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Introduction: During recent years, there has been growing interest in use of topical vehicle 

systems to assist in drug permeation through the skin. Drugs of interest are usually those that 

are problematic when given orally, such as piroxicam, a highly effective anti-inflammatory, anti-

pyretic, and analgesic, but with the adverse effect of causing gastrointestinal ulcers. The present 

study investigated the in vitro and in vivo pharmacodynamic activity of a newly synthesized 

palm oil esters (POEs)-based nanocream containing piroxicam for topical delivery.

Methods: A ratio of 25:37:38 of POEs: external phase: surfactants (Tween 80:Span 20, in a ratio 

80:20), respectively was selected as the basic composition for the production of a nanocream 

with ideal properties. Various nanocreams were prepared using phosphate-buffered saline as the 

external phase at three different pH values. The abilities of these formulae to deliver piroxicam 

were assessed in vitro using a Franz diffusion cell fitted with a cellulose acetate membrane and 

full thickness rat skin. These formulae were also evaluated in vivo by comparing their anti-

inflammatory and analgesic activities with those of the currently marketed gel.

Results: After eight hours, nearly 100% of drug was transferred through the artificial membrane 

from the prepared formula F3 (phosphate-buffered saline at pH 7.4 as the external phase) and 

the marketed gel. The steady-state flux through rat skin of all formulae tested was higher than 

that of the marketed gel. Pharmacodynamically, nanocream formula F3 exhibited the highest 

anti-inflammatory and analgesic effects as compared with the other formulae.

Conclusion: The nanocream containing the newly synthesized POEs was successful for trans-

dermal delivery of piroxicam.

Keywords: piroxicam, nanocream, analgesic, anti-inflammatory, skin permeation

Introduction
Piroxicam is a nonsteroidal, anti-inflammatory, and analgesic agent. It is a water-

insoluble drug with an acidic pKa value of 5.3. Structurally, the pyridine ring that is 

attached to the amide group also provides a pKa value of 1.86. Therefore, it is possible 

that piroxicam can act as a zwitterionic drug at a certain pH value. As a weak acid, 

piroxicam ionizes at pH 7.4 and at physiologic pH.1 It has a log P value of 1.8.2

It is well known that, when drug molecules are transported through the skin, they 

undergo two processes, starting with drug penetration through the stratum corneum 

followed by drug diffusion into the deeper tissues. The rate and extent of drug transport 

through the stratum corneum depends on the size, log P, ionic strength, hydrogen 

bonding ability, and physicochemical properties of the vehicle.3

The correlation between the physicochemical properties of nonsteroidal anti-

inflammatory drugs (NSAIDs) and the extent of their absorption from the skin has been 
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confirmed by many investigations.4,5 These studies have found 

that the log P value of NSAIDs seems to be the most impor-

tant factor compared with their pKa value and molecular 

weight. This can be related to the relatively comparable pKa 

and molecular weight of all NSAIDs and their highly variable 

log P values. Piroxicam with a log value of P 1.8 has shown 

a higher plasma concentration after topical administration in 

rats compared with NSAIDs of log P value $ 3.5. Drugs with 

a log P value of around 2 are suggested to be good candidates 

for topical delivery.6

The enhancement of transdermal piroxicam transport 

has been extensively investigated. Various techniques have 

been used, including ion pairing,7 pretreatment of the skin 

with permeation enhancer,8,9 inclusion into a carrier system 

with drug ionization,10–12 and application of permeation 

enhancement.13,14

Microemulsions and nanoemulsions have many advan-

tages for use as topical drug delivery systems. Firstly, 

the main advantage of these dosage forms is that a large 

amount of drug can be incorporated into the formula-

tion due to the increased solubilization capacity, thereby 

enhancing thermodynamic activity in the skin. Secondly, 

the permeation rate of the drug can be enhanced by using 

a micro/nanoemulsion due to the synergistic effect of vari-

ous components to enhance drug delivery across the skin. 

Thirdly, the main ingredients, ie, oil, water, and surfactant 

mixtures, or surfactant-cosurfactant mixtures, can be com-

bined synergistically to enhance drug flux.15

Palm oil esters (POEs)a are constituents of a modified 

palm oil synthesized by reaction with olyel alcohol to produce 

long ester chains of the original triglyceride palm oil. It has 

been reported that POEs have a skin hydration activity of 

40.7% within 90 minutes of application.16 Skin hydration is 

known to enhance transdermal drug delivery.

In the present study, we investigated the suitability of 

newly prepared domestic POEs to act as an internal phase for 

topical delivery of piroxicam in a nanocream formulation. We 

further compared the effect of the external phase on the per-

meation of piroxicam from these nanocream-based POEs. We 

also compared the potential of the formulated topical nano-

cream to deliver piroxicam with that of the currently marketed 

formula. Experimentally, we assessed the in vitro transfer 

of the prepared piroxicam nanocream through an artificial 

cellulose acetate membrane and full thickness rat skin using 

the marketed gel formula as a reference. Furthermore, the in 

vivo anti-inflammatory and analgesic activities of the tested 

and the commercially available preparation were measured 

and compared.

Materials and methods
Materials
Potassium dihydrogen phosphate and sodium hydroxide 

were supplied by R M Chemicals (Essex, UK), while the 

orthophosphoric and hydrochloric acids were supplied by 

BDH (London, UK). In addition, acetonitrile was purchased 

from JT Baker (Phillipsburg, NJ), and the POEs was a gift 

from the Universiti Putra Malaysia, Selangor, Malaysia. 

Tween 80, Tween 85, Span 20, Span 85, and sodium 

benzoate were purchased from Sigma-Aldrich (Munich, 

Germany), while piroxicam was supplied by Noveltek Life-

science (Tanggu, China). The cellulose acetate membrane 

of 0.2 µm pore size and 13 mm in diameter was purchased 

from Sterlitech (Kent, WA). The ingredients of the refer-

ence formulation, as stated in the product leaflet, were 0.5% 

anhydrous piroxicam, Carbopol®, propylene glycol, ethanol, 

and triethanolamine.

Nanocream preparation
All formulations were prepared using the continental method 

in which the oil and surfactant mixtures were mixed thor-

oughly for 15 minutes at 750 rpm in a beaker. A low-shear 

mixer with three blades (marine-type propeller) was used 

to mix and emulsify the formulae. Piroxicam was added to 

the mixture and mixed for another 30 minutes until it was 

completely dissolved. An aqueous external phase containing 

sodium benzoate was added gradually to the above mixture in 

the beaker. The formula was subsequently mixed for another 

30 minutes. The droplet size of the nanocream preparations 

were measured by photon correlation microscopy using a 

Nanophox particle size analyzer (Sympatec Gmbh, Clausthal-

Zellerfeld, Germany) and Malvern zeta sizer 1000 HAS 

(Malvern Works, Malvern, UK). The polydispersity of the 

formulae were measured using a Malvern zeta sizer 1000 

HAS. Also, transmission electron microscopy (TEM), Leo 

912 AB Eftem (LEO Electron Optics, Oberkochen, Germany) 

was used to confirm the previously measured droplet size and 

to determine the structural appearance of the system.17 Addi-

tionally, the stability of the final formula was assessed under 

different environmental conditions for three months.18

Nanocreams of 0.5% w/w piroxicam were prepared using 

POEs as the oil phase, phosphate-buffered saline (0.2M), 

pH 4.0, pH 6.0, and pH 7.4 as the aqueous phases, and a 

mixture of Tween 80:Span 20 (80:20) HLB 13.72 as the 
aPalm oil esters is the name of the oil used in our experiments and is not a 
mixture of esters.
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surfactant mixture. A ratio of 25:37:38 was selected from 

the triangular-phase diagrams previously constructed as the 

basic composition of oil:aqueous phase:surfactant for the 

production of nanocream with the best properties (data not 

shown).17 Phosphate-buffered salines of pH 4, pH 6, and pH 

7.4 were used as the external aqueous phases for formulae 

F1, F2, and F3, respectively. Sodium benzoate 0.01% was 

used as a preservative in all formulae.17

In vitro drug transport through  
cellulose acetate membrane
The in vitro drug transport through the artificial cellulose 

acetate membrane (molecular weight cutoff 1000 Da) was 

carried out using a horizontally static type Franz diffusion 

cell. Franz diffusion cells are characterized by an effec-

tive diffusion surface area of 0.636 cm2 and a receptor cell 

volume of 5  mL. The static receptor cell was filled with 

5 mL phosphate-buffered saline (pH 7.4) and was stirred 

with a small magnetic bar at a speed of 500 rpm for uniform 

mixing.19 The receptor compartment was maintained at 

37 ± 0.5°C using a circulating water bath.

Formulae F2, F3, and reference containing 0.5  mg of 

piroxicam in amounts of 100 mg were placed on the cellulose 

membrane surface facing the donor compartment, and 400 µL 

samples were withdrawn from the receptor compartment at 

predetermined time points of hours 0.16, 0.33, 0.5, 1, 2, 3, 4, 

5, 6, and 8. The 400 µL sample withdrawn was replaced by 

fresh phosphate-buffered saline (pH 7.4) and maintained at 

37 ± 0.5°C.20 The drug content in the collected samples was 

determined by a validated high-pressure liquid chromatography 

method. All experiments for each sample were carried out in 

triplicate. The chromatographic conditions used for analysis 

were as follows: the mobile phase consisted of 5 mM diso-

dium hydrogen phosphate adjusted to pH 3 with concentrated 

orthophosphoric acid, methanol, acetonitrile, and glacial acetic 

acid at ratios of 27:20:52:1, respectively. The flow rate was 1 mL/

min, and samples were detected by an ultraviolet-visible detec-

tor at a wavelength of 350 nm. The retention time of piroxicam 

was 4.7 minutes. The limit of detection was 0.035 µg/mL and 

the limit of quantification was 0.0625 µg/mL.

In vitro drug transport across  
full thickness rat skin
In vitro drug transport through full thickness rat skin was 

achieved using the horizontally static-type Franz diffusion 

cell under the experimental conditions mentioned earlier. 

Male Wistar rats weighing 200–250 g were used in this study. 

All experimental procedures were in accordance with the 

Guidelines of the Animal Ethical Committee of Universiti 

Sains Malaysia and had its approval. Rats were anesthetized 

using sodium pentobarbitone 60  mg/kg intraperitoneally. 

The abdominal skin was shaved using electric and hand razors 

then removed surgically. The adherent subcutaneous fat was 

then carefully cleaned. In order to remove the extraneous debris 

and leachable enzymes, the skin was immersed in normal 

saline solution (0.9% NaCl) for two hours. The cleaned skin 

was washed with distilled water, wrapped in aluminum foil, 

and stored in a deep freezer at −20°C until further use. Fol-

lowing skin excision, rats were euthanized using an overdose 

of pentobarbitone. The frozen excised full thickness skin was 

brought to room temperature, and thereafter mounted between 

the donor and receptor compartments of the diffusion cell, with 

the stratum corneum side facing the donor compartment and 

the dermal side facing the receptor compartment.21,22 All other 

experimental steps were sequentially followed as mentioned 

above. Triplicate trials were conducted on all samples tested.

Permeability parameter calculation
Steady-state flux
Flux is defined as the rate of diffusion or transport of a sub-

stance across a permeable membrane. After drug permeation 

has reached steady state, the steady-state flux was calculated 

using the following equation:

	 Steady state flux (Jss) = dM/S.Dt	 (1)

Where dM is the amount of drug that permeates through 

a unit cross section area, S, per unit time, t.

The slope of the steady-state portion of the permeation 

curve created by plotting the cumulative amount of drug 

permeated in micrograms versus time in hours is the flux.23

Permeability coefficient
The permeability coefficient through the membrane (Kp) was 

determined according to the following equation:

	 Permeability coefficient (Kp) = (Jss.H)/C
0
	 (2)

Where H is the thickness of membrane and., C
0 
is the initial 

drug concentration.

Enhancement ratio
This factor was calculated to find the relative enhancement in 

the flux of formulations in respect to the reference enhance-

ment ratio. The enhancement ratio was estimated according 

to the following equation:

Enhancement ratio (Er) =
	 Jss formulation/Jss reference	 (3)
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Anti-inflammatory activity
The anti-inflammatory activity of the tested preparations 

and the commercially available preparation were measured 

and compared. Male Sprague-Dawley rats weighing 180–200 g 

were used in this experiment. Measurements of the in vivo 

anti-inflammatory and analgesic activities of the formulae 

conformed with the guidelines and practices of the Animal 

Ethics Committee of Universiti Sains Malaysia, and had its 

approval. The anti-inflammatory action was evaluated using 

the carrageenan-induced hind paw edema method with a slight 

modification.24 Rats were randomly selected and divided into 

four groups of six animals each. These groups were divided, 

according to the formulae administered, into control (vehicle 

base), F2, F3, and reference gel groups. The animals were 

housed in polypropylene cages at 25 ± 1°C and 60 ± 5% rela-

tive humidity, with free access to food and water.

One day prior to application of the trial formulation, the 

hair on the dorsal surface of the rat was shaved. F2, F3, refer-

ence gel, and control formulae were applied on the shaved 

dorsal surface by gentle rubbing for 15 seconds. After five 

hours, 0.1 mL of 1% w/v suspension of carrageenan in normal 

saline was injected into the subplantar region of the right hind 

paw of all control and treated rats. Edema volume, in terms 

of thickness, was measured in all four groups at hours 2, 4, 

and 6 after carrageenan injection using a micrometer (Ozaki 

Ltd, Tokyo, Japan).25 The induced thickness was measured 

by placing the foot of the rat between the anvil and spindle 

of the micrometer.

Mathematically, the degree of swelling can be 

expressed as:

	 % change in hind paw thickness = (C
t
–C

0
)/C

0
 × 100	 (4)

Where C
t
 is hind paw thickness at hours 2, 4, and 6 after injec-

tion of carrageenan, and C
0
 is the initial hind paw thickness 

before injection of carrageenan.

Analgesic activity
This study was conducted similarly to the anti-inflammatory 

study, except that the pain threshold response of the rat right 

hind paw was measured instead of edematous thickness. 

The pain threshold was measured prior to and at hours 

2 and 4  intervals after injection of carrageenan using a 

portable pain threshold device (YMF-P1) equipped with a 

data acquisition system (developed by the Department of 

Pharmacology, School of Pharmaceutical Sciences, Uni-

versiti Sains Malaysia, Penang, Malaysia). The pressure 

(g) applied to the edematous hind paw caused the rat to 

withdraw its hind paw. The vocalization or struggle of the 

rat was recorded as the pain threshold, as described by Yam 

et al.26 Change in pain threshold (∆g) was calculated as the 

difference in pain threshold before and after injection of 

carrageenan.

Statistical analysis
Statistical analyses of steady-state flux across skin, amount 

of drug transferred through the cellulose membrane in vitro, 

and the analgesic and anti-inflammatory effects of the various 

formulations were performed using one-way analysis of 

variance (ANOVA). A statistically significant difference was 

accepted at P , 0.05.

Results and discussion
Formulation and characterization
Droplet size measurements were found to be less than 140 nm 

for the F1, F2, and F3 formulae as determined by photon 

correlation microscopy. Droplet size was also measured for 

formula F3 by TEM.17 Formula F3 was found to be stable 

for a three-month period at 40°C, 25°C, and 5°C (data not 

shown).18 Formulation F1 was excluded from this study 

because it showed drug precipitation within seven days of 

preparation.18 Only the F2 and F3 formulae were assessed 

for their in vitro activity. The polydispersity index of for-

mulations F2 and F3 were 0.037 ± 0.006 and 0.052 ± 0.009, 

respectively.

Drug transfer across cellulose  
acetate membrane
A drug must be released from its vehicle prior to penetration 

and partition into the skin. For certain formulations, drug 

release from the topical preparation is the rate-limiting step 

for drug absorption. Therefore, to ascertain that drug release 

from the vehicle was not the rate-limiting step for absorption, 

diffusion studies through an artificial synthetic membrane 

using the Franz diffusion cell has been proposed by earlier 

researchers. The membrane used must be inert and porous 

so as to allow drug passage in accordance with molecular 

weight. When drug molecules have a molecular weight as 

small as the pores of the synthetic membrane, they are able 

to pass through it.27,28

Drug transfer rates through the cellulose membranes of 

both nanocream formulae were compared with the transfer 

rate of the commercially available 0.5% piroxicam gel. 

Figure 1 shows a considerably higher and faster drug transfer 

rate across the membrane for nanocream F3 than for nano-

cream F2. It can be observed that drug transfer through the 

membrane is affected by the pH of the external phase of the 

nanocream. This difference in drug transfer may be attributed 
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to the difference in the solubility of piroxicam at different 

pH conditions. Piroxicam with its weak acidic properties is 

more soluble in pH 7.4 buffer than in pH 6 buffer. Due to its 

high solubility at pH 7.4, partitioning of piroxicam from the 

oil phase to pH 7.4 buffer would be higher, hence leading to 

a higher drug transfer rate.

Diffusion of the drug incorporated into an oil-in-water 

cream or nanocream system is affected by partitioning of the 

drug between the internal oil phase and the external water 

phase. This means that the drug must diffuse from the internal 

phase to the external phase where the drug molecules are free to 

be released. Hence, by increasing drug solubility in the external 

phase, ie, enhancement of drug partitioning from the internal 

oil phase to the external aqueous phase, it is possible to observe 

the driving force for enhanced drug release.29

Because the solubility of piroxicam in the mixed surfac-

tants system of Tween 80 and Span 20 is higher compared 

with that in the POEs and buffers pH 6 and 7.4, the piroxicam 

molecules would then be mainly integrated at the oil water 

interface.30 Therefore, it is expected that drug diffusion to the 

external phase would be faster. The solubility of piroxicam 

in pH 7.4 buffer is about 10 times higher than that in pH 6 

buffer.17 Presumably, partitioning of piroxicam from the oil 

to the pH 7.4 buffer would also be about 10 times higher than 

that in pH 6 buffer. This higher solubility and partitioning 

would be the driving force for the drug to be transferred 

through the membrane at a faster rate. Figure 1 shows that 

100% of the drug was transferred from formulation F3 within 

eight hours, while only 80% of the drug was transferred from 

formulation F2 over the same time period.

Transfer of the drug through the membrane from formula 

F3 was faster, even during the initial hours, than that from 

formula F2. This may be due to the presence of a higher amount 

of soluble piroxicam in the external phase (pH 7.4 buffer) of the 

nanocream.31 In the context of the reference gel, such gels can be 

prepared by various techniques. The simplest method involves 

dispersion of the desired quantity of polymer in the selected 

media and keeping the mixture undisturbed over a certain period 

of time. This is followed by adding the drug initially dissolved 

in a suitable medium. In the case of the reference system, it is 

expected that piroxicam is dissolved in the cosolvent system 

(propylene glycol and ethanol) that is subsequently mixed with 

the previously prepared carbopol dispersion.

The reference showed a comparable release profile to that 

of F3 at eight hours, but was slower during the initial hours of 

release, as indicated by the difference in T
50%

 of drug release 

presented in Table 1. There was a statistically significant dif-

ference (P , 0.05) in T
50%

 between formulation F3 and the 

reference gel. This difference may be due to the swelling of 

polymer in the reference formula, which swells in the presence 

of diffusion fluid, thereby slowing down the release process. 

Generally, polyacrylic acid polymers have a wide range of 

applications in modified-release and external gel preparations. 

This can be attributed to their versatile properties. These 

resins exert their action via different mechanisms. They can 

be pH-sensitive, which makes them soluble under specific 

body conditions, or absorb water, swell, and subsequently 

form a gel network.32 Carbopol, in particular, is widely used 

as a gelling and thickening agent. Its gelling capabilities are 

highly dependent on the neutralization process of the carboxy-

late groups available in the polymer backbone. The higher the 

pH value of the neutralizing agent, the greater the thickening 

ability. Phosphate-buffered saline (pH 7.4) was used to assess 

the in vitro release profile. This media causes the carbopol to 

swell and form a gel network that may impede or reduce the 

release of piroxicam from the reference formula.33

At eight hours, the gel formulation had lost its strength 

and 96% of the drug was released. The high drug transfer 

rate from the reference formulation could be the result of 

free passage of piroxicam dissolved in the medium through 

the pores of the cellulose membrane. The release from the 

reference was higher than that from formulation F2. This 

may be because, as explained earlier, in case of a nanocream 
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Figure 1 Comparative mean in vitro cellulose acetate membrane transport profiles 
of piroxicam from formulations F2, F3 and reference gel. 
Note: Mean ± S.D., N = 3.

Table 1 Mean T50% drug transport across the cellulose acetate 
membrane from different formulations

Formulation T50% (hr)

Formulation F2 4.30 ± 0.249
Formulation F3 3.05 ± 0.244
Reference 3.98 ± 0.047

Note: Mean ± S.D., N = 3.
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the drug needs to be partitioned from the inner layer to the 

outer layer before it is released. Presumably piroxicam is 

present in the palisade layer on the inner side of the droplet, 

which may result in controlled release of the drug. As the 

partitioning of the drug into phosphate-buffered saline 

(pH 6) from the oil phase was lower, the release is expected 

to be slower.

Drug transport through rat skin
In vivo measurement of drugs administered transdermally 

is a complex process. This is because some drugs exhibit 

very low plasma concentrations, rendering them impossible 

to be detected using analytical techniques. Problems with 

obtaining ethical approval for in vivo skin studies, as well as 

time constraints and expense, have motivated researchers to 

find an alternative technique for measuring drug permeation 

through skin.34 Hence, in vitro drug permeation through skin 

was introduced as an alternative way to measure drug perme-

ation. Unless the compound is highly lipophilic, the stratum 

corneum is the limiting step for transdermal drug absorption. 

Because drugs are mainly absorbed from the dermis layer, the 

amount of drug that can be transported through the stratum 

corneum can be used to represent the amount of drug that 

enters the systemic circulation.35

Accordingly, topical drugs that exert their effects in 

deeper tissues are best assessed using full thickness skin. 

Undeniably, human skin is the best model for obtaining 

in vitro permeability data. However, lack of availability of 

human skin has caused researchers to shift their attention 

to animal skin as an alternative model. The Wistar rat skin 

model has been used extensively, in view of the fact that its 

stratum corneum thickness, as well as water permeability, is 

similar to that of human skin.36

In our study, drug transport prior to steady state was 

similar for all the formulations during the first three hours, as 

can be seen in Figure 2. From Table 2, it can also be observed 

that the flux of piroxicam during the steady state of formula 

F3 was significantly higher (P , 0.05) than that of formula 

F2 and that of the reference formulation. The most widely 

accepted mechanism by which the nanocream enhances the 

flux is that permeation of the drug-loaded nanocream occurs 

directly via the droplets to the stratum corneum without 

nanocream fusion at the stratum corneum.37 This indicates 

that enhancement of the effect of the nanocream is caused 

by the nanosized droplets dispersed in the continuous phase, 

which can move easily into the stratum corneum and trans-

port the drug through the skin barrier. The oil can enter the 

hydrophobic tail of the stratum corneum bilayer, disturb it 

by creating separate domains, and induce highly permeable 

pathways in the stratum corneum.38 Another possible reason 

for the observed enhancement may be a synergistic effect of 

the nanocream components.15

POEs has been found to have an occlusive effect that can 

induce hydration of the skin combined with the hydration 

effect of water, thereby resulting in increased skin porosity 

which improves absorption.16 A possible explanation for 

this is the presence of an aqueous “pore pathway” consist-

ing of discontinuous domains within the lipid bilayers of 

the stratum corneum, which may expand and interconnect 

to form a continuous “pore pathway” under high hydration 

conditions.37 Accordingly, when piroxicam was prepared in 

a microemulsion form comprising different oil phases, oleic 

acid was the oil of choice for improvement of drug solubility 

and skin permeability through excised rat skin.39

The surfactants used, ie, Tween 80 and Span 20, have 

been found to act as permeation enhancers in different skin 

models.40–42 These surfactants can disturb the lipid bilayers 

of the stratum corneum, thereby making it a less effective 

barrier to drug permeation. Correspondingly, surfactants 

with polyoxyethylene chains have been found to enhance 

permeation of piroxicam through various skin models by 

reversible disturbance of the stratum corneum layer.43 The 
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Figure 2 Comparative mean in vitro rat skin permeation profiles of piroxicam from 
formulations F2, F3 and reference gel.
Note: Mean ± S.D., N = 3.

Table 2 Permeability parameters of the different formulations

Formulation Flux  
(μg/cm2 hour) × 10−3*

Permeability coefficient 
(cm/hour)*

Reference   3.10 ± 0.65 0.59 ± 0.12
Formulation F2   4.92 ± 0.26 0.94 ± 0.05
Formulation F3 10.22 ± 0.16 1.95 ± 0.03

Note: *Mean ± standard deviation, n = 3.
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small droplet size of the nanocream may also be correlated 

with an increased permeation rate. This is because of an 

increase in surface contact between the skin and the small 

droplets containing the drug. Kreilgaard has described the 

topical enhancing permeability effect of droplet size by 

comparing formulations containing the same constituents 

but different droplet sizes.44

When the flux of formulations F2 and F3 was compared, 

because both formulations contain equal amounts of oil and 

surfactants, an increase in the pH of the external phase of 

the nanocream seemed to have a high enhancement effect 

on drug permeation through the skin. This result is con-

sistent with the results of previously reported piroxicam 

permeation studies.45,46 When piroxicam was incorporated 

into an oil-in-water ointment base and the pH of the system 

was adjusted with sodium carbonate from 3.2 to 9.2, there 

was an increase in percutaneous absorption of piroxicam 

through rabbit skin.45 Similarly, a gradual increase in pH 

of topical preparations containing different NSAIDs leads 

to an approximately10-fold increase in their flux. There is 

an assumption that higher absorption of ionized NSAIDs 

is related to an ion-pairing effect.46 It is supposed that ionic 

drugs can form an ion pair with external skin components, 

such as skin fatty acids, and the resulting ion pair would be 

more lipophilic.47,48 Piroxicam could also form an ion pair 

with the buffer components of the external phase of the 

nanocream, ie, sodium hydroxide and potassium dihydro-

gen phosphate, resulting in higher lipophilicity and better 

penetration. Accordingly, the complexity of combining 

piroxicam with diethanolamine to produce ion pairs has 

also been investigated by pairing of phenolic groups of 

piroxicam and an amine salt, thereby improving drug flux 

through rat skin. Skin permeation enhancement is possible 

because of increased piroxicam solubility.49 The net effect 

of drug solubility in the formulation and its permeation and 

flux through porcine epidermis has also been studied.50 It was 

found that the incorporation of piroxicam into β-cyclodextrin 

or hydroxypropyl β-cyclodextrin increased piroxicam flux 

by several-fold when compared with passive diffusion. On 

the other hand, the incorporation of a piroxicam-cyclodextrin 

complex into a microemulsion system has also been per-

formed, showing that the microemulsion system had a reser-

voir effect on drug release. This is possibly due to the higher 

tendency of piroxicam to dissolve in the oil phase (isopropyl 

myristate), leading to lesser partitioning of the drug to the 

external phase.29 In other words, the permeation rate of a drug 

from a microemulsion may be increased by using different 

internal phases and composition of a microemulsion, given 

that the affinity of the drug to the internal phase can be easily 

modified to favor partitioning into the external phase and 

then into the stratum corneum.51

Another assumption for the enhancement of drug 

transfer relates to the transfer of ionized drugs through the 

ionic channels oriented in the lipid bilayers of the stratum 

corneum.51 The higher transfer of piroxicam from formula 

F3 compared with formula F2 through the cellulose acetate 

membrane may also be related to the difference in permeabil-

ity through the skin, given that drug release from the vehicle 

is essential for determination of drug permeability in skin.

Anti-inflammatory activity
NSAIDs administered topically penetrate the skin slowly 

and pass in small quantities into the systemic circulation. 

The bioavailability of NSAIDs after topical application is 

generally less than 5%–15% compared with equivalent oral 

administration. On the other hand, the ability of NSAIDs to 

reach deeply into the affected tissue to induce a topical local 

effect is still debatable. The multilayered composition of skin 

renders the extent of penetration of various drugs different at 

different skin levels. Generally, most drugs are applied with 

the purpose of enhanced topical delivery to target underlying 

tissues. For example, NSAIDs cannot accumulate sufficiently 

at the specified tissue because of absorption through the 

blood vessels in the dermis layer, preventing the drug from 

penetrating further into deeper tissues.52

Correspondingly, it has been found that topical admin-

istration of NSAIDs leads to a relatively high concentration 

in the dermis as compared with the oral route.53 The ability 

of piroxicam to achieve local enhanced delivery via topical 

application has been studied by McNeill et al.52 A comparison 

was made between the muscle content of piroxicam beneath 

the area of topical application with that after an intravenous 

dose. It was found that topical application of piroxicam could 

achieve high local concentrations than the intravenous dose. 

The peak concentration of piroxicam in muscle was attained 

four hours after topical application and 12 hours after intra-

venous administration. Therefore, plasma drug concentra-

tions achieved locally may not reflect drug bioavailability. 

In this situation, in vivo pharmacodynamic measurement 

(of anti-inflammatory and analgesic properties) may be of 

prime importance.54

It can be seen in Figure  3 that formula F3  showed a 

significantly higher (P  ,  0.05) anti-inflammatory effect 

compared with the control, reference, and F2 formulae 

at two-, four-, and six-hourly intervals after injection of 

carrageenan. These results correlate well with in vitro results 
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for aceclofenac reported previously by Shakeel et al.55 Flux 

across the skin for formula F3 was nearly 3.3-fold higher 

than that obtained from the reference. The greater the flux 

across the skin, the greater the anti-inflammatory activity. 

Higher permeability indicates a greater amount of piroxicam 

available to generate an anti-inflammatory effect at the area 

of injection. Formula F2 also showed a significantly greater 

effect than that of the reference formulation (Table 2) .

Both formulae F2 and F3  showed higher anti-inflam-

matory activity compared with the reference formulation. 

This rapid reaction may be attributed to the lower droplet 

size and the cumulative effect of the excipients used which 

would eventually increase the permeability of the drug. The 

anti-inflammatory effect of formula F3 was higher than that 

of F2. This may correspond to the difference in transport of 

piroxicam through the cellulose membrane and full thick-

ness rat skin.

Analgesic activity
Figure 4 shows that F3 had significantly higher analgesic 

activity (P , 0.05) relative to that of the control, reference, 

and F2 formulae. Prostaglandins play an important role 

in promoting signs and symptoms of inflammation and in 

sensitizing terminal afferent C fibers in the periphery and 

enhancing the response of C fibers to algesic stimuli result-

ing in hyperalgesia.56 Inhibition of the cyclo oxygenase 

enzyme and prostaglandin synthesis can rapidly reverse 

the hyperalgesia, pain, and inflammation.57 Hence, a for-

mula with faster and higher flux could produce a higher 

analgesic effect.

Conclusion
Formula F3 had a high drug transfer rate through a cellulose 

acetate membrane compared with F2 and the reference gel 

during the initial hours of permeation. Both F3 and reference 

gel showed 100% drug release after eight hours of permeation. 

However, formulation F2 and F3 exhibited a higher skin per-

meation flux at steady state compared with the reference gel. 

This may be attributable to the reduced droplet size, along 

with the synergistic effect of the nanocream components 

which may enhance drug permeability. Formula F3 also dem-

onstrated a higher flux compared with F2. This is perhaps due 

to a difference in partitioning of the drug from the internal oil 

phase to the external buffer phase of the emulsion system. The 

higher pH value of the external phase of formula F3 relative 

to that of F2 leads to higher availability of piroxicam in the 

external phase, probably leading to a higher release of the 

drug from formula F3. Furthermore, the study discovered 

that the prepared nanocream formulation of F3 and F2 had 

higher analgesic and anti-inflammatory activity compared 

with the currently marketed gel. The enhanced reaction 

may be due to the smaller droplet size along with increased  

permeability.
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Figure 3 The effect of topical administration of different formulations of piroxicam 
on rat hind paw edema at 2, 4 and 6 hours after administration of carrageenan.
Notes: *** and ** indicate significant at P  ,  0.001 and P  ,  0.01, respectively. 
Mean ± S.D., N = 6.
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Figure 4 The effect of topical administration of different formulations of piroxicam 
on rat hind paw hyperalgesia at 2 and 4 hours after administration of carrageenan. 
Notes: *** and ** indicate significant at P  ,  0.001 and P  ,  0.01, respectively. 
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