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Background: Silibinin (Sil), a flavonoid lignan-like natural compound derived from milk thistle seeds, has been used to treat hepatic
diseases, including early-phase hepatocirrhosis and fatty liver, for many years. However, its poor water solubility limits its gastro-
intestinal absorption and bioavailability. It clinical use has been limited due to its slow onset of action. Faced with this problem,
research on the derivatives of silibinin has been receiving much attention.
Purpose: A series of silibinin derivatives with good biosafety and higher hepatoprotective activity were obtained by a safe, efficient
and green chemical synthesis method.
Patients and Methods: First, the carbonyl group in the structure of silibinin was used to obtain silibinin Schiff base derivatives by
dehydration condensation with the carboxyl group in the sulfur-containing amino acid. Next, relevant experiments were performed to
characterize the structure, physical form and solubility of the derivatives. Then, toxicity tests of the derivatives were performed in LO-2
cells and SD rats to evaluate their biosafety. Finally, the anti-inflammatory and antiapoptotic activities were observed using a carbon
tetrachloride (CCl4)-induced acute liver injury model in C57BL/6J mice using silibinin as a control.
Results: The studies showed that SS and ST behaved as amorphous substances and showed a significant increase in solubility
compared to silibinin. These two derivatives showed low toxicity in biosafety tests and higher bioactivity (anti-inflammatory and anti-
apoptotic) than silibinin against acute liver injury induced by CCl4.
Conclusion: Two silibinin derivatives (SS and ST) obtained by the Schiff base reaction improved the solubility of the silibinin parent
nucleus in biological media with the help of the hydrophilic and amorphous morphology of the ligand. The low toxicity in vivo and
in vitro ensures the biosafety of the derivatives. The hepatoprotective activity (anti-inflammatory and anti-apoptotic) was significantly
improved compared to silibinin.
Keywords: silibinin, sulfur-containing amino acid, Schiff base, solubility, inflammation, apoptosis

Introduction
Silibinin (Sil), a representative constituent extracted from silibinin seeds,1 exhibits a variety of activities in terms of
therapeutic characteristics, including antioxidant, anti-inflammatory, anticancer, and antiviral activities. In particular, its
powerful and rich hepatoprotective effects have been confirmed in both basic research and clinical practice.2–5 However,
the extremely low water solubility of silibinin results in its poor bioavailability.6,7 As a result, the pharmacological
activity of silibinin is affected.
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To overcome this drawback of silibinin, many semisynthetic derivatives and preparations have been developed via
chemical structure modification.8 Rich derivatives, such as glycosides, esters, and ethers, are obtained mainly by
attacking the five hydroxyl groups in the structure of silibinin. The compounds that have been widely used in the clinic
are bis-hemisuccinate and methylglucamine salt,9–11 and these have shown greatly improved water solubility. However,
in the present study, molecular docking simulations of silibinin with certain proteins at the initial stage revealed that their
binding relies mainly on the hydroxyl groups in its structure and amino acids in the protein structure (Figure S1).
Although these proteins are not necessarily the targets of silibinin, there are still implications for how molecules and
proteins interact. Therefore, disruption of the mid-hydroxyl site of the silibinin structure may affect its pharmacological
activity. Many delivery strategies can improve the absorption and bioavailability of silibinin from a formulation
perspective, such as nanoparticles, polymeric particles, and phospholipid complexes.6,12–17 Nevertheless, much work
remains for the industrial production of most of the formulations due to their low drug loading capacity, storage
difficulties, complicated process, and poor reproducibility.

Therefore, we selected the carbonyl side of silibinin for the Schiff base reaction and selected several sulfur-containing
amino acids as hydrophilic ligands. On the one hand, the solubility of silibinin is improved by the hydrophilic nature of
the ligand; on the other hand, the hepatoprotective activity of silibinin can be further improved with the help of the
biological properties of singlet sulfur in redox reactions.18–22

In this study, acute liver injury caused by carbon tetrachloride (CCl4) was selected as an animal model to evaluate the
biological activity of the two Schiff base derivatives. CCl4-induced liver injury has been widely used as a classical model
of acute liver injury to measure the hepatoprotective activity of drugs;23–26 additionally, the pathological mechanisms of
inflammation and apoptosis induced by CCl4 in the liver can better simulate acute chemical liver injury in humans. In
response to these two aspects of disease pathogenesis, silibinin has shown some therapeutic effects in the study of
a variety of conditions.5,27,28

In summary, this study aimed to obtain several silibinin Schiff base derivatives by condensation of silibinin with
certain sulfur-containing hydrophilic ligands through a Schiff base reaction. Chemical structure characterization, physi-
cochemical property analysis, in vitro and in vivo biosafety evaluation and in vivo bioactivity (hepatoprotective activity)-
related experiments were also performed to evaluate the safety and efficacy of these silibinin derivatives.

Materials and Methods
Materials
Silibinin (purity: 98%), S-Allyl-L-cysteine (purity: ≥98%), and taurine (purity: 99%) were supplied by Shanghai Aladdin
Biochemical Technology Co. All other purchased solvents are of analytical grade.

The Synthesis Method of SS and ST
NaOH (1 mmol) and an equal stoichiometric quantity of S-allyl-L-cysteine or taurine (1 mmol) were placed in a three-
necked flask preloaded with a magnetic stirrer, and 5 mL of water was then added dropwise and stirred until the solid
compound was completely dissolved to obtain Solution A. Silibinin (1 mmol) was dissolved in 45 mL of anhydrous ethanol
by heating in a water bath to obtain solution B. Solution Awas added dropwise into solution B, while anhydrous sodium
sulfate was added for dehydration and stirred for 2 h at 60 °C. After the reaction was completed, the hot mixed solution was
extracted, and the filtrate was rotary evaporated to obtain the crude product. Finally, the crude product was recrystallized by
anhydrous ethanol and dried under a vacuum to obtain the corresponding pure product (SS (Figure 1A) or ST (Figure 1B)).

SS: Yield 72%, the bright yellow powder solid. 1H NMR (500 MHz, DMSO) δ 7.03 (dd, J = 3.4, 1.8 Hz, 1H), 7.01 (s, 1H),
6.99–6.97 (m, 1H), 6.95 (dd, J = 8.3, 1.8 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 6.82 (d, J = 8.1 Hz, 1H), 5.77 (ddt, J = 17.0, 10.0, 7.1
Hz, 1H), 5.45–5.37 (m, 2H), 5.14 (d, J = 17.0 Hz, 1H), 5.06 (d, J = 10.0 Hz, 1H), 4.90 (dd, J = 7.9, 1.5 Hz, 1H), 4.86 (d, J = 10.7
Hz, 1H), 4.35 (dd, J = 10.7, 8.1 Hz, 1H), 4.18–4.13 (m, 1H), 3.78 (s, 3H), 3.54 (dd, J = 12.1, 2.1 Hz, 1H), 3.45 (q, J = 7.0 Hz, 2H),
3.34 (dd, J = 12.2, 4.6 Hz, 1H), 3.21–3.11 (m, 3H), 2.88 (dd, J = 13.5, 3.7 Hz, 1H), 2.58–2.52 (m, 1H) (Figure S2A). 13C NMR
(126 MHz, DMSO) δ 173.21, 164.03, 162.23, 148.12, 147.63, 143.70, 135.20, 131.50, 127.83, 121.54, 120.96, 117.40, 116.87,
116.63, 115.78, 112.12, 98.76, 98.13, 97.11, 82.40, 78.59, 76.33, 71.65, 60.65, 56.48, 56.13, 55.04, 34.36, 19.03 (Figure S2B).
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ST: Yield 74%, the dark red powder solid. 1H NMR (500 MHz, DMSO) δ 7.05 (dd, J = 3.5, 1.9 Hz, 1H), 7.01 (s, 1H), 7.00–
6.97 (m, 1H), 6.95 (d, J = 1.7 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 5.55–5.47 (m, 2H), 4.92 (d, J = 3.5 Hz,
1H), 4.90 (s, 1H), 4.41 (dd, J = 10.8, 8.0 Hz, 1H), 4.19–4.12 (m, 1H), 3.78 (s, 3H), 3.54 (dd, J = 12.2, 2.2 Hz, 1H), 3.45 (q, J = 7.0
Hz, 2H), 3.34 (dd, J = 12.2, 4.6 Hz, 1H), 2.89 (t, J = 6.4 Hz, 2H), 2.60 (t, J = 6.4 Hz, 2H) (Figure S2C). 13C NMR (126 MHz,
DMSO) δ 164.01, 162.43, 148.10, 147.56, 143.87, 143.62, 131.33, 127.89, 120.97, 116.99, 116.71, 115.76, 112.15, 98.28, 97.90,
97.54, 82.56, 78.56, 76.32, 71.66, 60.65, 56.48, 56.14, 52.12, 37.88, 19.03 (Figure S2D).

Powder X-Ray Diffraction (PXRD)
PXRD analysis was performed on a LYNXEYE_XE_T (1Dmode) diffractometer pattern using Cu/K-Alpha1 (λ=1.5406 Å)
radiation at room temperature. The instrument was operated at 40 kVand 40mA. Data acquisition was performed from 3° to
40° (2θ) with a step size of 0.02°. Before sending the sample for testing, approximately 5 mg of the powder was weighed
and gently pressed with a silicon wafer to obtain a flat powder bed surface.

In vitro Solubility Test
A certain mass of SS and ST was accurately weighed into an 8 mL glass vial. Five milliliters of various standard buffer
solutions were added separately. The preparation methods of the six standard buffer solutions are shown in Table 1. The
obtained solutions were stirred at 37 °C at 400 rpm and sampled at 0.25 hours, 0.5 hours, 1 hour, 2 hours, and 24 hours.
The samples were centrifuged at 37 °C at 14,000 rpm for 5 min. Supernatants were analyzed by HPLC and pH meter for
solubility and pH value, respectively.

Figure 1 Synthesis method of compounds. The chemical structures of SS (A) and ST (B).
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Cytotoxicity Assay
The human normal liver cell line LO-2 (HL-7702) was purchased from the Cell Bank of Chinese Academy of Sciences
(Shanghai, China). LO-2 cells were maintained in DMEM (HyClone, #SH30243.01, Logan) with 10% fetal bovine serum
(Gibco, #16140071, New York) in a humidified 5% CO2 incubator at 37 °C. According to the cell size and growth rate,
1×104 cells per well were inoculated into a 96-well cell culture well plate, and the subsequent procedure was performed
when the cell density reached 70–80%. Different concentrations of drugs were added for stimulation, and appropriate
controls were set up. Detailed subsequent steps can be found in the LDH Cytotoxicity Assay Kit (Beyotime, #C0016,
Shanghai)29,30 and Cell Counting Kit-8 (Yeasen, #40203ES60, Shanghai)31,32 instructions.

Acute Oral Toxicity
Male SD rats (8–10 weeks, 190–210 g) were purchased from Weitonglihua (Nanjing, China) and housed in environmen-
tally controlled and specific conditions. After adaptive feeding for a week, the rats were divided into 3 groups, including
the control group, SS group, and ST group, with 5 rats in each group. SS and ST were intragastrically administered to the
corresponding group at 2 g/kg at a time.33–35 Rats in the control group were intragastrically administered an equal vehicle
volume of CMC-Na solution at a time. The mental status, food intake, and body weight of the rats were observed and
recorded for 14.36,37 At the end of the experiment, the weights of the liver, spleen, and kidney were recorded. The animal
protocol of this study was approved by the Animal Ethics Committee of Nanjing University of Traditional Chinese
Medicine (approval no. 202112A022). All the animals received humane care according to the guidelines of the National
Institutes of Health (USA).

Induction of Liver Toxicity
Male C57BL/6J mice (6–8 weeks, 20~22 g) were purchased from Weitonglihua (Nanjing, China) and housed in envir-
onmentally controlled and specific conditions. After adaptive feeding for a week, the mice were divided into 7 groups,
including the control group (C), model group (M), Sil group (0.2 mmol/kg) (Sil), 1/2 SS group (0.1 mmol/kg) (1/2 SS), SS
group (0.2 mmol/kg) (SS), 1/2 ST group (0.1 mmol/kg) (1/2 ST), and ST group (0.2 mmol/kg) (ST), with 8 mice in each
group. Mice were intragastrically administered the corresponding drugs once a day for 7 d continuously. Mice in the control

Table 1 Configuration of Six Standard Buffers

No. ID pH Composition

ES1 HCl solution 1.0 Pipetted 4.55 mL of hydrochloric acid (37% HCl) into 500 mL deionized water. Mixed well.
ES2 Acetate buffer 4.5 Placed 1.495 g sodium acetate trihydrate in a 500 mL volumetric flask, added 7 mL 2 N acetic acid, then added

deionized water to volume, and mixed well.

ES3 Phosphate buffer 6.8 Placed 125 mL of the monobasic potassium phosphate solution in a 500 mL volumetric flask, added 56 mL of the
2 N sodium hydroxide solution, then added deionized water to volume.

ES4 SGF 2.0 Step 1: Weighed 2 g of sodium chloride (NaCl) and 1 g of Triton X-100 into a 1000 mL flask followed by the

addition of approximately 800 mL of deionized water. The mixture was stirred until all solids were dissolved.
Added approximately 100 mL of 0.1 N HCl, checked pH value with a pH meter, and adjusted the pH to 2.0 with

HCl (1 N) or NaOH (1 N). Then, diluted to the volume with deionized water.

ES5 FaSSIF 6.5 Step 1: Placed 0.210 g sodium hydroxide, 2.235 g sodium dihydrogen phosphate, and 3.093 g sodium chloride in
a 500 mL volumetric flask; added approximately 0.450 L deionized water; and adjusted the pH to 6.5 with 1N

sodium hydroxide or 1 N hydrochloric acid. Made up to volume (0.5 L) with deionized water.

Step 2: Placed and dissolved 1.120 g FaSSIF/FeSSIF/FaSSGF instant powder in 0.250 L of buffer (from step 1) in
a 500 mL volumetric flask and then added buffer (from step 1) to volume and mixed well.

ES6 FeSSIF 5.0 Step 1: Placed 2.020 g sodium hydroxide, 4.325 g acetic acid, and 5.937 g sodium chloride in a 500 mL volumetric
flask; added approximately 0.450 L deionized water; and adjusted the pH to 5.0 with 1 N sodium hydroxide or 1

N hydrochloric acid. Made up to volume (500 mL) with deionized water.

Step 2: Placed and dissolved 5.600 g FaSSIF/FeSSIF/FaSSGF instant powder in 0.250 L of buffer (from step 1) in
a 500 mL volumetric flask and then added buffer (from step 1) to volume and mixed well.
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and model groups were given drug-free CMC-Na solution. On Day 7, all mice were injected intraperitoneally with 0.5%
CCl4 (dissolved in olive oil, 0.1 mL/10 g body weight) 1 h after the last dose, except for the control group, which was
injected intraperitoneally with olive oil. Mice were anesthetized with 1.5% isoflurane after 24 h of fasting, and blood was
collected via the retro-orbital sinus plexus. All mice were then sacrificed, and their livers were dissected and used for
histopathological (formalin-fixed) and biochemical (−80 °C) studies.24,38,39 The animal protocol of this study was approved
by the Animal Ethics Committee of Nanjing University of Traditional Chinese Medicine (approval no. 202112A021). All
the animals received humane care according to the guidelines of the National Institutes of Health.

Hematology and Serum Biochemistry
The blood used for routine blood analysis was stored in EDTA-K2 anticoagulation tubes, and various indicators, such as red
blood cell count (RBC), hemoglobin (HGB), and white blood cells (WBCs), were analyzed. Blood samples for serum
biochemical analysis were placed in plain tubes without anticoagulants and left at room temperature for 15–20 min. After the
blood had clotted, the serum was collected by centrifugation at 3000× g for 15 min at 4 °C. The serum was analyzed for
biochemical indices, such as glutamate aminotransferase (ALT), aspartate aminotransferase (AST), urea, and creatinine.

Histopathology
Liver tissues were fixed in 4% paraformaldehyde (Servicebio, # G1101-500ML, Wuhan). Liver tissue was dehydrated in
an embedding kit (75% ethanol for 6 hours, 85% ethanol for 10 hours, 95% ethanol for 4 hours, ethanol I for 2 hours,
ethanol II for 2 hours), cleared (xylene I for 20 minutes, xylene II for 15 minutes), paraffin-impregnated for 3 hours, and
finally embedded. The samples were cut into 5 μm slices, flattened on slides, and then incubated at 60 °C for more than
60 min. After multiple dewaxing steps in xylene, the sections were rinsed with water for 20 minutes, stained with
hematoxylin (Biosharp, # BL700A, Hefei) for 30 seconds, rinsed again with water, and placed in 1% hydrochloric acid
ethanol for several seconds. The sections were sequentially dehydrated in 70%, 85%, and 95% ethanol and then stained
with eosin (Biosharp, # BL700A, Hefei) for 30 seconds. The sections were placed in anhydrous ethanol and xylene for 5
minutes sequentially. Finally, the slices were sealed with neutral resin glue, and images were acquired under
a microscope (Olympus IX71, Japan).

To assess the degree of necrosis after acute liver injury, an injury grading scale (grades 0–4) was performed according
to the severity of necrotic lesions in the liver parenchyma. The scoring system was as follows: grade 0, no pathological
changes; grade 1, hepatocellular degeneration with only rare foci of necrosis; grade 2, small areas of mild central lobular
necrosis around the central vein; grade 3, areas of mild central lobular necrosis more severe than grade 2; and grade 4,
central lobular necrosis more severe than grade 3.24

Immunohistochemical Analysis (IHC)
Liver tissue was fixed in 4% paraformaldehyde (Servicebio, # G1101-500ML, Wuhan), embedded in paraffin wax and
cut into 4 μm sections. Then, the sections were hydrated to remove the paraffin. Endogenous peroxidase activity was then
blocked with hydrogen peroxide for 15 mins. Antigen repair was performed by boiling in 10 mM citrate buffer for 10
mins, and then the sections were incubated with the primary antibody (F4/80 (D2S9R) (dilution 1:600)) and placed in the
refrigerator at 4 °C overnight. The sections were incubated for 1 h at room temperature with the addition of the
corresponding secondary antibody. Finally, the specimens were stained with the DAB kit. The samples were washed with
PBS, and images were acquired under a microscope (Olympus IX71, Japan).

TdT-Mediated dUTP Nick End Labeling (TUNEL)
Apoptosis in liver tissue was detected using the Terminal Deoxynucleotidyl Transferase-Mediated dUTP Notched End
Labeling (TUNEL) assay kit (KeyGEN BioTECH, #KGA7061, Nanjing). After TUNEL labeling, liver sections were
restained with an anti-fluorescence attenuation quencher containing DAPI (Solarbio, #S2110, Beijing) to label nuclei.
Images were observed under a fluorescence microscope (Olympus IX71, Japan).
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Western Blotting (WB)
Liver tissues were collected from mice and disrupted in RIPA (Beyotime Biotechnology, #P0013B, Shanghai) mixed
with PMSF (Keygenbio, #KGP610, Nanjing) on ice. Proteins (100 μg) were separated by 10% sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS–PAGE) (BIO-RAD, #1705061, California) and then transferred to a PVDF
membrane (BIO-RAD, #1620256, California). The membranes were blocked in Tris-buffered saline Tween-20 (TBST)
containing 5% skim milk (BioFroxx, # 3250GR500, Germany) for 1 h at room temperature, followed by incubation with
primary antibodies against p53 (1:1000, Cell Signaling Technology, #2527, Boston), PARP (1:1000, Cell Signaling
Technology, #9523, Boston), BCl-2 (1:1000, Abcam, #ab32124, Cambridge), Bax (1:2000, Abcam, #ab182733,
Cambridge), and β-actin (1:1000, Cell Signaling Technology, #3700, Boston) at 4 °C overnight. The membranes were
washed three times with TBST and then incubated with HRP-conjugated anti-rabbit IgG (1:2000, Cell Signaling
Technology, #7074, Boston) and HRP-conjugated anti-mouse IgG (1:2000, Cell Signaling Technology, #7076, Boston)
for 1 h at room temperature. After washing with TBST three times, the antibodies were detected with ECL reagents
(Tanon, #180-506, Shanghai). Immunoreactivity was detected by chemiluminescence. The results were quantified using
ImageJ software.

Quantitative Real-Time Polymerase Chain Reaction (qRT–PCR) Analysis
Total RNAwas extracted from liver tissues using TRIzol reagent (Thermo Fisher, #15596026, Waltham). Equal amounts
of RNA (5000 ng) were reverse transcribed into cDNA using an All-in-One First-Strand cDNA Synthesis SuperMix for
qPCR (One-Step gDNA Removal) (TransGen Biotech, #AE341, Beijing) according to the manufacturer’s protocols on
a Real-Time PCR System (Applied Biosystems, #9902, Waltham). Quantitative real-time PCR (QPCR) was performed
using Top Green qPCR SuperMix (TransGen Biotech, #AQ132, Beijing) on a Real-Time PCR System (Applied
Biosystems, #Q6, Waltham). Details of the primers can be found in Table 2. The relative quantification of real-time
RT–PCR products was performed using the 2–ΔΔCT method.

Molecular Docking
Docking experiments were performed and completed by the Molecular Operating Environment (MOE). The crystal
structures of the proteins were obtained from the Protein Data Bank (PDB). Preparation of compound structures, protein
structures (proton 3-D and energy minimization), determination of active sites, and docking procedures were performed
according to previously described procedures.40,41

Statistical Analysis
All data were obtained from at least three parallel sets of experiments and are expressed as the means ± SD. Statistical
analyses were performed using GraphPad Prism V.8.00. Between-group analyses were performed using one-way
ANOVA followed by Tukey post hoc analysis, and p values <0.05 were considered statistically significant.

All data are expressed as the means ± standard errors of means. The data obtained from cultured cells and animals
were analyzed using Student’s t-test and one-way ANOVA to determine the significance of the difference between two
groups and are presented as the means ± SD from independent experiments via GraphPad Prism 8. P<0.05 was
considered statistically significant.

Table 2 Primers Used for qRT–PCR Analysis

Gene Name Forward Primer Sequence (5’-3’) Reverse Primer Sequence (5’-3’)

IL-1β GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG

IL-6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC
TNF-α GGGGATACATCCATCAGGGGT GCTCGGACAGTCACTCACC

IL-10 CTTACTGACTGGCATGAGGATCA GCAGCTCTAGGAGCATGTGG

GAPDH CAGTATGACTCCACTCACGGCAA CTCGCTCCTGGAAGATGGTGAT

https://doi.org/10.2147/DDDT.S356847

DovePress

Drug Design, Development and Therapy 2022:161446

Xu et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Results
SS and ST Significantly Improve the in vitro Solubility of Sil
The corresponding derivatives were obtained by the dehydration condensation of the carbonyl group in Sil and the amino
group in amino acids through the Schiff base reaction. SS and ST are two derivatives obtained from S-allyl-L-cysteine
and taurine as ligands, respectively. The solubility of SS and ST in pure water was greater than 125 mg/mL, and the water
solubility was significantly improved compared to that of Sil.

During purification using recrystallization of these two compounds, we found that large crystal particles could not
form. Therefore, PLM and PXRD experimental analyses were performed, and the results showed that the physical forms
of both compounds exhibited amorphous substances (Figure 2A and B). In the crystallographic screening experiments, no
crystallographic transformation occurred in either SS or ST, which indicates that the amorphous properties of SS and ST
are relatively stable.

Figure 2 SS and STobservation under PLM (A). X-ray powder diffractograms of Sil, SAC, TAU, SS, and ST (B). Dynamic solubility of the Sil parent nucleus of SS and ST in six
solutions (n=3) (C–H).
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Due to the hydrophilic property of the ligand and the high solubility properties of the amorphous substance, in vitro
solubility experiments were performed to simulate the dissolution of the drug in the stomach and intestine. The results
showed that the pH of all six standard buffer solutions did not change significantly before and after the solubility experiment
(Table S1), and the solubility of Sil in all six solutions fell below the instrument detection limit and was recorded as 0. SS
and ST dissociated to varying degrees in six acidic media: HCl solution, acetate buffer, phosphate buffer, SGF, FaSSIF-v1,
and FeSSIF-v1. SS and ST dissociated completely in the first three solutions after 2 h (Figure 2C–E), and they were
maintained at 10~20 μg/mL (Figure 2F–H) in the latter three solutions. PXRD experimental analysis of the precipitate in the
solution after 24 hours of revealed that the dissociated fraction was the parent nucleus of Sil (Figure S3). Therefore, we
conjecture that SS and ST have better absorption than Sil and are able to isolate Sil after entering the organism. SS and ST
might therefore be studied and applied as predrugs of Sil.

SS and ST Show Good Safety Profiles in vitro and in vivo
To evaluate the biosafety of both compounds (SS and ST), separate studies were performed on cells (in vitro) and animals
(in vivo). First, LO-2 cells were stimulated by selecting different concentrations of compounds, and changes in cell viability
were measured by both CCK-8 and LDH assays. The results showed that the cell viability was only slightly impaired at the
high concentration of 48 μM in the CCK-8 assay (Figure 3A and B), but this concentration did not show a toxic response in the
LDH assay (Figure 3C and D). The results showed that neither SS nor ST produced significant cytotoxic effects on cells at
concentrations less than 24 μM.

Subsequently, we assessed the safety of the compounds by acute toxicity assays in rats, observing and recording the
physiological responses of the animals for 2 weeks after administration (Figure 3E). The rats in each group either did not
show an abnormal status or died during the experiment. The data showed no significant differences in body weight gain
(Figure 3F), daily food intake (Figure 3G), or weekly food utilization (Figure 3H) among the three groups of rats during the two-
week observation period. This indicates that SS and ST did not adversely affect the growth of rats. In addition, there were no
significant differences in the ratios of each organ (liver, spleen, and kidney) to body weight in the three groups of rats (Figure 3I).
The results of routine blood examination in rats (Figure 3J–L) showed no significant differences, except for the leukocyte count
index in the SS group, which was slightly lower than that in the C group (Figure 3L). In addition, no damage or lesions were
observed when the livers of the rats in each groupwere examined pathologically (Figure 3M). Overall, no significant mortality or
physiological abnormalities were observed in the animals at such extreme doses, and the biosafety of SS and STwas positive.

SS and ST Reduce CCl4-Induced Hepatocyte Necrosis More Than Sil
To evaluate whether the hepatoprotective activity of SS and ST was improved compared with that of Sil, CCl4-induced
acute liver injury was selected as an animal model for bioactivity evaluation in this study (Figure 4A).

First, histopathological examination by H&E staining showed obvious necrotic areas in GroupM, with disappearance of cell
borders and destruction of liver structure (Figure 4B), and the pathology of the liver tissue was scored in each group (Figure 4C).
Pretreatment with Sil, SS, or ST reduced liver injury morphologically compared to the M group; furthermore, SS and ST
exhibited milder hepatocyte necrosis and better preservation of liver structure at equimolar doses administered with Sil. The
effects of SS and ST pretreatment on CCl4-induced acute liver injury were then evaluated by measuring the release of two serum
aminotransferases (glutamate aminotransferase (ALT) and aspartate aminotransferase (AST)). The results showed that the serum
aminotransferase levels of rats in the M group were significantly higher than those in the C group, and SS and ST significantly
reduced the CCl4-induced increase in transaminase levels compared to Sil. Moreover, the SS and ST release levels were close to
those of the C group compared with the equimolar Sil group (Figure 4D and E).

In combination with serum transaminase release levels and histopathological observations, SS and ST exhibited
greater resistance to CCl4-induced acute liver injury than Sil when administered at equimolar doses.

SS and ST Better Reduce CCl4-Induced Liver Inflammation Than Sil
The elevated inflammatory response of CCl4 is an important indicator of acute liver injury and is part of the pathogenesis
of most liver precursor diseases. The expression of proinflammatory factors (TNF-α, IL-6, and IL-1β) in the SS and ST
groups was significantly lower than that in the Sil group (Figure 5A–C), and the expression of an anti-inflammatory
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factor (IL-10) in the SS and ST groups was the highest among all drug pretreatment groups (Figure 5D). The
improvement of inflammatory factors in serum indicates that SS and ST reduced the inflammatory response induced by
CCl4 at the overall animal level.

Figure 3 Cytotoxicity of SS (A) and ST (B) against LO-2 cells as detected by CCK-8 assay (n=6). Cytotoxicity of SS (C) and ST (D) against LO-2 cells as detected by LDH
assay (n=6). Experimental protocol for acute toxicity in rats (E). Daily body weight (F), daily food intake (G), and weekly food utilization of rats (H) after administration
(n=5). Liver/body weight, kidney/body weight, and spleen/body weight of rats after the experiment (n=5) (I). The results of routine blood tests in rats at the end of the
experiment (n=3~5) (J–L). Histopathological observation of the liver of SD rats after acute toxicity experiments (M). Hematoxylin-eosin staining of liver paraffin sections
showing areas of liver damage (black arrows) (scale bar = 100 μm). ****p<0.0001.
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Additionally, liver tissue sections were stained with macrophage markers (F4/80) to observe the extent of macrophage
infiltration and to assess the degree of the inflammatory response and effect of drug pretreatment. The results showed that
all dosing groups significantly reduced macrophage infiltration, and the SS and ST groups were significantly more
effective than the Sil group (Figure 5E and F). The expression of relevant inflammatory factor mRNAs in liver tissue was

Figure 4 Experimental protocol of drugs used to treat CCl4-induced acute liver injury (A). Effect of SS and STon histopathology following CCl4-induced liver injury in mice
(B). Hematoxylin-eosin staining of paraffin sections of the liver, showing areas of liver injury (black arrows) (scale bar=50 μm). Liver sections from seven groups of mice were
scored histologically (n=5) (C). Effect of SS and ST on the levels of AST (n=8) (D) and ALT (n=8) (E) release in the serum of CCl4-treated mice. ****p<0.0001,

#p<0.05,
##p<0.01, ###p<0.001, ####p<0.0001.
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Figure 5 Expression levels of four inflammatory factors in serum (A–D). Macrophage staining of paraffin sections of liver (red arrows) (scale bar=50 μm) (E). Analysis of the
area percentage of macrophage infiltration (F). The mRNA expression levels of four inflammatory factors in liver tissues (G–J). **p<0.01, ****p<0.0001, ##p<0.01,
###p<0.001, ####p<0.0001.
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consistent with the results of serum biochemical indices, further suggesting that SS and ST could better ameliorate the
inflammatory response induced by CCl4 than Sil (Figure 5G–J).

SS and ST are More Efficient Than Sil at Attenuating CCl4-Induced Apoptosis
Hepatocyte apoptosis is an important feature of CCl4-induced liver injury; as a cellular response to hepatotoxic injury,
it can reflect the extent of liver injury. The results of the TdT-mediated dUTP nick-end labeling (TUNEL) assay
showed that CCl4 caused extensive apoptosis in periportal hepatocytes, and it is noteworthy that SS and ST
pretreatment significantly reduced the number of TUNEL-positive apoptotic hepatocytes compared with the same
dose of Sil pretreatment (Figure 6A and B). Subsequently, Western blot experiments were performed to measure the
expression levels of apoptosis-related proteins in the liver. The experimental results showed that CCl4 significantly
reduced the expression of PPAR, Bcl-2, and Bax. This phenomenon was reversed by pretreatment with SS, ST, and
Sil, and the improvement was particularly evident in the SS and ST groups (Figure 6C–G). Notably, CCl4 increased
the expression of p53 in the liver, and pretreatment further increased the expression of this protein (Figure 6C–E).
Thus, CCl4-induced elevation of p53 protein may be a feedback protective mechanism to induce apoptosis after severe

Figure 6 Apoptosis was detected by the TUNEL method (scale bar=100 μm) (A). Analysis of the apoptotic area according to the TUNEL staining assay (B). Western
blotting was performed to detect the protein expression levels of PARP, p53, Bcl-2 and Bax in liver tissues (C–G). **p<0.01, ****p<0.0001, #p<0.05, ##p<0.01, ###p<0.001,
####p<0.0001.
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liver injury and inhibit CCl4-induced cell carcinogenesis. The specific hepatoprotective mechanism of Sil needs to be
explored further, but these phenotypic results suggest that the anti-apoptotic effect of SS and ST is significantly
superior to that of Sil.

Discussion
The liver plays a pivotal role in many physiological processes, including nutrient metabolism, immune system support,
endocrine control, cholesterol homeostasis, and the breakdown of exogenous compounds.42,43 A wide variety of liver
diseases brought about by dietary habits and drug use have seriously affected people’s health.44,45 For a long time,
silibinin has been used as a hepatoprotective drug in the clinical treatment of liver diseases and is by far the most widely
studied and used natural hepatoprotective compound.5,46,47 However, due to its structural limitations, the bioavailability
of silibinin is not ideal,48 and a slow onset of action often occurs during clinical use.

To overcome this drawback, previous studies have developed semisynthetic derivatives in terms of chemical structure
modification. However, the one-sided grafting of hydrophilic groups makes the molecular weight of the derivatives too
large, which may affect the interaction between silibinin and the target protein. Thus, the synthesis of a class of prodrugs
that can dissociate the parent nucleus of silibinin under certain conditions can circumvent the previous problems of
semisynthetic derivatives.49–51

In the present study, the derivatives obtained using the Schiff base reaction relied on hydrophilic and amorphous
morphology to successfully improve the solubility of silibinin in biological media and were able to decompose the
silibinin parent nucleus over time.

The biosafety of silibinin itself has been well established in previous studies and applications. However, the physical
properties of SS and ST, as semisynthetic derivatives of silibinin, have been changed to some extent. It is necessary to
discuss and study the biosafety of these two derivatives to guide the selection of “safe” doses in subsequent studies.36,37

The results of the toxicity experiments in this study showed that SS and ST exhibited good low toxicity against both LO-
2 cells and SD rats.

A model of acute liver injury due to CCl4 is often chosen for the screening and activity evaluation of hepatoprotective
drugs. This model exhibits a strong inflammatory response and high levels of apoptosis.52–55 This is consistent with the
results of the present study. It is important to emphasize that SS and ST at equimolar doses administered with silibinin
more significantly reduced the expression of proinflammatory factors in the liver and also better regulated the expression
of apoptosis-related proteins.

Figure 7 Silibinin Schiff base derivatives (SS and ST) enhance both the anti-inflammatory and anti-apoptotic activities of silibinin.
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Conclusion
In summary, two new water-soluble silibinin Schiff base derivatives were developed in this study. The safety of both
derivatives was demonstrated by in vitro in vivo toxicity experiments. The biological activities (anti-inflammatory and
anti-apoptotic) of both derivatives were superior to silibinin in CCl4-induced acute liver injury experiments (Figure 7). In
conclusion, SS and ST are expected to be safe and effective alternatives to silibinin.
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