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Purpose: This study aimed to explore the genomic characterization of multidrug-resistant IncHI5-carrying Klebsiella michiganensis
strains and detailed genomic dissection of the IncHI5 plasmids.
Materials and Methods: Through whole-genome sequencing, the IncHI5 plasmid pK92-qnrS was obtained from a single clinical
K. michiganensis isolate K92. All complete genomes of K. michiganensis strains from the Genome database of NCBI were collected
and used to construct a maximum likelihood (ML) phylogenetic tree. The epidemiology and geographic distribution of all the
K. michiganensis strains were conducted. An extensive comparison of the seven IncHI5 plasmids of K. michiganensis (one from
this study, six from GenBank) was applied.
Results: This study revealed that all K. michiganensis strains carrying IncHI5 plasmids from different clonal groups were located in
the southeast coastal area of China. The backbone regions of IncHI5 plasmids were composed of replicon (repHI5B and repFIB),
partition (parABC), and conjugal transfer (tra1/tra2). The main accessory resistant regions of IncHI5 could be divided into two
categories, Tn1696-related region and Tn6535-related region. These seven IncHI5 plasmids carried multiple drug-resistance genes
which were all mediated by the mobile genetic elements (MGEs).
Conclusion: Data presented here help to provide an overall in-depth understanding of epidemiology and geographic distribution of
IncHI5-carrying K. michiganensis and the structure and evolutionary history of IncHI5 plasmids.
Keywords: Klebsiella michiganensis, mobile genetic elements, Tn1696, Tn6535, antimicrobial resistance

Introduction
Klebsiella michiganensis is a potential emerging pathogen causing serious and difficult-to-treat nosocomial infections. In
2012, K. michiganensis was first recovered from a toothbrush holder and relatedness with Klebsiella oxytoca was
originally recognized by a list of housekeeping genes, although it was finally proved by DNA-DNA hybridization (DDH)
that it should be a new species.1 Since then, clinical cases caused by K. michiganensis have been reported worldwide.
Some K. michiganensis isolates showed antibiotic resistance, and even multidrug-resistance (MDR) through the
production of carbapenemases.2–4 In existing reports, there have been multiple genetic recombination and integration
events of drug resistance genes through mobile genetic elements (MGEs) such as transposons and plasmids carried by
K. michiganensis.5–8 The existence and properties of plasmids make K. michiganensis isolates a serious threat, and it is of
interest to conduct in-depth studies of the structure and function of the plasmids carried by K. michiganensis.
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IncHI5 is one of the five subgroups of plasmids subdivided under IncHI based on its replication genes repHI5B and
repFIB.9 IncHI5 plasmids, like most IncHI plasmids, have a size usually greater than 200 kb and a wide host range.10

IncHI5 plasmids are significant vectors carrying genes encoding resistance to heavy metals and antibiotics.11 It
is necessary to continuously monitor the prevalence of IncHI5 plasmids in different species.12 However, research on
the structure and evolution of IncHI5 plasmids is still limited, and there is a lack of an overall study on IncHI5 plasmids
within specific species.13

IncHI5 plasmids carried by K. michiganensis were first reported in 2012 in a strain from Miaoli, Taiwan, China.14

There are limited reports on IncHI5 plasmids carried by K. michiganensis. The sequence of repHI5B (the key identified
replicon of IncHI5 plasmids) was used to perform BLAST alignment against the GenBank15 of the National Center for
Biotechnology Information (NCBI) to cover all known IncHI5 plasmids. From the alignment, a total of six IncHI5
plasmids whose host strain were K. michiganensis were obtained (last accessed on December 12, 2021): pKOX_R1
(accession number CP003684),14 p12084-HI5 (accession number MW810613), pCP024641 (accession number
CP024641), pJNQH491-2 (accession number CP075883),16 p1 (accession number CP067094), and pKOX7525_1
(accession number CP065475).17

In this work, we characterized IncHI5 plasmid pK92-qnrS (accession number OL828743; from Taizhou, Zhejiang,
China) and presented further comprehensive genomic comparison of all IncHI5 plasmids carried by K. michiganensis
(six plasmids mentioned above and pK92-qnrS), and discussed epidemiology and geographic distribution of
K. michiganensis, to gain a deeper understanding of the genomic characterization of multidrug-resistant IncHI5-
carrying K. michiganensis strains and detailed genomic dissection of the IncHI5 plasmids.

Materials and Methods
Identification of Bacterial Strain and Conjugal Transfer
K. michiganensis strain K92 was isolated from a patient’s sputum in Taizhou Municipal Hospital affiliated with Taizhou
University of China in 2018. Strain K92 was initially identified as K. oxytoca by Vitek 2. Moreover, bacterial species
identification was performed using chromosomal genome sequence-based average nucleotide identity (ANI) analysis and
finally proved that K92 belongs to K. michiganensis.18 THO-011 (accession number AP022547), the standard strain of
K. michiganensis, was used as reference. The OrthoANI value between THO-011 and K92 was 98.83% (> 95% cut-off),
which was calculated by OAT 0.93.1.19

Conjugal transfer experiments were carried out with sodium azide-resistant Escherichia coli J53 being used as a recipient,
and strain K92 as a donor. The donor and recipient strains were grown in three milliliters (mL) brain heart infusion (BHI)
broth overnight at 37°C. And then, 50 μL of donor strain culture was mixed with 500 μL of recipient strain culture (v:v =
1:10) and 4.5 mL of fresh BHI broth. In addition, 100 μL of the mixture was applied onto a cellulose filter membrane (pore
size, 0.22 μm) already placed on a BHI agar plate. After incubation at 25 °C for 16–18 h, the filter membrane was taken out
and vortexed in 1 mL of BHI broth. The vortex mixtures were plated on BHI agar plates containing 40 mg/L ciprofloxacin
and 150 mg/L sodium azide for the selection of the E. coli J53 transconjugants. However, repeated conjugation experiments
failed to transfer the qnrS marker from K92 to E. coli J53 (sodium azide resistance).

Sequencing and Sequence Assembly
Genomic DNAwas extracted from strain K92 using a Gentra Puregene Yeast/Bact. Kit (Qiagen, Valencia, CA). Libraries
were prepared separately using the TruePrepTM DNA Library Prep Kit V2 and the SQU-LSK109 Ligation Sequencing
kit. After the preparation of the library was completed, it was separately sequenced on an Illumina HiSeq X Ten platform
using the 2 × 150-base-pair paired-end mode (Illumina Inc., San Diego, CA, USA) and GridION X5 platform using the
long reads (Oxford Nanopore, UK), the sequencing depth was 100x. To improve the reliability of data processing, raw
data from HiSeq X Ten platform and GridION X5 platform were trimmed to obtain the high-quality clean reads (clean
data) by Canu v1.8 (https://canu.readthedocs.io/en/latest/index.html). The paired-end short Illumina reads and the long
Nanopore reads were assembled de novo utilizing Unicycler (v0.4.5) (https://github.com/rrwick/Unicycler).
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Whole Genome Phylogeny and Genetic Background Analysis
A total of 32 publicly available complete genome sequences of K. michiganensis were downloaded from NCBI (last
accessed on December 12, 2021), which were isolated from various sources in 2011–2021. Genomes were aligned
against the reference genome (THO-011, the standard strain of K. michiganensis) using MUMmer v3.1,20 to identify
the SNPs in the backbone regions. A total of 484632 SNPs (from 3011423-bp length core genomes) were identified in
the seven K. michiganensis strains chromosome sequences, and an ML phylogenetic tree was constructed using this
SNPs dataset. Phylogenetic trees were drawn using the Interactive Tree of Life (iTOL) programs.21 The evolution
analysis of the seven IncHI5 plasmids’ backbone regions was consistent with the above-mentioned phylogenetic
analysis method.

Sequence Annotation and Comparison
Sequence annotation and prediction of ORFs and pseudogenes were performed using RAST2.0,22 and further manual
annotation was done with BLASTP/BLASTN23 against the UniProtKB/Swiss-Prot24 and RefSeq databases.25 Annotation
of drug resistance genes, MGEs, and other features was performed using online databases such as CARD,26 ResFinder,27

ISfinder,28 INTEGRALL,29 and the Tn Number Registry.30 MUSCLE 3.8.3131 and BLASTN were used for multiple and
pairwise sequence comparisons. The genome map was drawn using Inkscape 1.1 (https://inkscape.org/en). The heatmap
of resistance genes carried by IncHI5 plasmids included in this study was drawn with iTOL.

Nucleotide Sequence Accession Number
The complete sequences of the chromosome of K92 and plasmid pK92-qnrS were submitted to GenBank database, under
accession numbers CP089315 and OL828743, respectively.

Results
Genomic Characterization of K. michiganensis Genomes
A total of 32 complete genomes of K. michiganensis strains with geographic distribution and other background
information were obtained from the Genome database of NCBI (last accessed on December 12, 2021) (Figure 1A and
Supplementary Table S1). The chromosomal sequences of these 32 strains were aligned with the chromosomal
sequence (accession number CP089315) of K. michiganensis strain K92 in this study, and strain HS11286 (accession
number CP003200),32 the standard strain of Klebsiella pneumoniae, was used as the outer group, and a total of
484,632 SNPs were obtained. Among them, K. michiganensis strain RC10 (accession number CP011077) was
excluded because of the low coverage value of the comparison with core genome of the 32 strains (14.8%).
A maximum likelihood (ML) phylogenetic tree was constructed using these SNPs’ dataset (Figure 1B). The
population structure showed that K. michiganensis strains carrying IncHI5 plasmids were scattered in different clades
of the entire phylogenetic tree (orange dots and red star in Figure 1B), instead of being clustered and distributed in
a certain branch of the tree, which may imply the acquisition of IncHI5 plasmids was an overall behavior of
K. michiganensis and was not related to a specific branch of K. michiganensis. The geographic distribution showed
that K. michiganensis strains were mainly distributed in North America, Europe, East Asia, and Oceania (Figure 1A).
Although K. michiganensis had also been reported in South Africa before,6,33 the complete genome was not available
in the NCBI Genome database, so K. michiganensis reported in South Africa was not included in this study. Sixteen
of these strains originated in China. Coincidentally, all the K. michiganensis strains carrying IncHI5 plasmids were
located in the southeast coastal area of China such as Zhejiang, Fujian, Taiwan, and Guangdong (orange dots and red
star in Figure 1A–C). This geographic distribution indicated that K. michiganensis strains carrying IncHI5 plasmids
were spread in a southeast coastal area of China, although the underlying mechanism is currently unclear.

Overview of All IncHI5 Plasmids Carried by K. michiganensis
The length of the seven plasmids mentioned above ranged from 274 kb to 397 kb, and the number of ORFs predicted on
them ranged from 288 to 416 (Table 1 and Supplementary Figure S1). All the seven plasmids belonged to IncHI5
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plasmids, because they all contained the replicon combination repHI5B and repFIB unique to IncHI5 plasmids, and had
a similar conserved backbone regions structure.12 Table 1 showed the accession number, host bacterium, total length,
total number of ORFs, mean G+C content, length of backbone, mean G+C content of backbone, origin, and other
information of these plasmids. With the exception of plasmid pCP024641, the difference in the length of the backbone
region of these plasmids was small. The extra part of the backbone region of pCP024641 revealed in the comparative
genomics that it may be derived from the integration of part of the backbone regions of the IncC plasmids.34 All these

A

B C

Figure 1 Population distribution and geographic distribution of all known Klebsiella michiganensis strains with complete genomes. (A) Geographic locations of 32
K. michiganensis strains in the world. The dots in the figure are used to mark the geographic distribution of strains. If the number of strains distributed in countries except
China was greater than one, one dot is used to represent. Strains located in China are represented by smaller dots due to their dense distribution. The black dots represent
the K. michiganensis strains that did not carry IncHI5 plasmids, the orange dots represent the K. michiganensis strains carrying IncHI5 plasmids, and the red star represents the
K. michiganensis strain carrying pK92-qnrS from this study. (B) Maximum-likelihood tree. The degree of support (percentage) for each cluster of associated taxa, as
determined by bootstrap analysis, is shown with blue dots next to each branch. The bar corresponds to the scale of sequence divergence. The meaning of the symbols
corresponds to that in (A). (C) Geographic locations of K. michiganensis strains in China. The meanings of the symbols correspondto those in (A).
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Table 1 Major Features of IncHI5 Plasmids Carried by Klebsiella michiganensis Included in This Study

Plasmid Accession
Number

Host Bacterium Total
Length
(bp)

Total
Number of

ORFs

Mean G+C
Content (%)

Length of
Backbone

(bp)

Mean G+C Content
of Backbone (%)

Origin Year Specimen Host

pK92-qnrS OL828743 Klebsiella
michiganensis k92

312,620 318 47.0 215,280 44.7 Taizhou,

Zhejiang China

2017 Sputum Homo

sapiens

pKOX_R1 CP003684 Klebsiella
michiganensis E718

353,865 352 47.5 215,028 44.7 Miaoli, Taiwan

China

2010 – Homo

sapiens

p12084-HI5 MW810613 Klebsiella
michiganensis

12084

273,923 288 46.6 202,404 45.0 Zhejiang, China 2021 – Homo

sapiens

pCP024641 CP024641 Klebsiella
michiganensis F107

308,586 324 47.1 257,513 45.7 Fuzhou, Fujian
China

2014 Sputum Homo
sapiens

pJNQH491-2 CP075883 Klebsiella
michiganensis
JNQH491

307,464 307 47.9 211,726 44.6 Xiamen, Fujian
China

2020 Blood Homo
sapiens

p1 CP067094 K. michiganensis
B106

284,262 298 47.0 203,453 45.1 Guangzhou,

Guangdong

China

2021 – Homo

sapiens

pKOX7525_1 CP065475 Klebsiella
michiganensis 7525

397,447 416 49.1 205,793 44.8 Hangzhou,

Zhejiang China

2020 Urine Homo

sapiens

Notes: Plasmid pK92-qnrS was fully sequenced in our laboratory while plasmids pKOX_R1, p12084-HI5, pCP024641, pJNQH491-2, p1, and pKOX7525_1 were derived from GenBank. The comparison of the genome structure of all
seven plasmids is explained in the main text.
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seven IncHI5 plasmids had one or more relatively huge and complex MDR regions. Phylogenetic analysis, accurate
annotation and detailed comparison were performed to gain an overall deeper evolution history and structural information
of these plasmids.

Comparison of the Seven IncHI5 Plasmids
The genetic structure of all IncHI5 plasmids can be divided into backbone regions and accessory regions. The length of
the backbone regions of these seven plasmids varies from 202kb to 257kb (Table 1). Pairwise sequence comparison using
BLASTN showed that they all had 99% nucleotide identity and coverage greater than 73% (Supplementary Table S2).
A linear comparison of the backbone regions of these seven plasmids revealed the following characteristics
(Supplementary Figure S2): (1) The major IncHI5 backbone genes or gene loci such as repHI5B, repFIB, parABC,
and tra1/tra2 were conserved. (2) Among the seven plasmids, all except pCP024641 contained two conjugal transfer
regions (tra1/tra2). Although the structure of tra2 in different plasmids was not exactly the same, some lost a part of
transfer genes, which may hinder their self-transferability. (3) pCP024641 had additional backbone regions compared
with other plasmids, including a region of conjugative transfer. Comparing with IncC plasmid pR55,34 pCP024641
showed more than 95% identity, suggesting that this fragment may be derived from IncC plasmid. A total of 705 SNPs
were identified from the backbone regions of these seven plasmids, and an ML phylogenetic tree was constructed using
these SNPs dataset. Accordingly, these seven plasmids could be assigned into three clades: I (pKOX7525_1 and
pJNQH491-2), II (pK92-qnrS and pKOX_R1), and III (p12084-HI5, p1, and pCP024641) (Figure 2).

Large accessory regions were inserted into the different loci of all the seven plasmid backbones, such as insertion
sequences (ISs) and transposons. All the seven plasmids except p12084-HI5 had two main longer accessory resistance
modules (Supplementary Figure S2). These accessory resistance modules could be divided into two main categories
according to their structure and origin: Tn1696-related regions and Tn6535-related regions, and multiple drug-resistant
genes were carried on these accessory resistance modules. (Figure 2 and Supplementary Table S3).

Comparison of Tn1696-Related Regions
There were nine Tn1696-related regions in these seven plasmids (Figure 3), including 81.1-kb MDR-1 region and
41.9-kb MDR-2 region from pKOX_R1, Tn7383 from pK92-qnrS, Tn7384 from p12084-HI5, Tn7385 from pCP024641,
Tn7386 from pJNQH491-2, Tn7387 and 19.0-kb MDR region from p1, and 141.5-kb MDR-2 region from pKOX7525_1.
Due to the similarity of structure, these regions can be regarded as derivatives of Tn1696. Tn1696 was a unit transposon
of the Tn3 family,35,36 and its two ends were inverted repeat left (IRL) and inverted repeat right (IRR). The main
backbone structure of Tn1696 was tnpA (transposase)–tnpR (resolvase)–res (resolution site)–mer (mercury resistance
locus), and the concise class I integron In4 was inserted in the resolution site. Among the above nine Tn1696-related
regions, five regions were identified as newly designated unit transposons, namely Tn7383, Tn7384, Tn7385, Tn7386,
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Figure 2 Maximum-likelihood tree and heatmap of prevalence of resistance genes in the seven plasmids. Bootstrap is shown with blue dots next to each branch. The bar
corresponds to the scale of sequence divergence.
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and Tn7387, because these five regions contained paired terminal 38-bp IRL/IRR on both sides, and all (except Tn7387)
contained 5-bp direct repeats (DRs, target site duplication signals for transposition). In the structure of each remaining
four Tn1696-related regions, there was no pair of IRL/IRR, so the remaining four regions could not be defined as

Figure 3 Nine Tn1696-related regions from the seven plasmids. Genes are denoted by arrows. Genes, mobile genetic elements and other features are colored based on
their functional classification. Shading denotes regions of homology (nucleotide identity > 95%). The accession numbers of Tn169635,36 and Tn154837 for reference are
U12338 and AF550415, respectively.
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transposons. Tn7383, 41.9-kb MDR-2 region from pKOX_R1, Tn7384, Tn7385, Tn7386, Tn7387, 19.0-kb MDR region
from p1, and 141.5-kb MDR-2 region from pKOX7525_1 contained tnpA–tnpR fragments with high identity to Tn1696.
81.1-kb MDR-1 region from pKOX_R1, Tn7383, Tn7384, Tn7385, Tn7386, and Tn7387 contained the mer locus–IRR
fragments that were partially or completely identical to Tn1696.

Besides the similarity of Tn1696 backbones, all the nine Tn1696-related regions contained different integrons,
transposons, and putative resistance units which were related to resistant genes. Five Tn1696-related regions had
different derivatives of Tn1548, which was a composite transposon first reported in 2005 to be identified as a vector
of armA, a worldwide disseminated aminoglycoside resistance methylase gene.37 The 81.1-kb MDR region from
pKOX_R1 contained a total of 18 resistance genes, which were located at nine different resistance loci: truncated
aacC2–tmrB region, truncated IS26–catA2–IS26 unit, ars region, ΔTn1548, In797 [gene cassette array (GCA): aadA5–
gcu37–dfrA1], truncated IS26–blaLAP-2–qnrS1–IS26 unit, Tn5393c, IS26–blaSHV-12–IS26 unit, and IS26–fosA3–IS26
unit. The resistance markers from Tn7383 were truncated aacC2–tmrB region and In263 (GCA: aacA4–arr3). The
41.9-kb MDR region from pKOX_R1 included In263, ΔTn6339 (containing blaCTX-M-3 and blaTEM-1B), and ΔTn1548.
Tn7384 from p12084-HI5 contained three resistance loci: type A IS26–fosA3–IS26 unit, ∆Tn1548, and In1630 (GCA:
aadA17–catB3–arr3–blaSIM-1). Tn7385 from pCP024641 was most similar in structure to Tn1696, except that In4
inserted in Tn1696 was replaced by In37 (GCA: arr3–catB3–blaOXA-1–aacA4). Tn7386 from pJNQH491-2 included
truncated IS26–blaLAP-2–qnrS1–IS26 unit, blaNDM-1 and bleMBL containing ΔTn125, In211 (GCA: dfrB4). IS26–fosA3–
IS26 unit, IS26–mph(A)–IS6100 unit, and In469 (GCA: arr3–dfrA27–aadA16) were distributed on the 19.0-kb MDR
region from p1, and these two units shared the same IS26. 141.5-kb MDR-2 region from pKOX7525_1, a huge and
complex Tn1696-related region, contained a total of 17 resistance genes associated with nine different resistance loci: ars
region, Tn6399b, In1021, truncated IS26–blaLAP-2–qnrS1–IS26 unit, ΔTn5393c, blaSFO-1 region, ΔTn5053, ΔTn5563,
and In1377 (GCA: blaIMP-4–qacG2–aacA4–∆catB3) (Figure 3 and Supplementary Table S3).

Comparison of Tn6535-Related Regions
Tn6535 was a unit transposon of the Tn3 family, and its backbone structure was composed of tnpA–res–tnpR and the ars
locus.38 In the accessory regions of these seven plasmids, there were three Tn6535-related regions, which were 60.6-kb MDR
region from pK92-qnrS, 34.8-kb MDR-1 region from pJNQH491-2, and 37.0-kb MDR-1 region from pKOX7525_1. Since
there were no IRL/IRR pairs at both ends of these three regions, they could not be identified as intact transposons. The partial
fragments of these three regions showed high identity to the tnpA–res–tnpR backbone region in Tn6535.

The 60.6-kb MDR region from pK92-qnrS had a lot of accessory resistant modules: ΔTn5393c, truncated
IS26–blaLAP-2–qnrS1–IS26 unit, In263 (GCA: aacA4–arr3), ΔTn2 (containing blaTEM-1B), and ∆Tn1548. Moreover,
the 60.6-kb MDR region from pK92-qnrS had six copies of IS26, which indicated IS26 played a crucial role in the
formation of MDR region through homologous recombination.39 Both of 34.8-kb MDR-1 region from pJNQH491-2 and
37.0-kb MDR-1 region from pKOX7525_1 contained chrA–orf98 unit and IS26–mph(A)–IS6100 unit. Besides, there
were also msrAB region (carrying msrAB, confer resistance to erythromycin and streptogramin B) and ΔTn5393c
(carrying strA and strB) distributed on the 37.0-kb MDR-1 region from pKOX7525_1. In2132 (GCA: aacA4–arr3),
aacC2–tmrB region, and ΔTn21 were existed in 34.8-kb MDR-1 region from pJNQH491-2 (Figure 4).

18.4-Kb MDR Region from pCP024641
In addition, 18.4-kb MDR region from pCP024641 was different from other MDR regions and could not be divided into
Tn1696-related regions or Tn6535-related regions according to the structure (Figure 5). It carried drug resistance genes
such as strAB and blaTEM-1, locating in ΔTn5393c and aacC2–tmrB region.

Discussion
Since first being discovered in 2012, K. michiganensis has caused several serious and difficult-to-treat nosocomial
infections.2–4,6–8 IncHI5 plasmids, a subgroup of IncHI, usually carry a variety of MGEs and drug resistance genes
according to previous reports.9,12,40,41 The K. michiganensis carrying IncHI5 plasmids were identified frequently in the
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Figure 4 Tn6535-related regions from pK92-qnrS, pJNQH491-2, and pKOX7525_1. Genes are denoted by arrows. Genes, mobile genetic elements and other features are colored based on their functional classification. Shading denoted
regions of homology (nucleotide identity > 95%). The accession numbers of Tn653538 and Tn154837 for reference are CP009706 and AF550415, respectively.
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last two years.16,17 The similarities and differences of the genome structure of IncHI5 plasmids and the population and
geographic distribution within the K. michiganensis species have urgently needed to be studied.

In this work, seven IncHI5 plasmids carried by K. michiganensis strains were accurately annotated and compared in
detail, and their evolutionary history was analyzed (Table 1). Among the seven K. michiganensis strains carrying above-
mentioned IncHI5 plasmids (Supplementary Table S1), strain E718 containing pKOX_R1 was the first reported case,14

and pKOX_R1 was reported as a multidrug resistant plasmid carrying three β-lactamase genes (blaCTX-M-3, blaTEM-1, and
blaSHV-12).42 Strain E718 was obtained from urine and drainage from a pelvis cystic lesion of a patient in
November 2010, and the original classification classified E718 as K. oxytoca, although it has now been reclassified as
K. michiganensis. After that, IncHI5 plasmids and K. michiganensis have been reported worldwide, but there were no
reports of their co-occurring in nearly eight years. Then, starting from 2020, K. michiganensis carrying IncHI5 plasmids
have been reported several times.16,17 K. michiganensis carries IncHI5 plasmids at a low frequency, probably because
some K. michiganensis was misclassified as K. oxytoca and thus not counted. Perhaps it is also because K. michiganensis
have only recently attracted attention, and the rapid development of sequencing has also led to an increase in related
sequencing samples in recent years.

There were five complete sequences of IncHI5 plasmids in K. michiganensis uploaded to NCBI since 2020 (p12084-
HI5, pCP024641, pJNQH491-2,16 p1, and pKOX7525_117). Among them pCP024641 was the first reported case, which
was collected from Fujian Provincial Hospital, Fuzhou Fujian China. From a geographic view, the distribution of
pCP024641 and pKOX_R1 is relatively close; from the perspective of a phylogenetic tree, branches of pCP024641
and pKOX_R1 are also close, which may indicate a transmission event from Taiwan to Fujian. Later, IncHI5 plasmids
coexisting with K. michiganensis were reported in Guangzhou, Hangzhou17 and other places,16 and all these locations are
geographically located in the southeast coastal area of China. This distinctive geographic distribution may imply that the
acquisition of IncHI5 plasmids in K. michiganensis is related to some unique geographic-related conditions, although the
relevant internal mechanisms are still unclear. Phylogenetic analysis showed that K. michiganensis strains carrying
IncHI5 plasmids are located in different branches of the phylogenetic tree (Figure 1), and their distribution on the tree
was relatively scattered. This may indicate that the prevalence of IncHI5 plasmids carried by K. michiganensis are not
limited to a specific branch, but have spread in different clonal groups. In summary, K. michiganensis strains carrying
IncHI5 plasmids have appeared densely since 2020, and have a potential trend of outbreak; at the same time, multiple
clonal groups of K. michiganensis carrying IncHI5 plasmids have spread in the southeast coastal area of China.
Therefore, cases of IncHI5 plasmids occurring in K. michiganensis should be focused on and studied, and the attention
should be paid to their transmission mechanism.

These seven IncHI5 plasmids shared a similar structure with high nucleotide identity and coverage (Supplementary
Table S2), and two main large accessory resistance modules (Tn1696-related regions and Tn6535-related regions) were
contained in all these plasmids except p12084-HI5. In the nine Tn1696-related regions (Figure 3), 81.1-kb MDR-1 region
from pKOX_R1, Tn7383, Tn7384, Tn7385, Tn7386, and Tn7387 contained the mer locus–IRR fragments homologous to
Tn1696. mer locus is a series of operons with mercury resistance.43 The upstream of these mer locus were all
immediately adjacent to ISs such as IS26 and IS6100, indicating that the reason why these mer locus had different
lengths was that mer locus were interrupted by the insertion of ISs. Tn7383, 41.9-kb MDR-2 region from pKOX_R1,

18.4-kb MDR region
from pCP024641strA

strB
'
tnpA

blaTEM-1

tnpA
tm
rB
aacC2

tnpA
'
tnpA

tnpA
tnpA

IISS2266IISS2266IISS2266IISSCCfCfCCfCCfrfffrffrff 11r1

aaaaccCC2C2C2C2CC2––ttmtmtmtmtt rrBrBrBrBrrB rreeggiioonn

TTnn22 rreemmnnaannttTTnn22 rreemmnnaanntt

TTTTnn55333539933cc

Figure 5 18.4-kb MDR region from pCP024641. Genes are denoted by arrows. Genes, mobile genetic elements and other features are colored based on their functional
classification.
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Tn7384, Tn7385, Tn7386, Tn7387, 19.0-kb MDR region from p1, and 141.5-kb MDR-2 region from pKOX7525_1
contained the tnpA–tnpR fragments that were almost identical to Tn1696. In Tn1696, the tnpA–tnpR fragment is followed
by concise class 1 integron In4, and after the tnpA–tnpR fragments of these Tn1696 derivatives, In4 was replaced by
In263 (in Tn7383 and 41.9-kb MDR-2 region from pKOX_R1), In1630 (in Tn7384), In37 (in Tn7385), In211 (in
Tn7386), In1706 (in Tn7387), In469 (in 19.0-kb MDR region from p1), and In1377 (in 141.5-kb MDR-2 from
pKOX7525_1), respectively. This suggested integrations and replacements of integrons occurred downstream of tnpA–
tnpR fragments in the Tn1696-related regions. The mer locus and tnpA–tnpR fragments were located at the two sides of
the Tn1696-related regions (the junction with backbone regions). Although the insertion of ISs and the integration of
integrons occurred upstream and downstream respectively, main structure of mer locus and tnpA–tnpR fragments was
partially or completely retained, which indicated the homology of these Tn1696-related regions with Tn1696. In the three
Tn6535-related regions (Figure 4), each of their internal upstream contained the part of the tnpA–res–tnpR backbone
region of Tn6535, and they constituted the upstream boundary of each Tn6535-related regions respectively. All these
three Tn6535-related regions did not have the complete tnpA–res–tnpR backbone region of Tn6535. The tnpA–res–tnpR
regions were truncated due to the insertion of IS26 in the downstream, which suggested that these Tn6535-related regions
were formed by Tn6535 through genetic recombination.

The evolutionary history of these large accessory regions can be inferred from their internal structure and the
distribution of MGEs on it. The formation of these large accessory regions is mostly due to the insertion, transposi-
tion, and integration of MGEs. Some are the overall activities of several adjacent MGEs, and some are the individual
behaviors of a single MGE such as the insertion of a single IS. In 34.8-kb MDR-1 region from pJNQH491-2 and
37.0-kb MDR-1 region from pKOX7525_1 (Figure 4), chrA–orf98 unit and IS26–mph (A)–IS6100 unit seemed to
form an overall putative resistance unit, which was bounded by IS5075 and IS26. This unit was likely to mobilize as
a whole element and cannot be classified as a transposon. However, not all modules in the immediate vicinity can be
regarded as a single component. aacC2–tmrB region and ISKpn19 were closely adjacent to each other in both 81.1-kb
MDR-1 region from pKOX_R1 and Tn7383 (Figure 3), but they cannot be regarded as a single MGE. This is because
from their downstream structure, their downstream difference was only an insertion of IS10L. Therefore, their
formation was more likely to be caused by the insertion of this extra single IS10L. The evolutionary history caused
by the insertions of ISs also existed in Tn7384: ISKpn21 and ISKml1 were inserted upstream of orf543 and armA in
ΔTn1548, respectively, forming a new structure of accessory region. This view was also verified by comparison with
the reference Tn1548.

There were a variety of resistance-related MGEs distributed on these plasmids, and various types of antibiotic
resistance genes were discovered in these seven plasmids: a total of 14 drug-resistant genes phenotypes with 45
resistance markers, including β-lactam resistance, macrolide resistance, quinolone resistance, and so on (Figure 2 and
Supplementary Table S3). Among them, the resistance genes for β-lactam resistance were blaCTX-M-3, blaCTX-M-14,
blaIMP-4, blaNDM-1, blaOXA-1, blaOXA-16, blaSFO-1, blaSIM-1, and blaTEM-1. Except for pK92-qnrS and p1, the other five
plasmids all contained one or more β-lactam resistance genes, suggesting that the IncHI5 plasmids in K. michiganensis
were good vectors for antibiotic resistance genes.

Conclusions
In conclusion, IncHI5 plasmids have spread in different clonal groups of K. michiganensis strains and have recently
appeared intensively, suggesting that they have a potential for outbreak. Up to now, K. michiganensis strains carrying
IncHI5 plasmids have only appeared in the southeast coastal area of China, and their internal mechanism is urgently
needed to be studied. The large accessory regions in the IncHI5 plasmids can be divided into two types: Tn6535-related
regions and Tn1696-related regions. Their formation was related to the integration and insertion of MGEs, and the
accumulation and expression of drug resistance genes carried on MGEs accelerated the spread of antimicrobial resistance
in K. michiganensis strains. We expect that the data in this work can further decipher the structural diversification,
population distribution, and evolutionary history of IncHI5 plasmids in K. michiganensis.
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