correlation was found between THSD7B expression and the OS of
patients in the George et al cohort,1 (Supplementary Figure 4B). This result suggested that the particular mechanism by
which THSD7B mutations mediate poor prognosis in SCLC patients was complex. Hence we further discovered the
relationship between other gene mutations and THSD7B mutation.

The Relationship Between THSD7B Mutation, SCLC High-Frequency Mutation Gene,
and the Affiliated Clinical Features
In the Zhujiang and George et al cohorts,1 we discovered that there were no significant differences observed in the
clinical characteristics (age, gender and smoking history) between patients in the THSD7B mutation group and the wild-
type group (P>0.05, Supplementary Table 1)
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Figure 2 THSD7B mutation is significantly related to the poor prognosis of SCLC patients treated with platinum. (A and B) The bubble chart shows the gene mutations significantly
related to OS according to univariate Cox proportional hazard regression analysis (Zhujiang cohort and George et al cohort1). (C) The Venn diagram shows two cohorts’ intersection
with significantOS-related genemutations, where THSD7Bwas the only intersection gene. (D andE) Amultivariate Cox proportional hazard regressionmodel was used to analyze the
relationship betweenTHSD7Bmutation and the clinical characteristics andOS (Zhujiang cohort andGeorge et al cohort1). (F andG) Kaplan-Meier analyzed the prognosis of THSD7B-
WT patients and THSD7B-MUT patients (Zhujiang cohort and George et al cohort1) (P<0.05, Log rank test).
Abbreviations: OS, overall survival; SCLC, small cell lung cancer; THSD7B-MUT, THSD7B mutant group; THSD7B-WT, THSD7B wild-type group.
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The gene-mutational landscapes of the top 20 most frequently mutated genes in the Zhujiang cohort and George et al
cohorts1 are shown in Figure 3A and B. Among them, missense mutation was the most common mutation type observed
in the THSD7B-MUT and THSD7B-WT groups. Compared to the THSD7B-WT group, the mutation frequency of the
top 20 most frequently mutated genes in the THSD7B-MUT group was higher in the Zhujiang cohort, but there was no
significant difference between them (Figure 3A). The George et al cohort1 displayed the gene mutation frequencies of
ZFHX4 (67% vs 36%) and EYS (53% vs 19%), which were significantly higher in THSD7B-MUT patients (Fisher’s
exact test, P<0.05, Figure 3B).

The lollipop plot shows the mutation of the THSD7B gene at the protein level. The protein level mutations in the Zhujiang
cohort included nonsense and missense mutations and frameshift deletion mutations, where the mutation time =1 (Figure 3C).
Likewise, missense and frameshift deletion mutations can be observed in the George et al cohort,1 where the mutation
frequency =1. There were no nonsense mutations identified in the George et al cohort1 (Figure 3D).

In order to explore the mutation pattern of gene pairs among the top 20 most frequently mutated genes in the two
cohorts’ THSD7B-MUT patients, we conducted a gene mutation co-occurrence and mutual exclusivity analysis on
THSD7B-MUT and THSD7B-WT in the two cohorts, respectively. We detected the significance of the events by Fisher’s
exact test, where THSD7B-MUT had more gene pairs with significant co-occurrence mutation. For example, FSIP2-
CSMD1, ZFHX4-CSMD1, FSIP2-ZFHX4, ZNF208-MUC19 genes were significantly associated with the co-occurrence
mutation (P<0.01, Figure 4A), while the co-occurrence mutation of these gene pairs was not significant in THSD7B-WT
(Figure 4B).

Compared with THSD7B-WT, ZFHX4 and FSIP2 in THSD7B-MUT were both more likely to mutate when observed
among the top 20 most frequently mutated genes. Similarly, in THSD7B-MUT patients in the George et al cohort,1

ZFHX4 was also more likely to mutate among the top 20 most frequently mutated genes in this cohort (Figure 4C). For
genes EYS and ZFHX4 (P<0.01, P<0.05, Figure 3B), which have significantly changed mutation frequency in THSD7B-
MUT, significant co-occurrence mutation was observed in THSD7B-MUT (P<0.05, Figure 4C), while mutual exclusivity
of this pair of gene mutations was observed in THSD7B-WT (P<0.05, Figure 4D). This data suggests that the co-
occurrence mutation of EYS and ZFHX4, a pair of high-frequency mutation genes, may be a potential factor for
mediating platinum resistance in THSD7B-MUT SCLC patients.

The Relationship Between THSD7B Mutation and Driver Gene Mutation
We explored the relationship between the THSD7B and driver gene mutations. The driver gene mutation information was
obtained from NCG6.0 (http://ncg.kcl.ac.uk/).12 First, Fisher’s exact test was used to analyze the difference in mutation
frequency between THSD7B-MUT and THSD7B-MUT. Figure 5A and B display the mutational landscape of top20
differential mutation frequency genes’ driver genes in both the Zhujiang and George et al cohorts.1 There was no
intersection between the driver genes screened from the two data sets. The mutation frequency of the driver genes
screened from the two cohorts in THSD7B-MUT was higher than that in THSD7B-WT.

In the Zhujiang cohort, the driver genes with significant mutation frequency difference include AMER1 (50% vs 3%),
BCL11A (33% vs 0%), FGFR2 (33% vs 0%), MNX1 (33% vs 0%), NCOR1 (33% vs 0%), NCOR2. NUP98 (33% vs
0%), TCF12 (33% vs 0%), ZNF429 (33% vs 0%), and their most common mutation type was recorded as the missense
mutation (P<0.05, Figure 5A). In THSD7B-MUT the mutation types group was more abundant, and splice site mutation
and in-frame deletion were not detected in the THSD7B-WT (Figure 5A).

In the comparison to the George et al cohort,1 and THSD7B-WT group, the mutation frequencies of BRD4 (20% vs
1%), ERCC4 (13% vs 0%), PCM1 (20% vs 2%) and GRM3 (27% vs 6%) in THSD7B-MUT were significantly different
from those in THSD7B-WT (P<0.05, Figure 5B). In the THSD7B-MUT group, frameshift deletion and in-frame deletion
mutations were detected, which did not exist in the THSD7B-WT group. These two mutation types were observed in
ERCC4 and KEAP1 (Figure 5B).

We investigated the co-occurrence and mutual exclusivity of mutant genes to explore the potential mechanism of
significant mutation frequency differences among these driver genes. For the Zhujiang cohort, there were several pairs of
genes with significant co-occurrence mutation patterns, which were NCOR2-NCOR1, TCF12-FGFR2, BCL11A-
NCOR1, and AMER1-MNX1 (P<0.05, Figure 5C) among the genes shown in Figure 5A with significant differences
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Figure 3 Mutational landscape of THSD7B-MUT and THSD7B-WT and the characteristics of THSD7B mutations at the protein level. (A and B) The mutational landscape
shows the top 20 high-frequency mutant genes in THSD7B-MUTand THSD7B-WT (Zhujiang cohort and George et al cohort1). Gender, PFS time, and OS time were noted.
Genes with significantly different mutation frequencies have been marked (Fisher’s exact test, P<0.05,“*”; P<0.01,“**”). (C and D) The lollipop plot shows the characteristics
of THSD7B mutation at the protein level (Zhujiang cohort and George et al cohort1).
Abbreviations: PFS, progression-free survival; OS, overall survival; THSD7B-MUT, THSD7B mutant group; THSD7B-WT, THSD7B wild-type group.
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Figure 4 Co-occurrence mutation and mutual exclusivity of high-frequency mutant genes between THSD7B-MUT and THSD7B-WT. (A and B) Heatmap shows the co-
occurrence mutation and mutual exclusivity of high-frequency mutant genes in THSD7B-MUT patients and THSD7B-WT patients (Zhujiang cohort) (Fisher’s exact test,
P<0.01, “*”, P<0.05, “.”). (C and D) Heatmap shows the co-occurrence mutation and mutual exclusivity of high-frequency mutant genes in THSD7B-MUT patients and
THSD7B-WT patients (George et al cohort1) (Fisher’s exact test, P<0.01, “*”, P<0.05 “.”).
Abbreviations: THSD7B-MUT, THSD7B mutant group; THSD7B-WT, THSD7B wild-type group.
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Figure 5 Driver genes of differential mutation frequency between THSD7B-MUT and THSD7B-WT. (A and B) Mutational landscape shows the top20 differential mutation
frequency driver genes between the THSD7B-MUT and THSD7B-WT (Zhujiang cohort and George et al cohort1). Gender, PFS time, and OS time were noted. The driver
genes with significant differences in gene mutation frequency between the two groups have been marked (Fisher’s exact test, P<0.05,“*”, P<0.01, “**”). (C and D) Heatmap
shows the co-occurrence mutation and mutual exclusivity of the top 20 driver genes with different mutation frequencies between THSD7B-MUT and THSD7B-WT
(Zhujiang cohort and George et al cohort1) (Fisher’s exact test, P<0.05, “*”, P<0.1, “.”).
Abbreviations: PFS, progression-free survival; OS, overall survival; THSD7B-MUT, THSD7B mutant group; THSD7B-WT, THSD7B wild-type group.
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in mutation frequency between THSD7B-MUT and THSD7B-WT (P<0.05). For the George et al cohort,1 we found that
among the genes shown in Figure 5B, which showed significantly different mutation frequencies between THSD7B-
MUT and THSD7B-WT (P<0.05, Figure 5B), the BRD4-PCM1 gene pair had a significant co-occurrence mutation
pattern (P<0.05, Figure 5D).

THSD7B Mutation and Signaling Pathway
In order to understand the potential pathways related to the THSD7B mutation, we utilized the GSEA analysis to
calculate the enrichment scores of canonical pathways from the C2 gene sets,16 and pathways with P<0.05 were screened
out.17 Cancer-associated pathways were selected by searching the PubMed dataset (https://pubmed.ncbi.nlm.nih.gov/).
We also analyzed the differences between the GSVA scores of THSD7B-MUT and THSD7B-WT and then selected the
top 10 cancer-related pathways with differences between THSD7B-MUT and THSD7B-WT. There are three cell
metabolism-related pathways: the up-regulated pathway is the NOS1 Pathway, while the down-regulated pathway is
the Adipocytokine Signaling Pathway and Eicosanoids (P<0.05, Figure 6A). Similarly, three immune-related pathways
were down-regulated, the IL1R Pathway, the TCR Calcium Pathway, and the IL2 mediated Pathway (P<0.05, Figure 6B).
The four pathways related to the cell cycle were down-regulated, namely the P53 Downstream Pathway, the PI3K-Akt
network, the TGFβ Signaling Pathway, and the Smad2/Smad3: Smad4 heterotrimer regulators transcription (P<0.05,
Figure 6C). Among them, significant differences were detected in 8 pathways (P<0.05, Figure 6D), while no significant
differences were detected in 2 pathways (Adipocytokine Signaling Pathway, P = 0.056; IL2 Mediated Pathway, P=0.078).

In order to explore these pathways’ potential core genes, we determined the intersection of the differentially
expressed genes from the George et al cohort1 and the gene sets of 10 pathways to obtain their core genes. The
expression of each pathway’s core genes in THSD7B-MUT and THSD7B-WT, as well as the logFC value are shown in
Figure 6E.

THSD7B Mutation and Potential Target Compounds
CMap analysis is helpful in the identification of potential compounds targeting patients with the THSD7B mutation. We
introduce the verification set, WES data, and expression matrix from 66 SCLC cell lines in the GDSC1000 database.18

Four significantly enriched compounds, anisomycin, lovastatin, terazosin, and vinburnine, were obtained from the
George et al cohort1 using CMap analysis, and ten significantly enriched compounds were obtained from GDSC-
SCLC cell lines. The results of the two cohorts were combined, and only lovastatin was selected. The enrichment
score of the 13 compounds significantly enriched in the two cohorts is shown in Figure 7A.

We aim to further understand the mechanism of action of these significantly enriched compounds. To achieve this, we
acquired MoA files from https://clue.io/ in order to obtain our 13 significantly enriched compounds and their correspond-
ing mechanisms of action, which were then visualized respective of their common mechanisms through oncoPrint. The
most common mechanism among the 13 significantly enriched compounds is the cyclooxygenase inhibitor, with 3
compounds (enbufen, nimesulide, tolmetin) exhibiting this mechanism. The second common mechanism, an adrenergic
receptor antagonist, has 2 compounds exhibiting this mechanism (terazosin, vinburnine) (Figure 7B). These mechanisms
provide reference for further drug development research for SCLC patients with platinum resistance.

Discussion
Platinum drugs are used as first-line chemotherapy for SCLC, but many patients can develop chemotherapy resistance in
the early stages of treatment, affecting their survival.1–3 This study explores the single gene mutation and its potential
adverse prognosis mechanism in SCLC patients when mediated by platinum-based chemotherapy. We included WES and
clinical data of 39 patients, and 101 SCLC patients who received platinum chemotherapy (Zhujiang cohort and George
et al cohort1). Univariate Cox proportional hazard regression was used to screen the mutant genes (Figure 2A and B)
presenting with a significant relationship to OS of cisplatin-treated patients in the two cohorts, and only the intersection
gene THSD7B (Figure 2C) was selected. THSD7B-MUT tumor cells are thought to mediate adverse prognosis through
the regulation of adipocytokines and nitric oxide (NO) metabolism, regulating the cell cycle, and suppressing the immune
response (Figure 6). In addition, lovastatin and cyclooxygenase inhibitors can be used as potential targeted compounds
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Figure 6 Potential signaling pathways of adverse prognosis in THSD7B-MUT patients in the George et al cohort.1 (A‒C) The enrichment of DEGs between THSD7B-MUT
and THSD7B-WT by GSEA method. (D) The differences in GSVA scores between THSD7B-MUT and THSD7B-WT (t-test, 0.01<P<0.05,“*”; P<0.001, “***”; P≥0.05, “ns”).
(E) Heatmap shows the core gene expression (z-score) and logFC of each pathway.
Abbreviations: THSD7B-MUT, THSD7B mutant group; THSD7B-WT, THSD7B wild-type group; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis.
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Figure 7 (A) Potential target compounds for THSD7B-MUT patients: CMap analysis. Heatmap shows each compound’s enrichment scores (positive in blue, negative in red)
obtained from the CMap for each cohort (GDSC-SCLC cell lines18 and George et al cohort1). (B) Heatmap shows each compound (perturbagen) from the CMap that shares
a mechanism of action (rows).
Abbreviations: CMAP, Connectivity Map; GDSC, Genomics of Drug Sensitivity in Cancer; SCLC, small cell lung cancer.
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for patients with THSD7B-MUT (Figure 7). Thus, according to this study, we summarized the potential mechanism of
THSD7B-MUT and platinum chemotherapy resistance (Figure 8).

The mutation frequency of ZFHX4 and some THSD7B-MUT driver genes increased significantly when compared to
THSD7B-MUT, which may increase the risk of platinum resistance in THSD7B mutant patients. The THSD7B mutation
has been proven to be a cisplatin resistance factor in esophageal squamous cell carcinoma (ESCC).22 Accordingly,
THSD7B-MUT patient prognosis after platinum chemotherapy was significantly lower than that of THSD7B-WT
patients (Figure 2E and F). The THSD7B mutation is a potential platinum resistance biomarker in SCLC. As high-
frequency mutation genes of SCLC patients, ZFHX4 and EYS both display significantly increased mutation frequency in
the THSD7B-MUT group (Figure 3B), and they both present with a significant co-occurrence mutation pattern
(Figure 4C). In addition, the mutation frequency of 11 driving genes (AMER1, FGFR2, NCOR1, NCOR2, TCF12,
ZNF429 NUP98, MNX1, BCL11A, BRD4, ERCC4, PCM1, and GRM3) increased significantly in THSD7B-MUT
(Figure 5A and B). Interestingly, among the above 15 genes, the ZFHX4 and FGFR2 mutations along with MNX1 and

Figure 8 Potential mechanism of THSD7B mutation and platinum resistance.
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BRD4 up-regulation were confirmed to be related to ESCC.23–26 The mutations of NCOR1 and the over-expression of
ERCC4 and NCOR2 were the driving factors of head and neck squamous cell carcinoma (HNSC).27–29 This data
suggests that these 7 genes may be involved in platinum resistance mediated by the THSD7B mutation. Furthermore,
NCOR1 and NCOR2 can be used as nuclear receptor co-inhibitors to affect HDAC3.30 Their co-occurrent mutations can
inactivate HDAC3, thereby reducing Rb’s ability to inhibit transcription and promote the cell cycle progress.30,31

Notably, a NCOR1-NCOR2 co-occurrence mutation event (Figure 5C) was observed in the Zhujiang cohort, suggesting
that NCOR1-NCOR2 co-occurrence mutation is supplemental to the cisplatin resistance mechanism. For the other 8
genes with significantly increased mutation frequencies in THSD7B-MUT, no research has identified their relation to
platinum resistance. We expect further research to focus on these gene mutations and their co-occurrence mutation
patterns (Figure 5C and D).

Platinum resistance in THSD7B-MUT patients may be resultant from the blocked autophagy and apoptosis of tumor
cells, active growth, invasion, and metastasis of tumor cells, and inhibited adaptive immune function mediated by Th1
cells in the tumor microenvironment. ADIPOR2 can induce autophagy through the STK11/LKB1-AMPK-ULK1 axis.32

The up-regulation of NOS1 is related to anti-apoptosis.33 Consistent with this, the Adipocytokine Signaling Pathway was
down-regulated, the NOS1 Pathway was up-regulated, both ADIPOR2 and PRKAA1 were down-regulated although
NOS1 was up-regulated (Figure 6A, D and E) in THSD7B-MUT tumor cells, which may hinder the autophagy and
apoptosis of tumor cells. The TGFβ/Smad pathway is evidenced to be inhibited in SCLC, which promotes the growth of
SCLC cells.34 SERPINE1 is the target gene of TGFβ, and its down-regulation indicates the inhibition of the TGFβ
pathway.35 TGIF1 inhibits the activity of the TGFβ/Smad pathway.36 Similarly, in THSD7B-MUT tumor cells, the TGFβ/
Smad pathway was inhibited and SMAD3 and SERPINE1 were down-regulated, while TGIF1 was up-regulated
(Figure 6C, D and E), all of which can hinder the TGFβ/Smad pathway, thus inhibiting apoptosis. PI3K/Akt is involved
in the development of various cancers, and Akt3 and PIK3R3 are related to tumor invasion and metastasis.37,38 A
combination of DUSP1 and p53 can inhibit tumor progression and promote cell aging by inhibiting Akt.39,40 The
overexpression of NRG1 activates the PI3K/Akt network, increases the phosphorylation of Akt and eNOS, and prevents
cell apoptosis.41 ADIPOR2 decreased Akt phosphorylation, cyclinD1 and Bcl-2 protein production while inhibiting the
cell cycle.42 Likewise, Akt3 and PIK3R3 were up-regulated in THSD7B-MUT tumor cells, NRG1 in the PI3K/Akt
network was up-regulated, the downstream gene DUSP1 of the p53 pathway was down-regulated, and ADIPOR2 in the
Adipocytokine Signaling Pathway was down-regulated (Figure 6E). This phenomenon can result in the weakening of the
inhibitory factors of Akt phosphorylation in THSD7B-MUT tumor cells and the inhibition of p53 activity, thereby
promoting cell growth, invasion, and metastasis. The data also suggested that the activation of the PI3K/Akt pathway can
interact with both the p53 downstream and NOS1 pathways. In the TCR Calcium Pathway, FOS and JUNB were down-
regulated (Figure 6E), which may be a factor inhibiting T-cell activity.43 We also found that IL2 secretion was inhibited
(Figure 6A and D), while the IL2/IL2RA pathway activation could significantly reduce the risk of lung cancer.44 This
trend suggests that the down-regulation of the TCR Calcium Pathway and IL2 Mediated Pathway may result in the
decline of immune response in the THSD7B-MUT tumor.

According to the CMap website’s drug prediction, lovastatin and cyclooxygenase inhibitors were regarded as the
potential core target compounds for patients presenting with THSD7B-MUT. Statin inhibits HMG-COA reductase and
cholesterol synthesis, thus inhibiting cell membrane synthesis, cell growth, and reproduction.45 The molecule AMPK
downstream of the Adipocytokine Signaling Pathway can inhibit HMG-CoA reductase.46 In THSD7B-MUT cells, the
Adipocytokine Signaling Pathway and AMPK were down-regulated, and the inhibitory effect on HMG-CoA reductase
weakened. However, the inhibition of HMG-CoA reductase by statin can weaken this process, thus controlling
cholesterol synthesis and cell growth. Non-steroidal anti-inflammatory drugs (NSAIDs) and selective PTGS2 inhibitors
(coxibs) are among the most promising drugs for cancer chemoprevention and treatment.47–50 COX reductase is involved
in the metabolism of arachidonic acid into PGE2, which inhibits the secretion of IL2 by Th1,51 while the cyclooxygenase
inhibitors can reverse this process and improve Th1 activity.

Although we proposed several potential pathways and targeted compounds to mediate THSD7B-MUT platinum
resistance, our research still has limitations. First, our two cohorts (Zhujiang cohort and George et al cohort1) should be
supplemented by cohorts with a larger sample size to prove that the THSD7B mutation can be used as a platinum

https://doi.org/10.2147/DDDT.S363665

DovePress

Drug Design, Development and Therapy 2022:161692

Yao et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


resistance biomarker. Secondly, the two cohort samples came from different populations: the Zhujiang cohort samples
came from the Asian population, while George et al cohort1 samples were obtained from Caucasian populations. This
diversity led to a considerable difference in the driver genes, with significant changes to the mutation frequency of the
THSD7B-MUT group in both cohorts, and should be addressed in future research. In addition, we aimed to evidence that
the poor survival of SCLC patients is directly associated with the incidence of THSD7B mutation. However, due to the
lack of data sets on SCLC, we were unable to include a validation set of treatment-naïve SCLC patients who received
platinum chemotherapy as a treatment strategy. In addition, while the signaling pathways screened by GSVA were only
established in the George et al cohort,1 no verification set was introduced as proof. While our research results are based
on bioinformatic analyses, potential signaling pathways and potential targeted compounds still require further experi-
mental verification.

Conclusion
We screened the gene mutations related to the poor OS of platinum-treated patients in two cohorts and found that the
THSD7B mutation occurred in both cohorts. Further exploration of the gene mutation was conducted based on
significantly changed mutation frequency and the co-occurrence and mutual exclusivity in THSD7B-MUT tumor cells.
Based on the GSVA and GSEA algorithms, THSD7B-MUT tumor cell-enriched signaling pathways were identified.
These pathways can inhibit tumor cell autophagy and apoptosis, promote tumor cell growth, invasion, and metastasis,
and inhibit Th1 cell-mediated adaptive immune function in the tumor microenvironment. Lastly, we identified lovastatin
and cyclooxygenase inhibitors as potential targets for patients with the THSD7B mutation.

Abbreviations
SCLC, small cell lung cancer; ES-SCLC, extended-stage SCLC; WES, whole exome sequencing; GSVA, gene set
variation analysis; GSEA, gene set enrichment analysis; CMAP, Connectivity Map; MoA, mode-of-action; OS, overall
survival; THSD7B-MUT, THSD7B mutant group; THSD7B-WT, THSD7B wild-type group.
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