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Abstract: Type 2 diabetes mellitus (T2DM) is associated with an increased risk of bone 
fracture, but the bone mineral density (BMD) is typically normal or higher in such patients. 
Because the fracture risk is independent of reduced BMD, bone fragility in T2DM may be 
partially due to poor bone quality. The mechanisms triggering bone quality abnormalities in 
T2DM are complex, and include the accumulation of advanced glycation end-products, the 
increased inflammation, and low bone turnover. Matrix metalloproteinases (MMPs) in bone 
can hydrolyze the bone matrix. Tissue inhibitors of MMPs (TIMPs) can inhibit the activity of 
MMPs. Both MMPs and TIMPs participate in mediating bone quality. Among all types of 
TIMPs, TIMP-1 is mostly reportedly increased in the serum of T2DM patients. Because 
osteocytes can express TIMP-1, and osteocyte pericellular matrix influences bone quality 
partially regulated by perilacunar/canalicular remodeling, we hypothesized that TIMP-1 at 
sites of osteocyte lacunar-canalicular system is involved in T2DM bone fragility. 
Keywords: bone fragility, lacunar-canalicular system, osteocyte, TIMP-1, type 2 diabetes 
mellitus

Introduction
Type 2 diabetes mellitus (T2DM) is associated with an increased risk of fragility 
bone fractures, despite individuals with T2DM having normal or greater bone 
mineral density (BMD).1–5 This increased fracture risk remains even after account
ing for potential confounders such as falls, and it may be partially due to poor bone 
quality. Bone quality encompasses several bone properties reflecting bone geometry 
or microarchitecture, and the organization and/or composition of collagen and 
minerals in the bone matrix. Various mechanisms of bone quality deterioration in 
T2DM have been reported. Animal model studies indicated that impaired bone 
quality in T2DM is multifactorial, and includes changes in microarchitecture, 
abnormal collagen crosslinking, and matrix mineralization. Hunt et al6 investigated 
several aspects of bone quality in a clinical population of men with and without 
T2DM, and detected high concentrations of advanced glycation end-products and 
altered mineral maturity in femoral neck cancellous bone from T2DM men. Karim 
et al7 reported that cortical bone had worse indentation properties and higher 
advanced glycation end-products in the proximal femurs of adults with T2DM.

Apart from changes in bone extracellular matrix (ECM) at the tissue level in 
T2DM, Eckhardt et al8 reported that accelerated osteocyte senescence may be 
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involved in the skeletal fragility observed in the high-fat 
diet/streptozotocin mouse model of T2DM. Several prior 
studies indicate that the osteocyte network is altered in 
different diabetes models.9–11 Osteocytes are the most 
abundant cells in bone, and have a large number of 
dendritic cell processes through which osteocytes com
municate with the surrounding osteocytes and bone sur
face cells such as osteoblasts and osteoclasts.12 

Osteocytes and their cell processes reside in 
a mineralized matrix that forms the lacunar-canalicular 
system (LCS).13–15 The primary function of LCS is to 
help osteocytes to obtain nutrients, sense mechanical 
stimuli, and communicate with other cells via molecular 
signaling.10 The osteocyte LCS is believed to control 
both “outside-in” (mechanosensing) and “inside-out” 
(signaling molecule transport) processes.10,16 

Morphological alterations in LCS could impact the “out
side-in” mechanosensing processes by modulating the 
levels of mechanical stimulus (fluid shear stresses17 and 
drag forces16). The level of mechanical stimuli is related 
to osteocyte apoptosis which promotes osteoclastogen
esis and is a mechanism by which osteocytes regulate 
bone adaptation.18,19 It is presumable that the osteocyte 
mechanotransduction-mediated bone adaptation might be 
affected by altered osteocyte LCS network in T2DM.

Osteocytes remodel its surrounding bone matrix by 
secreting several proteases, which include matrix metallo
proteinase (MMP) 2, MMP13, and cathepsin K.20 MMPs and 
tissue inhibitors of MMPs (TIMPs) regulate bone develop
ment and remodeling. As a family of proteolytic enzymes, 
MMPs may hydrolyze ECM.21,22 Most MMP members have 
been detected in bone and mediate bone homeostasis.23,24 

Both low fracture toughness and low post-yield deflection 
have been reported in MMP9−/− mouse femurs.25 MMP2 is 
mainly secreted by mature osteoblasts and may be a key 
enzyme involved in bone quality.26,27 The precise coordina
tion of TIMPs and MMPs maintains ECM homeostasis, and 
a TIMP/MMP imbalance adversely affects ECM, leading to 
bone diseases such as primary osteoporosis, osteoarthritis, 
and rheumatoid arthritis.25,28,29 TIMPs are the natural inhi
bitor of many MMPs, are widely expressed in bone, and play 
an essential role in bone adaptation.30 TIMP-1 is a soluble 
glycoprotein of 28kDa and a prominent member of the TIMP 
family. It can inhibit most MMPs, except membrane type- 
MMPs and MMP24.31,32 Haeusler et al33 observed that 
TIMP-1 was present in all zones of the growth plate, osteo
blasts, and osteoclasts, some of osteocytes. It also has been 
reported that TIMP-1 can directly stimulate the bone 

resorbing activity independent of their inhibition of MMPs 
at certain physiological concentrations.29 Prior studies have 
investigated the role of TIMP-1 in osteoblasts and/or 
osteoclasts,29,34,35 but little is known about associations 
between TIMP-1 and the osteocyte network, and its influ
ences on bone quality in T2DM. It is not known whether 
TIMP-1 located in the LCS is involved in bone fragility in 
T2DM patients.

Hypothesis
MMPs are a large family of zinc-dependent ECM- 
degrading enzymes and play a crucial role in bone matrix 
remodeling, thus dramatically affecting bone mechanical 
and material properties.24,36,37 TIMPs inhibit the activity 
of MMPs.34,38 Bone quality is dependent on a balance 
between TIMPs and MMPs. Among four types of TIMPs 
found in bone, only significant changes in TIMP-1 have 
reported in the serum of individuals with T2DM.39–41 

Several studies indicate that osteocytes can express 
TIMP-1.26,34,42,43 The osteocyte LCS plays a vital role in 
mechanical sensing, strain experience, bone composition, 
and bone quality.13 MMP13 influences perilacunar/canali
cular remodeling (PLR),36 so interaction between TIMP-1 
and MMP13 or other MMPs may improve PLR in patho
logical conditions. We hypothesized that TIMP-1 located 
in the osteocyte LCS is involved in T2DM-associated bone 
fragility (Figure 1).

Evaluation of the hypothesis
Altered TIMP-1 Level in the Plasma/ 
Serum of T2DM Patients
To our knowledge, the underlying mechanisms that lead to 
the changes of TIMP-1 in plasma/serum of T2DM patients 
remain scarce; but the positive association between TIMP- 
1 and T2DM in patients concur with the results from 
several case control and cross-sectional studies (Table 1). 
In case-control study nested within a prospective cohort 
among Chinese living in Singapore, Wang et al40 demon
strated that serum TIMP-1 levels were significantly higher 
in T2DM patients (n=254) than in age and gender-matched 
non-diabetic patients (n=254), and elevated TIMP-1 levels 
were positively associated with T2DM risk. Lee et al39 

reported that plasma levels of TIMP-1 and MMP2 were 
elevated in Korea T2DM patients (without uremia) 
whereas there was no significant alteration in MMP9 
(cases n=80, controls n=80), and the increase in TIMP-1 
and MMP2 were independent of age, duration of diabetes, 
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blood pressure, and blood lipids. Tayebjee et al44 showed 
that circulating MMP-9, TIMP-1 are raised in treated 
hypertensive T2DM patients from the UK (n=86) com
pared with normotensive control subjects (n=63). 
Sundström et al45 presented their interesting data from 
the USA that plasma TIMP-1 was higher in men compared 

with women, and increased with age, and positively 
related to diabetes. However, Papazafiropoulou et al41 

reported that serum TIMP-1 was lower in patients with 
T2DM, and that they exhibited no differences in MMP2 or 
MMP9. In another study, serum MMP9 was increased in 
patients with diabetic retinopathy, but there was no 

Table 1 Summary of Association Between TIMP-1 Level in Blood and T2DM in Patients

Reference Subjects Outcome of TIMP-1 
(ng/mL)

Association of TIMP-1 
and T2DM

Numbers Age 
(Years)

Country

Wang Y. et al, 202040 Patients: 254 

Control: 254

59±5.83 

59.3±6.03

Singaporea 227.9±39* 

213.5±35.6 
(Serum Level)

Positive

Lee SW. et al, 200539 Patients: 80 
Control: 80

49.9±9.9 
47.4±7.9

Korea 362.1±187.7* 
172.5±184.1 

(Plasma level)

Positive

Tayebjee M.H. et al, 

200444

Patients: 86 

Control: 63

68±6 

66±10

UK 397 (300–496) * 

280 (225–305) 
(Plasma level)

Positive

Sundstrom J. et al, 200445 Whole samples: 1069, 
Diabetes: 9%

56.3±9.9 USA 1.03b, (p=0.04) * 
(Plasma level)

Positive

Papazafiropoulou A. et al, 
201041

Patients: 60 
Control: 60

60.3±7.4 
59.2±10.1

Greece 197.5±76.5* 
233.6±61.4 

(Plasma level)

Negative

Jayashree K. et al, 201846 Patients: 41 

Control: 41

35–65 India 454.40 (359–529) 

432.8 (295.3–539.35) 

(Plasma level, p=0.337)

No significant difference

Note: aThe Chinese population in Singapore; bRatio of plasma level TIMP-1 between diabetes and control subjects; *P<0.05 was taken as statistically significant.

T2DM

Changed circulating TIMP-1

Altered TIMP-1 
in osteocyte LCS

Disrupted osteocyte PLR
Altered Osteocyte
LCS microstructure

-Mechanosensing
-Signaling transport
-Bone adaptation

Bone quality

Bone fragility

Imbalance of 
MMPs/TIMP-1

TIMP-1 directly induce
bone remodeling 
( independence of MMPs)

Figure 1 A conceptual framework of this hypothesis: TIMP-1 at sites of osteocyte lacunar-canalicular system (LCS) is partially involved in type 2 diabetes bone fragility. The 
two potential mechanisms by which TIMP-1 in LCS alters PLR are shown in the dotted boxes, and future studies are warranted to elucidate the precise mechanism for this 
hypothesis.
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significant difference in TIMP-1 between diabetic retino
pathy patients and controls.46 The heterogeneous results 
could be explained by the different characteristics of 
patients. Compared with the other studies, patients in 
Papazafiropoulou’s study were at more advanced stage of 
T2DM, and may have received more intensive treatment.41 

The diabetes therapy have shown to decrease TIMP-1 
levels significantly.44 Collectively these studies indicate 
that serum TIMP-1 levels are altered in T2DM patients.

Altered Osteocyte Network in T2DM
Osteocytes play an essential role in regulating bone home
ostasis. The osteocyte LCS plays a critical role in mechan
ical sensing and transduction, thus affecting the osteocyte 
function.12,16 Mabilleau et al11 reported that profound 
alterations of osteocyte network was present in a mouse 
model of high fat-induced type 2 diabetes, and perilacunar 
mineralization heterogeneity was reduced by 48%, but the 
mean perilacunar mineralization remained unchanged. 
Villarino et al47 reported reduced lacunar density of alveo
lar bone in acute streptozotocin-induced diabetic rats. de 
Mello-Sampayo et al48 described both lacunar density and 
tibial cortical bone size in 5-month-old streptozotocin- 
induced diabetic rats, but did not provide quantitative 
confirmation. Ay et al49 reported that lacunar density 
increased in diabetic rats, and osteocyte territorial matrix 
decreased. Notably, however, Kerckhofs et al50 reported 
that there were no significant differences in lacunar density 
or porosity between mice with obesity-driven T2DM and 
control mice. The discrepancy presented in the effect of 
T2DM on osteocyte network can be explained by the 
diversity of the diabetes models used as well as by the 
differences between the analysis techniques. Apart from 
dendritic network connectivity and lacunar density in 
T2DM bone, the pericellular matrix should be considered 
because the surface area of the osteocyte LCS within bone 
is several orders of magnitude greater than the area of the 
bone surface.12 Altered osteocyte connectivity and LCS 
network could be the critical factors of T2DM bone 
fragility.

TIMP-1 Expressed by Osteocytes
TIMP-1 can be expressed in osteoblasts, osteoclasts, or 
lining cells of the various bone tissues, including rib bone, 
ectopic bone, and osteophytes, and is expressed differently 
in different physiological and pathological conditions.43 

Several studies have indicated that osteocytes secrete 
TIMP-1. In an in situ hybridization study Hatori et al26 

reported that TIMP-1 can be expressed in osteoblasts and 
osteocytes. Prideaux et al42 reported that MLO-A5 cells 
(an osteoid preosteocyte-like cell) secrete TIMP-1 and 
MMPs, and that TIMP-1 expression was decreased during 
the mineralization of MLO-A5, along with MMP2, 
MMP23, and MMP28. These prior observations suggest 
that TIMP-1 may be secreted by osteocytes and may be 
involved in the mineralization of bone matrix. In addition, 
the molecular weight of TIMP-1 (~28 kDa) is smaller than 
the sieving cutoff for the LCS (~70 kDa),51,52 indicating 
that TIMP-1 produced by osteocytes is capable of reaching 
target cells such as osteoblasts and osteoclasts. Future 
studies are warranted to elucidate the mechanisms by 
which type 2 diabetes could alter the expression of 
TIMPs in osteocytes or other bone cells.

TIMP-1/MMPs Participate in Osteocytic 
PLR
As terminally differentiated cell, osteocytes reside in the 
bone matrix, and have functions similar to osteoclasts 
with respect to secreting specific molecules that affect 
local bone matrix remodeling, called osteocyte PLR. In 
this process osteocytes can directly resorb and replace 
the local bone ECM. Some members of the MMP family 
play an important role in PLR, such as MMP2, MMP13 
and MMP14. An absence of MMP2 reported had nega
tive effects on bone structure, including destruction of 
the bone canalicular network, reduced BMD, and 
increased cortical porosity in long bones.25,53 TIMP-1 is 
a natural inhibitor of MMPs. It has been reported that 
mesenchymal stem cells can inhibit MMP2 by secreting 
TIMP-1, and TIMP-1 can inhibit the activation of MMP2 
under pathological conditions and protect blood vessels 
from protease damage.54 These studies provoke 
a question as to whether the inhibitory effects of TIMP- 
1 on MMP2 under physiological or pathological condi
tions can affect the osteocyte lacunar-canalicular net
work. MMP13 is essential for remodeling the lacunar- 
canalicular pericellular matrix. MMP13 deficiency may 
impair the osteocyte network, collagen, and mineral 
tissue.36,55 MMP2 and MMP9 can be activated by 
MMP13; and MMP13 deficiency may alter MMP2 and 
MMP9 activity, interrupting bone remodeling.22 TIMP-1 
can bind strongly to MMP13, downregulating its 
activity.56 Inhibiting MMP13 activity can affect pericel
lular matrix remodeling. Given the importance of TIMP- 
1 in the remodeling of bone matrix and the lacunar 
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canalicular network, further research should be done to 
elucidate the effects of TIMP-1 on bone tissue and the 
function of TIMP-1 on bone quality in T2DM. The 
reported parameter of osteocyte lacunae density in dia
betes bone is inconsistent, and the altered osteocyte den
dritic network connectivity has been confirmed. Geoffroy 
et al57 reported that overexpression of TIMP-1 in osteo
blast-lineage cells did not affect osteocyte lacunae (num
ber density at tissue level in bone). Therefore, altered 
TIMP-1 level may affect osteocyte pericellular matrix, 
not the lacunae density at the whole bone tissue level. 
Impaired osteocyte pericellular matrix by TIMP-1 may 
be involved in bone fragility of T2DM in which changes 
of TIMP-1 has been reported.

Conclusions
Skeletal fracture is a devastating event with dismal health 
consequences. Individuals with T2DM are associated with 
an increased risk of bone fracture. By several literature 
evidence and our view point, it is possible that TIMP-1 
may have a specific role in the mechanism of bone fragi
lity associated with T2DM. Prior research indicates that 
TIMP-1 may regulate the LCS pericellular matrix by inhi
biting MMPs, and serum TIMP-1 levels are changed in 
T2DM patients. It is not clear what role does TIMP-1 play 
in the development of bone fragility in T2DM. Confirming 
the specific location and local roles of TIMP-1 in the 
osteocyte LCS may better explain the mechanism of 
bone fragility associated with T2DM, and provide 
a target for preventing bone fragility in T2DM patients.
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