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Introduction: Metastatic breast cancer seriously harms women’s health and is currently the 
tumour type with the highest mortality rate in women. Recently, the combinatorial therapeutic 
approaches that integrate anti-cancer drugs and genetic agents is an attractive and promising 
strategy for the treatment of metastatic breast cancer. Moreover, such a combination strategy 
requires better drug carriers that can effectively deliver the cargo to the breast cancer cells and 
achieve controlled release in the cells to achieve better therapeutic effects.
Methods: The tumour-targeted and redox-responsive mesoporous silica nanoparticles 
(MSNs) functionalised with DNA aptamers (AS1411) as a co-delivery system was developed 
and investigated for the potential against metastatic breast cancer. Doxorubicin (Dox) was 
loaded onto the MSNs, while AS1411 and a small interfering RNA (siTIE2) were employed 
as gatekeepers via attachment to the MSNs with redox-sensitive disulfide bonds.
Results: The controlled release of Dox and siTIE2 was associated with intracellular glu
tathione. AS1411 mediated the targeted delivery of Dox by increasing its cellular uptake in 
metastatic breast cancer, ultimately resulting in a lower IC50 in MDA-MB-231 cells (human 
breast cancer cell line with high metastatic potency), improved biodistribution in tumour- 
bearing mice, and enhanced in vivo anti-tumour effects. The in vitro cell migration/invasion 
assay and in vivo anti-metastatic study revealed synergism in the co-delivery system that 
suppresses cancer cell metastasis.
Conclusion: The tumour-targeted and redox-responsive MSN prepared in this study are 
promising for the effective delivery and controlled release of Dox and siTIE2 for improved 
treatment of metastatic breast cancer.
Keywords: drug delivery, mesoporous silica nanoparticles, DNA aptamer, controlled 
release, metastatic breast cancer

Introduction
Metastatic breast cancer accounts for a majority of deaths from breast cancer 
worldwide.1 Whether metastatic breast cancer is the first diagnosis or 
a recurrence after treatment for early-stage breast cancer, it is rarely curable. 
Extensive evidence has shown that metastatic breast cancer response rates and 
response durations progressively decrease with increasing chemotherapy 
treatment.2 Despite the remarkable development of novel diagnostic methods and 
therapeutic approaches, effective treatments for metastatic breast cancer are still 
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limited.3,4 Recently, combinatorial therapeutic approaches 
that integrate anticancer drugs with RNA interference 
(RNAi) have drawn increasing attention for metastatic 
breast cancer therapy,5 and have posed significant chal
lenges that need to be overcome in clinical practice. In 
clinical settings, combination chemotherapy, or the group
ing of different therapeutic entities to exploit additive or 
synergistic effects, is commonly employed. This combina
tion strategy should not only enhance therapeutic effi
ciency but also treat metastatic breast cancer using 
mechanistically different approaches, thereby enhancing 
therapeutic efficiency.6–9

Doxorubicin (Dox) is a chemotherapy drug that is 
commonly used to treat both early-stage and metastatic 
breast cancer. Similarly, small interfering RNAs (siRNAs) 
have been widely explored for use in combination therapy 
over the last few decades.10 Recent studies have suggested 
that the expression level of TIE2, a tyrosine kinase recep
tor for angiopoietin-1 and -2, is associated with the metas
tasis of breast cancer.11–13 We previously reported that 
inhibiting TIE2 significantly reduces Dox-resistant breast 
cancer metastases.14 Hence, the co-delivery of Dox and 
siTIE2, an siRNA that targets TIE2 and inhibits its func
tion, may provide an effective approach for the treatment 
of metastatic breast cancer by inhibiting the growth of 
tumours and reducing metastasis.

Owing to the low cytotoxicity and high drug-loading 
ability of mesoporous silica nanoparticles (MSNs), they 
have been investigated as a nano-platform for the co- 
delivery of drugs and siRNA.15–18 During the past few 
years, a variety of MSNs have been successfully devel
oped for the co-delivery of anticancer drugs and 
siRNA.19–23 However, some studies confronted Dox leak
age, which is problematic because it decreases the delivery 
efficiency of the cargo.24,25 Therefore, scientists have also 
focused significant attention on preventing this problem, 
with the most commonly used method involving coating 
the MSN surface to prevent Dox leakage. Inspired by 
a study that used Dox as a gatekeeper of the MSN delivery 
system,18 we speculated that nucleic acids can also be 
employed to block cargo leakage. Moreover, MSN sur
faces are readily functionalised with various molecules 
that can encapsulate therapeutic compounds or provide 
receptor recognition units.26,27 Consequently, in this 
study, we explored modifying MSN surfaces with two 
kinds of nucleic acid, including RNA and DNA, as 
a coating and for the concurrent controlled release of 
MSNs.

Herein, we report a tumour-targeted and redox- 
responsive functionalised MSN nanosystem for the treat
ment of metastatic breast cancer. Specifically, we exploited 
novel Dox-loaded MSNs functionalised with disulfide 
bonds and with two different types of nucleic acid on 
their surfaces (Scheme 1): a DNA aptamer (AS1411) that 
serves as a cancer-targeting ligand,28,29 and an siRNA to 
inhibit TIE2 (siTIE2) and induce anti-metastatic effects.30 

AS1411, which was found to have a high affinity for 
nucleolin, was used to improve cancer-targeting 
ability.31,32 Moreover, functionalisation of the MSNs 
with both nucleic acids provides redox-responsive gate
keepers for the triggered release of Dox within cancer 
cells. Hence, functionalised MSNs can bind to the cell 
surface of nucleolin – a membrane protein that can migrate 
to the nucleus, and is overexpressed on the surface of 
rapidly proliferating cancer cells – for receptor-mediated 
drug delivery. Once the functionalised MSNs are interna
lised by cancer cells, high concentrations of intracellular 
redox molecules, such as glutathione (GSH), trigger the 
release of siTIE2 and Dox. We demonstrate that the func
tionalised MSNs efficiently inhibit the progression of 
metastatic breast cancer.

Materials and Methods
Materials
Tetraethyl orthosilicate (TEOS, 99%), cetyltrimethylammo
nium bromide (CTAB, BioXtra, ≥99%), (3-Mercaptopropyl) 
trimethoxysilane (MPTMS, 95%), and Pluronic® F-127 
(F127, ≥99%), 4, 4ʹ-dithiodipyridin (DTDP, 98%), dithiothrei
tol (DTT, ≥98%) were purchased from Sigma-Aldrich. And 
the other chemicals were purchased from Aladdin Chemical 
manufacturers (shanghai). The recombinant human nucleolin 
protein was purchased from Abcam. Doxorubicin hydrochlor
ide (Dox) was purchased from Merck. The sequence of TIE2 
siRNA was as following, 5′- CCAGGUAUAUAG 
GAGGAAATTUUUCCUCCUAUAUACCUGGTT-3′. The 
sequence of Aptamer AS1411 was as following, 5′- 
GGTGGTGGTGGTTGTGGTGGTGGTGGTT-3′. All the 
thiol oligonucleotides were synthesized by Shanghai 
GenePharma Co., Ltd. (Shanghai, China).

Cell Culture
MDA-MB-231 and HEK293T cell lines were obtained 
from the American Type Culture Collection (ATCC; 
Manassas, VA). These cells were grown in DMEM 
(Gibico), which was supplemented with 10% (vol/vol) 
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FBS (Gibico), 1% penicillin-streptomycin, and 2 μg/mL 
blasticidin at 37° C in a humidified atmosphere of 5% 
CO2. Cells were harvested by treatment with 0.25% tryp
sin-EDTA (Gibico).

Synthesis of the Nanoparticles
The MSNs were synthesized via the method reported by 
Bouchoucha et al.27 Briefly, 1.0 g of CTAB and 8 g of 
F127 were mixed in 85 mL of 100% EtOH and 213 mL of 
2.9 wt % NH4OH solution in 500 mL conical flask. 
A 3.86 mL of TEOS was added slowly for 4 min by 
stirring at 500 rpm at room temperature. Then, the mixture 
was aged for 24 h under static conditions at room 

temperature. The surfactant was removed by methanol/ 
HCL (500:19 v/v) at 40°C for 12 h to remove the CTAB 
template. Then, the product was washed three times in 
methanol and water sequentially and dried in vacuum at 
80°C overnight. The resulting NPs are designated as MSN. 
Next, 1.0 mL of MPTMS was added to bare particles 
(100 mg dissolved in 30 mL EtOH) for the production of 
MSN-SH. The reaction mixture was stirred for a further 24 
h at room temperature. Then, the particles were separated 
by centrifugation (10,000 rpm, 5 min), washed with EtOH 
and water sequentially and dried in vacuum at 80°C over
night. Then, the DTDP (20 mg, 50 mg/mL, in EtOH) was 
added to MSN-SH (10 mg, 10 mg/mL, in EtOH) and the 

Scheme 1 Schematic representation of aptamer-based cancer-targeted and redox-responsive MSN co-delivery Dox and siRNA. (A) The synthesis procedure for MSN- 
siRNA/Apt@Dox. (B) The intracellular trafficking of the nanoparticles and the release of siRNA and Dox within the cancer cells.
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mixture was stirred at room temperature for 24 h. The 
pyridine-activated particles (MSN-Py) were collected by 
centrifugation and washed three times in methanol and 
water sequentially and dried in vacuum at 80°C overnight. 
Then, the 10 mg of MSNs-Py was dispersed in 1 mL of 
Dox solution (1 mg/mL) and stirred for 12 h at room 
temperature. Finally, thiol-functionalized oligonucleotides 
including siRNA and DNA aptamer were added into the 
solution to immobilized on the surface of MSN-Py@Dox 
to block the mesopores by a disulfide exchange reaction. 
The oligonucleotides were freshly activated before usage 
by the addition of DTT (60 µmol, 1 M), followed by 
subsequent purification with dextran desalting columns. 
The exchange reaction was carried out at room tempera
ture for 24 h, followed by centrifugation at 10,000 rpm for 
3 min and washed with water. The DNA-conjugated par
ticles are denoted as MSN-siRNA/Apt@Dox.

Quantification of Immobilized 
Oligonucleotides
First, different amounts of aptamer-SH and siRNA-SH solu
tion (0.1 mg/mL) and MSN solution (0.5 mg/mL) were 
mixed to obtain different weight ratios (MSN:Apt:siRNA), 
such as 5:1:1, 10:1:1, 15:1:1, 20:1:1 and 25:1:1. Gel retarda
tion assay was used to determine the best binding between 
MSN-Py and oligonucleotides. Then, the results of agarose 
gel electrophoresis were obtained and the optimal reaction 
ratio was used to produce MSN-siRNA/Apt and the amount 
of unreacted oligonucleotides was quantified from the super
natant by UV/Vis (260 nm) after disulfide exchange reaction. 
At last, the amount of oligonucleotides conjugated on the 
particle surface was calculated by equation:

Amount of oligonucleotides conjugated %ð Þ ¼
nadded � nsupernatant

nadded
� 100% :

Where nadded is calculated by the amount of added oligo
nucleotides during disulfide exchange reaction.

Quantification of Loaded Dox
To determine the loading capacity of MSN-Py for Dox, 
the supernatant was collected after Dox loading and the 
amount of cargo remaining in the supernatant was 
quantified by UV/Vis (480 nm). The loading capacity 
of loaded Dox was calculated by equation:

Loading capacity %ð Þ ¼
madded � msupernatant

madded
� 100%:

Where madded is calculated by the amount of added Dox 
during Dox loading.

Characterization of the Nanoparticles
The morphologies of MSN and MSN-siRNA/apt were 
investigated by transmission electron microscope (TEM) 
(JEM-2100F, JEOL, Japan) at an acceleration voltage of 
90 kV.

The effective hydrodynamic diameters and the zeta 
potentials of MSN, MSN-SH, MSN-siRNA/apt were mea
sured by DLS using the ZetaPlus’ Zeta Potential Analyzer 
(Brookhaven Instruments, Santa Barbara, CA, USA).

Fourier transform infrared (FT-IR) spectra of MSN, 
MSN-SH, MSN-siRNA/apt were recorded by Nicolet 
6700 FT-IR Spectrometer (Thermo Fisher, USA).

The Raman spectra of MSN, MSN-SH, MSN-siRNA/apt 
were measured by LabRAM ARAMIS (HORIBA Scientific, 
France).

The porosity of MSN was assessed by a nitrogen 
adsorption-desorption measurement. The measurement 
was operated at 77 K using a TriStar II 3flex 
(Micromeritics, USA). The pore size distribution was 
determined from the nitrogen adsorption isotherms 
through the Barrett–Joyner–Halenda method.

The amount of siRNA and aptamer on the MSN sur
face were evaluated as following.

First, 0.5 mg MSN-siRNA/Apt was resuspended with 
DEPC-treated water. After, the NPs were treated with 5 mM 
GSH for 6 h, the supernatant was separated by centrifugation. 
Then, the sample was divided into two parts and incubated 
with DNase I and RNase A separately for 30 min in 37°C. At 
last, the amount of nucleic acid adsorbed was calculated from 
the concentration of the nucleic acid of the supernatant, which 
was measured by UV–vis spectroscopy at 260 nm.

Release of the Cargos
The release profiles of Dox from the developed nanoparticles 
were obtained as follows. First, MSN-siRNA/apt@Dox were 
dispersed in PBS (pH 7.4) without or with different stimuli (20 
mM GSH, and/or 1 µg Nuleolin protein). Subsequently, the 
mixture was incubated at 37°C and defined aliquots of the 
mixture (150 µL) were removed from the reaction tube at 
various time points (1, 2, 3, 5, 7, 9, 10 and 24 h). The removed 
aliquots were centrifuged and the concentration of Dox in the 
supernatant was measured by UV/Vis (480 nm). The cumula
tive release of Dox was calculated by the equation: 

Cumulative Dox release %ð Þ ¼
csupperant � V

mtested
� 100%:

For control-release of siRNA from the developed nano
particles was obtained as followed. First, GSH was added 
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to MSN-siRNA/apt (PBS, pH 7.4) to reach a final GSH 
concentration of 0, 0.2 and 5 mM, and incubated for 12 
h. Then, the samples were electrophoresed to detect the 
redox-triggered release of oligonucleotides. The anti-sense 
RNA siTIE2 and DNA aptamer AS1411T were used as 
controls.

Serum Stability of siRNA in MSN-siRNA/ 
Apt@Dox
For the assay, naked siRNA (300 ng/well siRNA), 6 mg 
(equivalent to 300 ng/well siRNA) MSN-siRNA/apt@Dox 
were incubated with 10% FBS at 37°C for 6 and 24 h. 
After treatment, the samples were collected and centri
fuged. At last, the stability of siRNA was assessed by gel 
electrophoresis.

Cellular Uptake of MSN-siRNA/ 
Apt@Dox
For the cell-selectivity study, HEK293T cells and MDA- 
MB-231 cells were seeded in 12-well plate before the 
assay. After the adherence to the plate, the cells were 
incubated with different Dox-loaded MSNs (1 μg Dox/ 
well, by weight of Dox) for 8 h. After washing with 
PBS, the samples were fixed and stained with DAPI. The 
treated cell samples were observed by Olympus IX81. For 
each sample, the fluorescence was quantified using the 
mean value of n > 3 pictures.

For the flow cytometry analysis, MDA-MB-231 cells 
were seeded in a 6-well plate before the assay. After the 
adherence to the plate, the cells were incubated with 
different Dox-loaded MSNs (5 μg Dox/well, by weight 
of Dox) for 8 h. The treated cells were rinsed with PBS 
twice, trypsinized and fixed. The cells were re-suspended 
with PBS and determined by a BD FACSVerse flow cyt
ometer (BD). The results were analyzed with Flowjo.

For the cellular accumulation study of MSN-siRNA 
/apt@Dox, MDA-MB-231 cells were seeded in 12-well 
plate before the assay. After the adherence to the plate, 
the cells were incubated with MSN-siRNA/apt@Dox (5 
μg Dox/well, by weight of Dox) for 2, 4, 8 h. The treated 
cells were stained with Hoechst 33342 for 20 min, rinsed 
with PBS twice and observed by Olympus IX81.

Pharmacokinetic Study
Pharmacokinetic date of Dox in female BALB/c mice 
(n=30, per group) using free Dox, MSN@Dox and MSN- 
siRNA/apt@Dox, which the dose of Dox is about 1 mg/kg, 

via the tail vein. The treated animals were euthanized in 
indicated time points (at 0.166, 0.25, 0.5, 1, 2, 3, 4, 6, 8, 
and 24 h, after injection, 3 animals for each time point/ 
group). Blood plasma was collected and pre-treated by 
protein precipitation before LC-MS/MS detection. The 
pharmacokinetic parameters were calculated via PKSolver.

In vivo Biodistribution Study of 
MSN-siRNA/Apt@Dox
A 0.1 mL of MDA-MB-231 cell suspension (1 × 107/ 
mouse) was orthotopically inoculated in the back of 
female BALB/c nude mice using 50% (v/v) Matrigel. 
The animals were purchased from Shanghai Model 
Organisms Center, Inc. The experimental protocols were 
conducted within the Shenzhen University guidelines for 
animal research and were approved by the First Affiliated 
Hospital of Shenzhen University Institutional Animal Care 
and Use Committee (IACUC): Approval Number IACUC- 
DD-2019-07-07. Tumor volumes were monitored with 
a vernier caliper every three days and calculated according 
to the formula: tumor volume (mm3) = 0.52 × length × 
width2. When the tumor size reached around 200 mm3, 
the animals were randomly assigned into 3 groups (n=3) 
and administrated with free Dox, MSN@Dox and MSN- 
siRNA/apt@Dox, which the dose of Dox is about 1 mg/kg, 
via the tail vein. Then, the mice were anesthetized for 
imaging by the IVIS spectrum (Xenogen, USA) at 0.5 
h and 8 h postinjection. After 24 h treatment, all animals 
were sacrificed and the organs (liver, spleen, kidney, heart, 
lungs, and brain) and tumors were collected for ex vivo 
imaging. Finally, images were analyzed using Aura 
Imaging Software (https://spectralinvivo.com/software/).

Cytotoxicity Analysis and in vitro Tumor 
Inhibition Assay
The cytotoxicity of the developed nanoparticles was deter
mined in HEK293T cells by a Cell Counting Kit (CCK-8) 
assay. The cells were seeded in 96-well plates before the 
assay. Then, the cells were treated with an increasing level 
of MSN-siRNA/apt@Dox for 24 h. The cell viability was 
measured as a percentage relative to untreated control 
cells.

CCK-8 assay was conducted to study the proliferation 
inhibitory efficacy of different Dox formulations on MDA- 
MB-231 cells. The cells were seeded in 96-well plates before 
the assay. Then, the cells were treated with a series of 
different concentrations of free dox, free dox+siRNA, 
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MSN@Dox+siRNA and MSN-siRNA/Apt@Dox for 24 h. 
The cell viability was measured as a percentage relative to 
untreated control cells. Fifty percent cell growth inhibition 
(IC50) was calculated from curves constructed by plotting 
cell survival (%) versus dox concentration (µg/mL).

In vivo Antitumor Activity Study with 
MSN-siRNA/Apt@Dox
Female BALB/c nude mice were purchased from Shanghai 
Model Organisms Center, Inc. The experimental protocols 
were conducted within the Shenzhen University guidelines 
for animal research and were approved by the First 
Affiliated Hospital of Shenzhen University Institutional 
Animal Care and Use Committee (IACUC): Approval 
Number IACUC-DD-2019-07-24. The xenograft model 
bearing MDA-MB-231 tumors were established and ran
domized into four groups (n=5) when the tumors reach 
around 100 mm3. Then, the mice were treated with saline, 
free dox+ siRNA, MSN@Dox+siRNA and MSN-siRNA 
/Apt@Dox, which the dose of Dox is about 1 mg/kg and 
the dose of siRNA is about 0.5 mg/kg, every 4 days for 5 
times via the tail vein. After the administration, the body 
weight of mice and tumor size were recorded. The organs 
(liver, spleen, kidney, heart, lungs, and brain) and tumor 
tissues of treated-mice were collected at 20 days. Then, the 
tumors were weighed and all samples were fixed in for
malin for 24 h, followed by hematoxylin-eosin (H&E) 
staining.

Knock-Down of TIE2 Gene Analysis
MDA-MB-231 cells were seeded into a 6-well plate. After 
the adherence to the plate, the cells were treated with 
serum-free medium. Then, the cells were treated with 
PBS, naked siRNA, Lipo@siRNA (Lipofectamine2000, 
Invitrogen), and MSN-siRNA/apt, which the dose of 
siRNA is 1 μg for 12 h, and then the cells were replaced 
with complete culture medium. After another 36 
h incubation, the cells were harvested and the protein 
samples were extracted for Western blot analysis. Total 
protein extracts were subjected to SDS-polyacrylamide gel 
electrophoresis (PAGE). After electrophoresis, the proteins 
were transferred to poly (vinylidene fluoride) (PVDF) 
membranes (Millipore). To block non-specific binding 
sites, the membranes were treated for 1 h with TBST (a 
mixture of Tris-buffered saline and Tween-20) containing 
5% milk. Subsequently, the membranes were incubated 
with the primary antibody against TIE2 (ab221154, 

Abcam) or GAPDH (14C10, CST) for 1 h overnight at 
4°C. After washing, signals were detected by HRP- 
conjugated secondary anti-rabbit antibody and were visua
lized using ProteinSimple software.

In vitro Migration Analysis
The transwell migration and wound healing assays were 
used to evaluate the impact of the developed nanoparticles 
on cell migration. For transwell migration assay, MDA-MB 
-231 cells were seeded in a 6-well plate and pre-treated with 
PBS, naked siRNA, Lipo@siRNA (Lipofectamine2000, 
Invitrogen) and MSN-siRNA/apt, which the dose of 
siRNA is 1 μg for 24 h. Then, the cells were collected, 
resuspended in a serum-free medium and transferred into 
the upper transwell chambers. The lower chamber was filled 
with 10% FBS-containing culture medium as the chemoat
tractant. After incubation for 24 h, the migrated cells in the 
lower chamber were fixed with 4% paraformaldehyde, 
stained with crystal violet for 10 min, and then observed 
by an optical microscope. For the quantitative assay, the 
crystal violet staining cells were dissolved in 33% acetic 
acid and their absorbance was measured at 570 nm. For 
wound healing assay, MDA-MB-231 cells were seeded in 
a 6-well plate and cultured to form a tight cell monolayer. 
Then, the cells were washed with serum-free medium after 
the cell monolayer scratching with a -μL sterile plastic 
pipette tip and treated with PBS, naked siRNA, 
Lipo@siRNA (Lipofectamine2000, Invitrogen) and MSN- 
siRNA/apt, which the dose of siRNA is 1 μg for 24 
h. Migrating cells at the wound front were analyzed using 
an inverted microscope at the indicated time.

In vivo Anti-Metastasis Study
Female BALB/c nude mice were purchased from Shanghai 
Model Organisms Center, Inc. The experimental protocols 
were conducted within the Shenzhen University guidelines 
for animal research and were approved by the First 
Affiliated Hospital of Shenzhen University Institutional 
Animal Care and Use Committee (IACUC): Approval 
Number IACUC-DD-2019-07-24. The female BALB/c 
nude mice were intravenously injected with 1×106 MDA- 
MB-231 cells (containing luciferase), and allowed to 
establish metastatic tumors primarily in lungs for 2 
weeks. Then, the mice were randomly divided into four 
groups, and treated with saline, free dox+siRNA, 
MSN@Dox+siRNA and MSN-siRNA/Apt@Dox, which 
the dose of Dox is about 1 mg/kg and the dose of siRNA 
is about 0.5 mg/kg, every 3 days for 6 times via the tail 
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vein. The luciferase activity in each mouse was measured 
with an in vivo imaging system every 12 days and quanti
fied using Aura Imaging Software (https://spectralinvivo. 
com/software/). Mice were killed on day 38 after the initial 
cell injection. The lung of the mice was collected, weighed 
and photographed on day 38. The number of metastatic 
nodules on the surface of the lungs was counted and the 
lungs were sliced and stained with H&E.

Results and Discussion
Synthesis and Characterisation of 
MSN-siRNA/Apt@Dox
To successfully construct nanocarriers for the targeted 
intracellular co-delivery of siRNA and drugs, we designed 
a strategy to encapsulate siTIE2 and Dox within MSNs 
and improve nanoparticle targeting ability, as illustrated in 
Scheme 1. MSNs were synthesised based on previous 
reports.33,34 (3-Mercaptopropyl) trimethoxysilane 
(MPTMS), a thiol-bearing organosilane, was then intro
duced to the MSNs to modify their surfaces with SH 
groups to obtain MSN-SH. Next, Dox was loaded into 
the porous structure of MSN-SH through incubation prior 
to disulfide bond exchange. Finally, Dox-loaded MSN-SH 
was capped with siTIE2 and AS1411 via disulfide linkers 
to obtain MSN-siRNA/Apt.

The successful preparations of MSNs and MSN-siRNA 
/Apt were confirmed by transmission electron microscopy 
(TEM) (Figure 1A and B), which revealed that the MSNs are 
spherical in shape with an average diameter of 90–110 nm and 
with nucleic acid nanoshells surrounding the MSN cores. 
Then, we investigated the nitrogen adsorption-desorption iso
therms of the nanoparticles and found that the samples exhib
ited typical IV features according to IUPAC nomenclature 
(Figure 1C), indicating the well-defined mesoporous structure. 
And the pore size distribution curve, which was calculated 
according to the Barrett–Joyner–Halenda (BJH) method 
(Figure 1D), suggested that the average pore sizes of 2.9, 2.4 
and 1.7 nm for MSN, MSN-SH and MSN-siRNA/Apt, respec
tively. The MSN-siRNA/Apt particles are larger than the 
unmodified MSNs, as observed by dynamic light scattering 
(DLS), confirming the successful conjugation of siTIE2 and 
AS1411 (Figure 1E and Table S1). Moreover, the negatively 
charged siRNA and DNA aptamer conjugated with MSN also 
contribute to the lower zeta potential of MSN-siRNA/Apt. The 
Fourier-transform infrared (FT-IR) spectra of unmodified 
MSNs, MSN-SH, and MSN-siRNA/Apt are shown in 
Figure 1D. Surface functionalisation was confirmed by 
a decrease in the Si-OH band at 971 cm−1 after incubation 
with MPTMS. The appearance of minor peaks at approxi
mately 2875 and 1420 cm−1 is attributed to C–H asymmetric 

Figure 1 Characterization of MSN-siRNA/Apt. (A) Transmission electron microscopy (TEM) images of the MSN, MSN-SH and MSN-siRNA/Apt. (B) Particle size 
distribution of the nanoparticles. (C) Nitrogen adsorption-desorption isotherms of the nanoparticles. (D) The pore size distributions of the nanoparticles. (E) FTIR spectra 
of the nanoparticles. (F) Raman spectra of the nanoparticles.

International Journal of Nanomedicine 2021:16                                                                          submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
1967

Dovepress                                                                                                                                                          Zhuang et al

R
E
T
R
A
C
T
E
D

Powered by TCPDF (www.tcpdf.org)

https://spectralinvivo.com/software/
https://spectralinvivo.com/software/
https://www.dovepress.com/get_supplementary_file.php?f=278724.docx
http://www.dovepress.com
http://www.dovepress.com


stretching and rocking vibrations, respectively, in MSN-SH 
and MSN-siRNA/Apt, respectively. The existence of -SH 
groups was identified by the characteristic Raman peak at 
2580 cm−1, which suggests that the -SH groups from 
MPTMS had been grafted onto the MSN surfaces. No -SH 
Raman signal was detected after conjugation with thiolated 
SH-siTIE2 and the SH-AS1411 (Figure 1F). The successful 
synthesis of MSN-siRNA/Apt is supported by the abovemen
tioned results.

The Dox loading in the prepared MSNs was deter
mined using fluorescence spectroscopy. The MSN loading 
was ~8.5% at a Dox incubation concentration of 5 mg/mL. 
Thiolated nucleic acid binding in MSN-SH@Dox was 
investigated by agarose gel electrophoresis (Figure S1), 
which revealed that an MSN/SH-siTIE2/SH-AS1411 ratio 
of 20:1:1 (w/w/w) resulted in almost complete nucleic acid 
binding. Most of the nucleic acids were typically immobi
lised on the surface of MSN-siTIE2/Apt@Dox with a high 
conjugation efficiency (90.7%). Moreover, we also mea
sured the amounts of siRNA and aptamer on the MSN 
surface, which revealed that siRNA binds more easily to 

the MSN surface than the aptamer at the same mass ratio 
to form a denser nucleic acid coating (Figure S2). In 
addition, the stability of siRNA on the MSN surface was 
evaluated; however, the results show that MSN-siRNA 
/Apt only moderately protected siRNA from enzyme 
degradation over 6 h (Figure S3).

Release of siRNA and Dox
The microenvironments of tumour cells enable redox- 
responsive nanocarriers to release loaded cargo in response 
to high levels of redox molecules. Moreover, redox- 
responsive delivery systems are often used to increase the 
concentration of a drug in the cytoplasm, increase therapeu
tic efficacy, and reduce the toxicity of an anti-cancer drug. 
For example, redox-responsive delivery systems with dis
ulfide bonds facilitate the release of entrapped drug mole
cules within tumour cells.35,36 Therefore, the cleavable 
disulfide linkers that attach siTIE2 and AS1411 to the 
MSNs should also facilitate the controlled release of Dox 
and siTIE2 in response to a redox trigger from MSN-siRNA 
/apt@Dox (Figure 2A). The functionalisation of MSNs with 

Figure 2 Nanovalve gatekeeper of MSN-siRNA/Apt@dox and the control-release profiles of DOX and siRNA. (A) Schematic illustration of the nuclear acid nanovalve 
gatekeeper installed on MSN-siRNA/apt@Dox through cleavable disulfide bonds. Cargo can be released by either redox-responsive reductive cleavage or nucleolin-induced 
aptamer reconfiguration. (B) Release profiles of DOX from the cargo-loaded nanoparticles in the presence or absence of different stimuli. (C) Release of siRNA from the 
MSN-siRNA/Apt in the increasing level of GSH.
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nucleic acids was found to efficiently block the release of 
Dox; ie, ~71% of Dox was released from MSN-SH@Dox 
after 24 h in phosphate-buffered saline (PBS), whereas only 
8% of Dox was released from MSN-siRNA/Apt@Dox 
under these conditions. Dox was released from MSN- 
siRNA/Apt@Dox in the presence of nucleolin or GSH. 
AS1411 changes its conformation through interactions 
with cellular nucleolin, thereby enabling the release of 
Dox from MSNs and acting as a “nanovalve” gatekeeper. 
Although both GSH and nucleolin trigger the release of Dox 
(Figure 2B), only small amounts of Dox were released by 
nucleolin, which indicates that the encapsulated Dox cannot 
easily be released from the AS1411 gatekeeper by interact
ing with nucleolin. The amount of Dox released was sig
nificantly higher (80%) in the presence of 10 mM GSH and 
nucleolin; therefore, most of the Dox was only released in 
a cellular microenvironment with a high concentration of 
GSH and nucleolin. In addition, we investigated the drug 
release behaviour of MSN-siTIE2/Apt@Dox with different 
GSH levels (0, 0.1, 1, 10 mM). The release profiles reveal 
that our developed nanoparticles exhibit GSH- 
concentration-dependent Dox release behaviour (Figure 

S4). We also did not observe any cumulative release of 
siTIE2 in 0.2 mM GSH (Figure 2C). In contrast, the burst 
release of siTIE2 was observed in response to 5 mM GSH, 
which indicates that only high concentrations of GSH can 
cleave the disulfide bonds of the attached siTIE2 to obtain 
efficient siTIE2 release. With this in mind, we modified the 
disulfide bonds on the MSN surfaces to construct an appro
priate redox-responsive delivery system for the controlled 
release of Dox and siRNA.

Cellular Uptake Study
The targeting specificity of the developed nanoparticles was 
investigated using MDA-MB-231 cells (nucleolin positive) 
and HEK293T cells (nucleolin negative). Recent studies 
have used the transport mechanism of nucleolin (ie, migra
tion from the cell surface to the nucleus) to enhance intra
nuclear delivery.37,38 Therefore, we speculated that 
nucleolin-binding AS1411 on the MSNs will specifically 
direct the functionalised MSNs toward cancer cells. 
Confocal microscopy revealed that MSNs without 
AS1411 functionalisation lacked cancer cell targeting abil
ity, and only MSN-siTIE2/Apt@Dox significantly 

Figure 3 In vitro and In vivo evaluations of Dox delivery by developed MSN. (A) The cellular uptake of the nanoparticles between MDA-MB-231 cells (nucleolin positive) 
and HEK293T cells (nucleolin negative). (B) Intracellular fluorescence intensities of different Dox formulations determined by flow cytometry. (C) The merged images of 
MDA-MB-231 cells treated with MSN@Dox and MSN-siTIE2/Apt@Dox. (D) The cellular accumulation of Dox for MSN@Dox and MSN-siTIE2/Apt@Dox at 2, 4 and 8 
h. (E) Plasma drug concentration (at a dose of 1 mg/kg body weight) of Free Dox, MSN@Dox and MSN-siTIE2/Apt@Dox Data show mean± SD (n=3). (F) In vivo 
fluorescent images of MDA-MB-231 tumor-bearing mice treated with different Dox-loaded nanoparticles via tail vein injection. Images were taken at 0.5 h and 8 h after 
injection. (G) The biodistribution of Dox in the organs after injection for 24 h in different groups.
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increased the cellular uptake of MSNs in MDA-MB-231 
cells (Figures 3A and S5). A flow cytometry assay was used 
to investigate the delivery of Dox in MDA-MB-231 using 
different Dox delivery groups (PBS, free Dox, MSN@Dox 
and MSN-siTIE2/Apt@Dox). Poor uptake of Dox by 
MDA-MB-231 cells was observed for free Dox (Figure 
3B). MSN-siTIE2/Apt@Dox exhibited the strongest fluor
escence in the MDA-MB-231 cells, suggesting that Dox is 
significantly better accumulated through incubation of the 
functionalised MSNs. In addition, MSN-siTIE2/Apt@Dox 
efficiently penetrated the MDA-MB-231 cells within 4 
h and delivered Dox to the cell nuclei after treatment for 8 
h (Figure 3C). Combined, these results indicate that MSN- 
siTIE2/Apt@Dox exhibited targeted delivery and high Dox 
accumulation in MDA-MB-231 cells.

Biodistribution of the MSNs in vivo
We first studied the pharmacokinetic characteristics of Dox 
(Figure 3D and Table S2), which revealed that Dox was 
rapidly released in all groups, and that the Dox level was 
predominantly higher in the Free Dox group. However, the 
concentration of Dox also decreased faster after free-Dox 
treatment compared with other groups. Our results demon
strate that the AUC0-t values of MSN@Dox and MSN- 
siTIE2/Apt@Dox were higher than those of the other 
groups, which indicate that both MSN-based delivery sys
tems improve Dox accumulation. Moreover, the blood 

circulation half-life of Dox in the MSN-siTIE2/Apt@Dox 
group was found to be 13.49 ± 3.68 h, which is longer than 
those of the free-Dox and MSN@Dox groups. Nude mice 
with MDA-MB-231 tumour xenografts were used to eval
uate the in vivo biodistributions of free-Dox and Dox- 
loaded MSN formulations. A significant difference in the 
Dox biodistribution was observed among the various deliv
ery groups after intravenous administration (Figure 3E). 
A much higher fluorescence intensity of Dox was observed 
at primary tumour sites from MSN-siTIE2/Apt@Dox than 
from MSN-SH@Dox and free Dox after circulation in the 
bodies of mice for 8 h (Figure 3F). The mice were eutha
nized after 24 h, and the major organs (ie, heart, liver, 
spleen, lungs, and kidneys) and tumours were collected 
and fluorescence imaged to quantitatively analyse the accu
mulation of Dox among the different groups. MSN-siRNA 
/Apt@Dox was revealed to be accumulated in tumours to 
a significantly greater extent than the other two groups 
(Figure 3G), which demonstrates the high tumour- 
targeting ability of our functionalised MSNs that enhance 
binding to cancer cells and increase Dox accumulation in 
the tumours. Notably, quantitative analysis of the 
fluorescence intensity of Dox present in the major organs 
revealed that MSN-siRNA/Apt@Dox led to less Dox accu
mulation in the liver and kidneys than either free Dox or 
MSN-SH@Dox, both of which accumulated in the liver in 
abundance (Figure S6). MSN-siRNA/Apt@Dox enhanced 

Figure 4 Cytotoxicity and the in vitro tumor inhibition effect of the developed nanoparticles. (A) The cytotoxicity of MSN-Apt/siRNA determined in HEK293T cells. (B) 
The viability of MDA-MB-231 cells treated with different Dox formulations.
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tumour permeability and redox-responsive release of Dox 
in tumours instead of vital organs.

In vitro Cytotoxicity Investigation
The viabilities of HEK293T cells treated with different 
concentrations of unmodified MSNs were investigated 
using the MTT assay, which revealed that MSN-siTIE2 
/Apt displays little cytotoxicity against the normal cell line 
(Figure 4A). The IC50 values of free Dox and Dox-loaded 
MSNs were evaluated in MDA-MB-231 to determine the 
proliferation inhibition of tumour cells in vitro. Treatment 
with different Dox formulations at various concentrations 

for 48 h significantly affected the growth of MDA-MB-231 
cells (IC50 of free Dox=1.901 μg/mL, IC50 of free Dox/free 
siTIE2 = 1.750 μg/mL; Figure 4B). Compared with free 
Dox and free Dox/free siTIE2, MSN-siTIE2/Apt@Dox 
exhibited enhanced antiproliferative activity, which may 
contribute to the larger accumulation of Dox in MDA-MB
-231 cells by the MSNs. Furthermore, MSN-siTIE2 
/Apt@Dox exhibited increased cytotoxicity compared to 
the other Dox formulations investigated, as illustrated by 
the IC50 value of 0.433 μg/mL. A superior therapeutic effect 
on MDA-MB-231 cells was obtained from the MSN-siTIE2 
/Apt@Dox nano-drug delivery system.

Figure 5 In vivo anti-tumor activity of different dox and siRNA-loaded nanoparticles on MDA-MB-231 tumor-bearing mice. (A) The tumor growth of the mice tested by 
different treatments. (B) The body weight of the mice tested by different treatments. (C) The images of solid tumors from the mice in each group after 20 days of treatment. 
(D) The tumor weight of the mice in different groups. (E) The H&E staining of the tumor in different groups.
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In vivo Antitumour Efficacy
An MDA-MB-231 tumour-bearing mouse xenograft 
model was established to confirm the in vivo anti- 
tumour efficacies of the co-delivery systems. Because 
MDA-MB-231 cells are not sensitive to Dox treatment, 
free Dox/free siRNA did not suppress tumour growth 
when compared with the saline group (Figure 5A), and 
MSN@Dox+siTIE2 exhibited similar tumour inhibition 
to that of free Dox/free siTIE2. However, remarkable 
inhibition of tumour growth was observed with MSN- 
siTIE2/Apt@Dox. Furthermore, injection of MSN- 
siTIE2/Apt@Dox did not affect the body weights of 
the mice, whereas free Dox/free siTIE2 led to lower 
body weights during the early stages of treatment 
(Figure 5B), indicating that the functionalized MSNs 
are not systemically toxic. At the end of the animal 
study, the tumours were removed from the mice and 
weighed to further investigate tumour inhibition. MSN- 
siTIE2/Apt@Dox displayed the best tumour growth 
inhibition compared to the other groups (Figure 5C 
and D). Sections of the major organs and tumours 
were analysed by H&E staining; no obvious morpho
logical damage to the major organs in most of the 
groups was observed, with only a minor change in 
the liver observed in the free Dox+siTIE2 group, sug
gesting that the functionalised MSNs improve the bio
compatibility of free Dox (Figure S7). MSN-siTIE2 
/Apt@Dox presented large necrotic regions in the 
tumour when compared with the other groups (Figure 
5E). Considering these findings, MSN- siTIE2/ 
Apt@Dox is promising for tumour inhibition against 
MDA-MB-231 cells and the suppression of breast can
cer metastasis.

In vitro Cell Migration and Invasion 
Experiments
Since inhibition of TIE2 was found to result in inhibi
tion of cancer cell migration and tumour invasion in 
our previous findings,39,40 the anti-metastatic effect of 
MSN-siRNA/Apt was assessed in vitro. Notably, Dox 
was found to impact cell migration and invasion in 
previous studies;41,42 consequently, Dox was not 
loaded into the siRNA formulations in our in vitro anti- 
metastasis study. First, the TIE2 protein expression 
among different treatments was investigated to deter
mine the knockdown effect of siTIE2. The negative 
control, naked siTIE2, did not impact the expression 

of TIE2, while positive siTIE2 transfection with Lipo 
2000 effectively inhibited expression (Figure 6A). 
Furthermore, the expression of TIE2 was dramatically 
reduced by MSN-siRNA/Apt@Dox, which confirmed 
that the functionalised MSNs knockdown TIE2 expres
sion. We found that the number of invading cells was 
sharply lower after MSN-siRNA/Apt treatment (Figure 
6B and C). Furthermore, the migration capacity of 
MDA-MB-231 cells was significantly suppressed by 
Lipo@siTIE2 (liposomes carrying siTIE2) and MSN- 
siRNA/Apt (Figure 6D and E). Consequently, our func
tionalized MSNs exhibited both lower cell invasion and 
migration.

In vivo Anti-Metastatic Effect
A pulmonary metastatic model was established to eval
uate the anti-metastasis outcome of MSN-siRNA 
/Apt@Dox. After the initial intravenous injection of 
MDA-MB-231-Luc cells in mice, Dox was adminis
tered using different Dox formulations every three 
days from day 14 onwards. In vivo bioluminescence 
imaging was then employed to monitor metastasis of 
each Dox formulation on days 14, 26, and 38 after cell 
injection. We found that the intensities of the biolumi
nescence signals of MSN@Dox+siTIE2 slightly 
decreased during tumour metastasis in mice (Figure 
7A and B); however, its anti-metastatic ability was 
similar to that of the free Dox+siTIE2 treatment. The 
difference in biodistribution between MSN-SH and 
MSN-siTIE2/Apt might contribute to the difference in 
anti-metastatic ability. Accordingly, since MSN-siTIE2 
/Apt@Dox accumulated more in tumours, the functio
nalised MSNs exhibited a remarkable reduction in 
tumour metastasis. Metastatic nodules in the lungs 
were also identified to characterise the anti-metastatic 
ability of MSN-siRNA/Apt@Dox (Figures 7C and S8). 
Metastatic nodules were obvious in the saline and free 
Dox+siRNA groups, while MSN-siRNA/Apt@Dox dis
played a lower degree of tumour metastasis. H&E 
staining further verified the anti-metastatic ability of 
MSN-siRNA/Apt@Dox, with fewer metastatic foci 
present in the lungs (Figure 7D). The functionalised 
MSNs clearly suppressed the pulmonary metastasis of 
MDA-MB-231.

Conclusion
We demonstrated that our functionalised MSNs are effec
tive as a nanomedicine with both chemotherapeutic and 
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gene therapeutic actions against metastatic breast cancer, 
thereby providing tumour-targeted delivery and redox- 
responsive release. In our design, the tumour-targeted 
delivery of functionalised MSNs selectively transported 
Dox to specific cells, which greatly enhanced the thera
peutic efficacy of Dox against MDA-MB-231 cells. 
Furthermore, the DNA aptamer AS1411 and the siRNA 
(siTIE2) nucleic acids attached to the surfaces of the 
MSNs through disulfide bonds act as gatekeepers that 
prohibit the leakage of Dox into circulation and prevent 
the degradation of siTIE2 molecules. Our co-delivery sys
tem was, therefore, able to inhibit the growth of MDA-MB 
-231 cells and downregulate TIE2 expression, and 

exhibited outstanding synergism for treatment of meta
static breast cancer. The functionalized MSNs presented 
in this study provide a promising strategy that combines 
chemotherapy with gene therapy for the treatment of meta
static breast cancer, a type of cancer that is difficult to treat 
clinically and which benefits from multi-mechanistic treat
ment methods.
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