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Objective: This was a proof of concept study, based on systematic reviews of the efficacy and 
safety of the dorsal root ganglion (DRG) stimulation. The main objective was to develop an 
implantable, programmable, and wireless device for electrical stimulation of DRG and 
a methodology that can be used in translational research, especially to understand the mechan
ism of neuromodulation and to test new treatment modalities in animal models of pain.
Methods: We developed and tested a stimulator that uses a battery-powered microelectronic 
circuit, to generate constant current square biphasic or monophasic pulsed waveform of 
variable amplitudes and duration. It is controlled by software and an external controller that 
allows radio frequency communication with the stimulator. The stimulator was implanted in 
Sprague–Dawley (SD) rats. The lead was positioned at the L5 DRG level, while the 
stimulator was placed in the skin pocket at the ipsilateral side. Forty-five animals were 
used and divided into six groups: spinal nerve ligation (SNL), chronic compression injury of 
the DRG (CCD), SNL + active DRG stimulation, intact control group, group with the 
implanted sham stimulator, and sham lead. Behavioral testing was performed on the day 
preceding surgery and three times postoperatively (1st, 3rd, and 7th day).
Results: In animals with SNL, neurostimulation reduced pain-related behavior, tested with 
pinprick hyperalgesia, pinprick withdrawal test, and cold test, while the leads per se did not 
cause DRG compression. The rats well tolerated the stimulator. It did not hinder animal 
movement, and it enabled the animals to be housed under regular conditions.
Conclusion: A proof-of-concept experiment with our stimulator verified the usability of the 
device. The stimulator enables a wide range of research applications from adjusting stimula
tion parameters for different pain conditions, studying new stimulation methods with differ
ent frequencies and waveforms to obtain knowledge about analgesic mechanisms of DRG 
stimulation.
Keywords: neurostimulation, implantable stimulator, DRG, SNL, pain-related behavior

Introduction
Electrical stimulation of the dorsal root ganglion (DRG) is currently recognized as a safe 
and cost-effective therapeutic neuromodulation modality for chronic pain patients, 
especially for those who do not respond well to conventional treatments.1,2 Following 
experimentally induced nerve injury or inflammation, DRG plays an important role in 
pathological nociceptive signaling through increased neuronal excitability and generation 
of ectopic discharges.3,4 There is evidence indicating that the DRG can be a relevant 
target for analgesic treatment in the experimental animal models.5,6 More recent studies 
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on the experimental model of painful diabetic peripheral neu
ropathy in rats confirmed a generally positive effect on animal 
pain-related behavior using conventional7,8 and burst DRG 
stimulation. Furthermore, a similar effect was obtained for 
experimental animal models of osteoarthritis 10 and rheuma
toid arthritis.

A well-localized therapeutic approach at the level of 
the peripheral nervous system and, in particular the DRG, 
represents an alternative to spinal cord stimulation (SCS). 
This approach provides stability of the stimulation leads 
regardless of body position, improves the ability to 
achieve pain relief in locations that are hard to target 
with conventional SCS, reduces paresthesia and energy 
usage 14,15 and contributes to overall better clinical out
comes in selected clinical conditions.15,16

From the recent studies on patients, readers could get the 
impression that the electrical stimulation of the DRG has been 
proven to be highly effective in providing analgesia for 
chronic pain. These clinical studies show that the DRG 
could be a neuromodulation target for peripheral neuropathic 
pain following hernia surgery, complex regional pain 
syndrome,13,16,18 low back pain,19,20 phantom limb pain, disc- 
related back pain, and radicular pain. However, systematic 
reviews of the clinical and experimental studies give us 
a different view.6,23 A systematic review published in 2018 
showed that few preclinical studies had investigated the effect 
of DRG stimulation. Experimental animal studies preceding 
clinical studies or performed in parallel with them can enhance 
the understanding of the effect of electrical stimulation on 
injured DRGs. However, a systematic review of the literature 
revealed only six publications that have analyzed DRG stimu
lation in experimental pain models 8,9,24–27 and two more that 
investigated the stimulation effect in healthy animals.28,29 In 
all these cases, the pathophysiological mechanisms behind 
DRG stimulation still remain largely unknown.

One reason for the scarcity of electrical stimulation 
data in experimental pain models stems from the lack of 
an appropriate stimulation apparatus for experimental ani
mals. Although there are several technologically advanced 
devices used for stimulation following amputation, spinal 
cord injury, or bladder pain syndrome, 32 some of those 
devices are used in bigger experimental animals, some are 
not fully implantable, and none of them is intended for 
usage in chronic pain research.30,31 In addition to devices 
intended for the stimulation, there are state-of-the-art 
devices used for the recording of neuronal activity from 
the surface of DRG, 33 but again these are not applicable 
for the potential chronic pain treatment in animal pain 

models. The lack of usable implantable devices that can 
be used in animal experimental models is also evident in 
the research in which DRG stimulation is used to evoke 
motor responses following spinal cord injury.34,35

In this study, we provide a proof of concept for an 
implantable stimulator that is small, programmable, wire
less, and suitable for DRG stimulation in small experi
mental animals. Additionally, we examined the behavioral 
effect of the stimulator implantation and placement of the 
leads with electrodes in healthy rats and rats with spinal 
nerve ligation (SNL).

Materials and Methods
Study Design
This was a proof of concept study.

Implantable Stimulator
Hardware Overview
The stimulator is a custom-made device developed to provide 
a programmable platform for DRG stimulation experiments 
in rats (Figure 1A and B). It uses a microelectronic circuit, 
powered by a standard non-rechargeable-battery (3V/ 
280mAh, providing 56 hours of signal generation under 
current stimulation parameters), to generate constant- 
current square biphasic or quasi-monophasic pulsed wave
form of variable amplitudes to stimulate the DRG via 
a bipolar custom-built lead. Importantly, the stimulator was 
designed for autonomous operation and wireless control. The 
implanted device is self-contained in terms of the power 
supplied by its own battery, while its stimulation protocol is 
controlled via wireless connection to the external controller. 
The external controller is connected to a PC via a USB port 
and controlled via a proprietary software application. 
Accordingly, the whole system provides the pre-determined 
chronic electrical stimulation to the free-moving animals 
without external connection wires.

The implantable part of the stimulator consists of an 
implantable neurostimulator (INS), an external controller 
that allows radio frequency (RF) wireless communication 
with the INS, stimulation electrodes, and the extension wires.

The implanted device consists of the battery-powered 
electronic circuitry connected to the bipolar lead via the 
extension wires. The circuitry consists of several major 
blocks (Supplementary Figure 1): (1) microcontroller unit 
(MCU), controlling the rest of the circuitry; (2) 3V battery 
supplying power to the circuitry; (3) wireless link to the 
external controller for data transfer; (4) magnetic switch 
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for wireless initiation of protocols by magnet movements; 
(5) DC–DC converter providing the higher voltage 
required for the stimulation circuitry; (6) stimulation front- 
end circuitry (voltage-to-current and current-to-current 
converter), providing the stimulation signal to the lead 
via the extension wires.

The electrodes in the lead (CorTec GmbH, Freiburg, 
Germany; cat.no. 1031.2058.01) consist of a platinum- 
iridium core coated with iridium oxide to avoid fast mate
rial corrosion due to the high stimulation currents and 
small contact surface (Figure 1C). The impedance of the 
bipolar lead immersed in extracellular fluid and 

Figure 1 (A) The implantable stimulator with a coin battery and attached leads. The dimensions of the uncoated stimulator are 29.4×38.5 mm. The thickness of the 
uncoated stimulators is 1.8 mm in the thinnest region and 7.6 mm in the thickest region (part of the stimulator with the battery). (B) The two sides of the coated stimulator. 
The dimensions of the coated stimulator are 35×41 mm, and its thickness is 3 to 8.9 mm. (C) The design scheme of the lead and pad with electrodes for DRG stimulation. 
The thickness of the insulated extension wires is 0.6 mm, while the thickness of the pad with the electrodes is 0.3 mm.
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cerebrospinal fluid was previously examined and found to 
be in 600 Ω – 1 kΩ range (depending on the frequency), 
which is comparable to the SCS electrode impedance 
reported by Abejon et al. The lead impedance was also 
measured after implantation in live rats and found to be 
slightly larger but still in the kΩ range (2–8 kΩ, depending 
on the frequency). During initial ex vivo testing of the 
stimulator, we did not observe heating of the stimulator or 
any other problems that could interfere with the well-being 
of the experimental animals.

Coating and Usage
For stimulator coating, we used a two-component 
SILASTIC MDX4-4210 BioMedical Grade Elastomer 
(Dow Corning, Auburn, MI, USA). We prepared the elas
tomer by mixing one part of the curing agent with ten parts 
by mass of the base elastomer and left the mixture for 30 
minutes for de-airing.

The stimulator was first wrapped in several layers of 
Parafilm M (Sigma-Aldrich, Inc., St. Louis, MO, USA); 
then, a layer of elastomer was applied on it by immersing 
a stimulator in elastomer mixture and putting additional 
amount by brush if needed. We cured the coating at room 
temperature for 24 h. The coating of the stimulator 
increased its weight from 6.6 g to 13.4 g, making it 
3.4% to 4% of the total body mass (Figure 1B).

After implanting the stimulator in the rat, the stimula
tion parameters are defined using a computer and sent to 
the stimulator via the external controller connected to the 
PC via USB port. The stimulator is activated by passing 
a permanent magnet one centimeter over the skin near the 
implanted stimulator. A brief passage of the magnet con
nects the stimulator with the external controller and allows 
stimulation protocol transfer, while longer holding the 
magnet above the stimulator starts the stimulation proto
col. Each stimulator also has red light-emitting diodes 
(LEDs) visible through the animal’s skin, providing 
a brief flash of light as a confirmation when the stimulator 
is switched on. The stimulator parameters are listed in 
Table 1. Each neurostimulator has a unique internal iden
tifier that allows the researcher to identify the specific 
device through an external controller.

Software Overview
The PC application with a graphical user interface (GUI), 
shown in Figure 2, was developed in Java programming 
language using developmental environment NetBeans 8.0.2 
IDE with installed JDK 8 update 11 (64 bit). GUI was created 

in the JavaFX Scene Builder 2.0 tool. For database access, 
the Jackcess-2.1.0 library was used. The application allows 
the user to define the stimulator operation parameters, store 
them in the database, and send them to the stimulator. The 
application does not access the RF communication device 
directly but through a communication service using UDP/IP 
packets. The main development tool for this communication 
service application was MS Visual Studio 2015, and the 
programming language was C++. The main library was 
Microsoft Foundation Class (MFC), and the Functional 
Test Case Serial Peripheral Interface (FTCSPI) library was 
used to access the USB module. The task of this commu
nication service is bidirectional communication between the 
GUI user application and the implanted stimulator. The com
munication service application was installed on the MS 
Windows platform as a service and automatically runs each 
time the computer is turned on.

The integrated circuits used in the implanted device 
also required programming. The microcontroller unit 
C8051F411 (Silicon Laboratories, Inc., Austin, TX, 
USA) software was written in the C programming lan
guage, using “Keil uVision5” as the development environ
ment. The RF transceiver chip TI CC2500 (Texas 
Instruments, Inc., Dallas, TX, USA), used as the RF wire
less link, was configured to generate current pulses based 
on parameters received via RF communication using 
“Texas Instruments SmartRF Studio 7” tool. The para
meters are valid until a new set of parameters is sent to 
the unit. To ensure stable and reliable transfer of stimula
tion parameters, we deployed a check-back system by 
requesting the implanted device to send back the actual 
parameters calculated on the microcontroller because those 
parameters may vary slightly due to the microcontroller’s 
discretization and timer setting.

Table 1 Stimulator Signal Parameters

Parameter Size Steps

Stimulation pulse amplitude 0.02–2 mA 10 µA
Stimulation pulse width 0.1–4 ms 0.1 ms

Recovery pulse amplitude 5–40 µA 5 µA

Recovery pulse width Calculated* /
Delay time following a stimulation pulse** 0.1 0.1 ms

Delay time following recovery pulse Calculated /

Frequency 1–1000 Hz 1Hz
Maximal duration of the single session*** Up to 2h

Notes: *The recovery pulse is calculated so that positive and negative phases have 
equal surfaces under the pulse. **Delay between two stimulation cycles. 
***Duration can be extended indefinitely by repeating sessions (battery life is the 
only limitation).
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Experimental Animals
All experimental procedures and protocols followed the 
International Association for the Study of Pain (IASP) 
Ethical Guidelines for Investigations of Experimental 
Pain in Conscious Animals and were approved by the 
Ethics Committee of the University of Split School of 
Medicine. A total of 47 male Sprague-Dawley rats were 
assigned to one of the following six groups: SNL group 
(n = 6), group with chronic compression injury of DRG 
(CCD) (n = 9), SNL group with active DRG stimulation 
(n = 11), intact control group (n = 6), and group with the 

implanted sham stimulator (n = 8) and sham lead (n = 7). 
The description of the performed interventions in the 
groups used in the study is presented in Table 2. Because 
of the size of the stimulator, we used older animals weigh
ing 350–400 g.

Surgery Procedures for SNL and CCD
We used the well-established SNL 37 and CCD 38 models 
for the induction of pain-related behavior. All surgical 
procedures were performed under anesthesia induced 
with 5% isoflurane in oxygen (Forane®, Abbott 

Figure 2 Software program graphic user interface (GUI) used for the control of the stimulation parameters. The specific sections of the GUI interface are marked with red 
squares and additionally explained. The right side of the GUI contains sliders that are used for defining the stimulation parameter.

Table 2 Description of the Performed Interventions in the Groups Used in the Study

Groups Pain Model Implanted Lead Implanted Stimulator Stimulation

Spinal nerve ligation (SNL) (n=6) Yes No No No
Chronic compression injury (CCD) (n=9) Yes No No No

SNL + DRG stimulation (n=11) Yes Yes Yes Yes

Sham stimulator (n=8) No No Yes No
Sham lead (n=7) No Yes No No

Control (n=6) No No No No
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laboratories Ltd., Queenborough, United Kingdom) and 
then maintained with 2% isoflurane.

For SNL, 37,39 after exposure to the right paravertebral 
region, the sixth lumbar transverse process was carefully 
removed to expose the L5 nerve, which was ligated with 
6–0 silk suture and transected distally. Articular processes 
and paraspinal muscles were not removed since their 
destruction can lead to pain-related behavior.40,41

The insertion of the leads with stimulation electrodes 
can result in CCD;38,42–44 thus, we compared the effect of 
sham lead placement with the CCD model. CCD injury 
was performed according to the slightly modified proce
dure described previously. Briefly, under isoflurane 
anesthesia, intervertebral foramen of L5 was exposed, 
and a stainless steel L shaped rood (4 mm longer arm, 
2 mm shorter arm, and 0.6 mm in diameter) was inserted 
4 mm into the L5 intervertebral foramen at an angle of 30° 
to the midline. A slight twitch in the ipsilateral leg was 
typically observed during the insertion.

Surgical Procedure for Stimulator 
Implantation
Following a skin incision in the sagittal line of the lumbo
sacral region, the skin pocket was created with blunt dis
section cranially to the incision. The right paravertebral 
region was exposed. Connective tissue and remaining 
muscles were removed by iris scissors to expose the L5 
laminae, L6 transverse, and articulate process between the 
L5 and L6 vertebrae. For the SNL and placement of leads 
with the electrodes, the transverse process of the L6 was 
removed. With the L6 transverse process removed, the L5 
and L4 spinal nerves were clearly visible, enabling us to 
follow the L5 spinal nerve towards the L5 DRG. To 
expose the caudal part of the L5 DRG, a small part of 
the lamina on the right side, caudal to the L5 was removed 
using a small rongeur (Figure 3). To limit bleeding, which 
was the main problem during the laminectomy, we applied 
Surgicel Fibrillar (Absorbable Hemostat-oxidized regener
ated cellulose; Ethicon, Inc., Somerville, NJ, USA) when 
bleeding occurred after the removal of the laminae rim. 
Surgicel was removed immediately after the bleeding 
stopped. After the caudal part of the ganglia was exposed, 
the lead was inserted into the foramen. This step was done 
with special care because the lead’s tip lacked sufficient 
firmness for easy insertion in the foramen. The lead was 
secured in place by tightly ligating it to the L5 spinal nerve 
(Figure 3). After the lead was secured with ligature, SNL 

was performed by transecting the spinal nerve distal to the 
ligation used to secure the lead. The leads were tunneled 
towards the cranial skin pocket on the rat’s back, where 
the stimulator was implanted. To minimize infection risk, 
we immersed the implantable stimulators and leads in 70% 

Figure 3 Schematic drawings depicting the position of the L5 dorsal root ganglion 
(DRG) (marked with red) and critical landmarks of the lateral view of the rat 
lumbosacral vertebral column necessary for the precise positioning of the stimula
tion electrode. Before removing the lamina rim, the L5 DRG is covered with 
laminae and not visible (A). Following removal of the L6 transversal process, ligating 
off the L5 spinal nerve (marked with red), and minimal laminectomy, the caudal part 
of the L5 DRG is visible and ready for placement of the pad with electrodes (B). 
The microphotograph of the surgical field depicts the spinal nerve and a distal 
electrode at the foramen entrance (C). 
Abbreviations: DRG, dorsal root ganglion; SP, spinous processes; TP, transverse 
process; SAP, superior articulate process and A anapophysis; SS, silk suture; EP, 
electrode pad; SN, spinal nerve; L, lead; LS, laminectomy stump.
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ethanol before implantation. Following the surgery, the 
animals did not receive any antibiotics or analgesic 
therapy.

Stimulation Protocol
Baseline behavioral testing was performed on the day 
preceding surgery, while postoperative behavioral testing 
was performed three times postoperatively (1st, 3rd, and 7th 

day). Stimulation was performed continuously, once 
per day for 5 days, from 3rd till 7th day postoperatively 
immediately before behavioral testing. After 60 minutes of 
acclimatization, the stimulator was activated and set for 
a session lasting 20 minutes. At the end of the stimulation 
session, we performed behavioral testing following addi
tional 60 minutes of acclimatization. The timing of the 
behavioral test was selected based on the other short-term 
efficacy studies 7,26,27,45 and on the fact that the time 
course of hyperalgesic-type responses following SNL 
was most pronounced between 4th and 7th day. The dura
tion of the sessions was identical,46,47 or comparable with 
previously published studies.7,26,27,45

For the group of animals implanted with an active 
stimulator, we set the DRG stimulation currents at 80% 
of the motor threshold (MT), ie, a rectangular pulse of 0.2 
mA with a 0.2 ms pulse width and frequency of 20 Hz. 
The 80% of the MT was selected because it has been 
proven that it produces a better analgesic effect than 
40% or 60% MT values.10,48 The MT was assessed in 
a pilot study preceding the experiment using a protocol 
with gradually increasing current amplitude at the follow
ing stimulator settings: frequency 20 Hz, pulse width 0.2 
ms. When the MT was reached, muscle twitches were 
observed, and the current was recorded. Measured MT 
levels were 0.25 ± 0.02 mV (n = 6). To balance the charge 
and prevent a net ion flow between the electrodes, which 
can cause a toxic reaction in the tissue, we used biphasic 
pulses. The charge balance is passive with asymmetric 
pulses (Figure 2). The active phase is followed by 
a reverse polarity pulse with amplitude or duration calcu
lated so that positive and negative phases have equal 
surfaces under the pulse.

Behavioral Tests
Four behavioral tests were used, with mechanical and 
thermal stimuli. The tests were performed during the 
morning hours immediately after the stimulation session 
in the following sequence: needle pin prick test, von Frey 
fibers, acetone, and hot plate test. The animals were tested 

in a cohort of two. The acclimatization of the animals to 
the laboratory environment prior to the stimulation session 
was 60 minutes. The duration of the behavioural testing 
session per cohort was approximately one hour including 
15-minute acclimatization to the rack and the hot plate. 
Blinded testing was possible only between rats with an 
implanted active and sham stimulator. Stimuli were 
applied to the plantar skin of hind paws of unrestrained 
rats, including the following procedures in each case.

Needle Pinprick Test
The point of a 22-gauge spinal anesthesia needle was 
applied to the center of the paw with enough force to 
indent the skin but not to injure it. The incidence of 
pinprick withdrawal (brisk, simple withdrawal with 
immediate return of the paw to the cage floor) and hyper
algesia (more complex response with sustained paw lift
ing, licking, chewing, and grooming) responses during ten 
applications to hind paws (separated by at least 10 sec
onds) were recorded and averaged.

Acetone Test for Cold Allodynia/ 
Hyperalgesia
Sensitivity to cold was assessed using the application of 
acetone, which was expelled from a syringe attached to the 
tubing to form a drop that was applied to the mid-plantar 
surface of the hind paw without contact of the tubing with 
the skin. The response was scored as either none or posi
tive if the paw was withdrawn. Three applications were 
spaced at least 30 seconds apart and averaged.

Hot Plate Test
To assess sensitivity to heat, the hot plate analgesia meter 
(IITC Life Science, Woodland Hills, CA, USA) was used. 
The rats were placed in the device chamber with an alumi
num plate maintained at 25°C. The temperature-provoking 
withdrawal response of the hind paw was measured for each 
rat. The cut-off temperature was 50°C. Withdrawal tem
perature was measured three times, separated by 3 min, and 
averaged.

Von Frey Fibers
Punctate mechanical stimulation was applied to the paws by 
von Frey fibers (North Coast Medical Inc., Gilroy, CA, USA). 
As described previously, calibrated fibers, starting with the 
2.8 g filament (3,84 filament), were applied in increasing 
order from the weakest to the strongest to determine the 
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threshold stiffness required for 50% paw withdrawal. The 
withdrawal response was scored either as none or positive if 
the paw was removed. If there was no response to the stiffest 
filament, the value of 25 g was assigned as threshold.

Computerized Tomography (CT)
To verify the position of the stimulator within the rat body, 
we used a CT scan on one additional rat (not included in 
the behavioral analysis). The rat was anesthetized and 
scanned in a coronal plane at 0.6 mm slice thickness on 
the Somatom Definition AS 128-Lines Multislice CT 
(Siemens, Germany). CT imaging parameters were set to 
a tube voltage of 120 kV and 18–39 mA. The analysis of 
the scans and 3D reconstructions was performed with 
SynGo software (Siemens, Germany) using Osseous – 
metal reconstruction modality Figure 4B.

Statistical Analysis
Behavioral test scores were analyzed with one-way 
repeated measures analyses of variance (ANOVA). The 
repeated measures were performed with the factors Time 
(baseline and three postoperative tests), Group (4 groups: 
SNL, CCD, SNL + stimulation, and merged control and 
sham groups), and Time by Group interaction, with beha
vioral outcomes as dependent variables. The presented 
analyses are Time × Group interactions, and when they 
were significant, post hoc assessment of within compari
son was performed using the Bonferroni post hoc test 

(Statistica 7.0; StatSoft, Tulsa, OK, USA). Graphs show 
means ± SEM. Any difference with p < 0.05 was consid
ered to be statistically significant.

Results
Tolerance of the Stimulator by Animals
Once implanted, the stimulator was well tolerated by the 
rats. It did not hinder animal movement, and it enabled the 
animals to be housed in regular animal facilities since no 
external contacts were necessary for the usage of the 
stimulator. One rat from the CCD group kept the injured 
paw in a guarding position. The guarding posture was 
observed on postoperative day 1 but ceased at 
postoperative day 2. None of the rats exhibited signs of 
autotomy or nail changes. The skin above the implanted 
stimulator did not exhibit any changes, and the sutures 
were healing well (Figure 4A).

The position of the stimulator within the body of the 
experimental animal was confirmed by CT imaging 
(Figure 4B) and 3D reconstructions (Supplementary 
video). The CT scans allowed successful visualization of 
both the implanted stimulator and the lead. The position of 
the stimulator was just below the skin and without com
pression of neighboring organs. The position of the leads 
can be easily identified, and the position of the pad with 
electrodes can only be vaguely located in the area of the 
intervertebral foramen (Figure 4B). However, the autopsy 
findings confirmed the desirable position of the pad with 
electrodes in all animals.

Pain-Related Behavior
To test if the implantation of the stimulator and placement 
of the leads can produce any effect on pain-related beha
viors, we used groups with sham leads and sham stimula
tor. Since both groups did not reveal any behavioral 
changes during the postoperative period in the tested mod
alities compared to the control group, the sham groups 
were merged with the control group.

The expected pro-algesic effect of SNL and CCD was 
confirmed with behavioral tests. Figures 5A and 4B show 
that SNL and CCD models resulted in the expected 
increase in pain-related behavior tested by the pinprick 
method. The SNL model affected all tested sensory mod
alities except the heat responses (Figure 5D). In the CCD 
model, increased pain-related behavior was observed only 
in pinprick hyperalgesia, pinprick withdrawal responses, 
and cold response (Figure 5A-C). Post hoc analysis 

Figure 4 (A) The photograph of the rat with the position of the stimulator under the 
skin (white square); the skin staples are marked with arrowheads. (B) 3D reconstruc
tion of computerized tomography (osseous-metal reconstruction modality) of the rat 
with implanted stimulator indicating the position of the implant and leads.
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Figure 5 Spinal nerve ligation (SNL) and chronic compression injury of DRG (CCD) produced a significant increase in pinprick (A) withdrawal, (B) hyperalgesia, and (C) 
cold responses. The heat response was unaffected by SNL and CCD (D), while von Frey threshold was reduced only for SNL rats (E). Stimulation of the DRG in SNL 
animals with implanted active stimulator resulted in a significant reduction of A) pinprick withdrawal and B) pinprick hyperalgesia responses, as well as in C) cold responses 
compared to the SNL group on a corresponding day. DRG stimulation did not result in restoration of the von Frey withdrawal responses (E). Data are presented as mean ± 
SEM. An asterisk (*) denotes a significant difference from the control/sham group on a corresponding day, while ladder marks (#) denote the difference between the 
stimulation group and the SNL group on a corresponding day. The grey bars represent stimulation events taking place immediately before the behavioural test. Stim 1 to 5 
abbreviation marks sessions in the SNL group exposed to the stimulation.
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showed a significant increase in pinprick withdrawal 
(Figure 5A) and hyperalgesia (Figure 5B) responses on 
the 1st, 3rd, and 7th day following induction of the SNL or 
CCD model compared to corresponding control values. In 
the SNL model, the same pattern was observed only for 
cold and on 3rd and 7th day for von Frey testing. The 
CCD model did not affect von Frey threshold or heat, but 
it did affect the cold response on the 3rd day (Figure 5C).

Stimulation with our device reduced pain-related beha
vior in SNL rats on the 3rd and 7th postoperative day, 
tested with pinprick hyperalgesia and cold test. In the 
pinprick withdrawal test, the reduction in pain-related 
behavior was evident only on 3rd day. The stimulation 
did not affect heat response (Figure 5D) and von Frey 
withdrawal threshold in the SNL model (Figure 5E).

Autopsy
The serosanguinous fluid accumulation (seroma) within 
a surgically created pocket was noticed during an autopsy 
in three rats (one with sham and two with active stimula
tor). Other signs of inflammation or behavior disturbances 
were not observed in rats with implanted stimulators.

The extraction of the stimulator during the autopsy was 
very easy. However, the extraction of the leads was diffi
cult because the connective tissue bonded to them. The 
problematic extraction resulted in only half of the leads 
salvaged, while the remaining leads were destroyed. The 
position of the pad with electrodes was checked, and in all 
animals, the tip of the lead was still located in the inter
vertebral foramen. The electrodes in the lead did not 
exhibit any visible corrosion after usage.

In the first two SNL rats with implanted stimulators, we 
observed leakage of fluid under the SILASTIC elastomer 
coating. The leakage interfered with the electronics and 
made stimulators unusable after the first stimulation cycle. 
The source of leakage, examined under a stereomicroscope, 
was the connection between the lead and stimulator and path 
along with the lead coating. Those rats were excluded from 
further analysis. The leakage problem is immediately 
addressed by adding an additional layer of coating in the 
area where leads connect to the stimulator. The additional 
layer of coating did not increase the size or thickness of the 
stimulator.

Discussion
This was a proof-of-concept study, testing the software 
and hardware characteristics of a small, implantable, pro
grammable, and wireless DRG stimulator for small 

experimental animals. The presented implantable neurosti
mulator addresses technical limitations of the previously 
described systems used for DRG stimulation or closely 
related systems, like those used for spinal cord 
stimulation.26,50,51

Advancements in the material sciences have led to use 
of more advanced devices and technologies with a variety 
of applications, such as closed-loop optogenetic device for 
peripheral neuromodulation in rat models 32 or soft neu
rotechnology bioelectric interfaces used in dura mater and 
epidural cervical stimulation in non-human primates.52,53 

Soft subdural implants were also used in rat models, 
combining electrical and chemical stimulations of the 
spinal cord in animal models of paralysis. Advancements 
are also seen in the introduction of soft materials when 
designing electrode systems for the treatment of neurolo
gical disorders. Although these technical advancements 
contributed to the better outcomes in selected clinical 
condition in which the DRG stimulation is used,15,16 

experimental animal research on DRG stimulation did 
not benefit adequately from those advancements.

Devices for DRG stimulation that were used earlier 
were not completely wireless since they had external 
wires, limiting the experimental animals’ movement and 
housing, or had limitations regarding type and stimulation 
parameters. Furthermore, those devices can increase the 
chance of infection.26,50,51,55,56 The external connections 
were prone to damage and breaks in the leads near the 
connection hub, which turns out to be the main problem 
with the external connection.7,26 However, previously 
designed devices for stimulation of the DRG were well 
tolerated by the experimental animals. In Pan et al, study 
rats reminded healthy during the implantation and stimula
tions, with no signs of autotomy or change in posture or 
behavior. A similar level of tolerance in the sham group 
with implanted leads was observed in rats with experimen
tally induced diabetic polyneuropathy.7,57 Although differ
ent in size and construction, those leads and electrodes 
were also well tolerated by the animals and allowed reli
able delivery of the stimulation sessions.7,26,57

Battery-powered implantable stimulators are internally 
implanted inside the experimental animals’ body, yielding 
multiple advantages, eg, minimizing the risk of infection 
associated with percutaneous connectors or being capable 
of housing the animals under their regular conditions. The 
programmability of the implanted stimulator enables the 
generation of customized and complex protocols that can 
be changed during experiments. This level of flexibility is 
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crucial since no single stimulation protocol is optimal for 
all situations.

The first fully implantable stimulator for rodents was 
developed by Huang et al and was used for auditory nerve 
stimulation in deaf rodents. The device was used to test 
monopolar and bipolar stimulation parameters, especially 
to achieve charge balance and avoid the residual direct 
current. Another fully implantable stimulator was designed 
by Millard et al. Their stimulator was powered by a pulsed 
magnetic field generated by wire coiled around the outside 
portion of the animal cage. Despite very small in size and 
adjustable for various uses, their stimulator requires spe
cial excitation coil assembly, and can thus affect pain- 
related behavior.

Qian et al developed a similar device implanted sub
cutaneously for SCS or fixed outside the skull for deep 
brain stimulation. The stimulator was also used for DRG 
stimulation in the hind paw for the prevention and treat
ment of disused bone loss after 14 days 46 and after 6 
weeks. The characteristics of their stimulator are similar to 
the one described here. The main difference is the range of 
parameters. Our stimulator has a broader range of stimula
tion amplitudes, pulse width, and frequency, allowing 
a greater possibility of testing different treatment para
meters depending on pain condition. Furthermore, our 
stimulator has a bipolar lead designed specifically for 
DRG stimulation and is tested for use in healthy animals 
and for treatment of neuropathic pain after SNL.

Pan et al used an implantable neurostimulator to treat 
chronic neuropathic pain in the tibial nerve injury model 
of neuropathic pain in rats. Their device was not implan
table since the leads were placed in plastic tubing and 
tunneled to the head, where they were secured to the 
skull with dental cement and screws and leads. For sti
mulation, the connection hub needed to be connected to 
the external pulse generator, hindering animals’ free 
movement during the stimulation. The stimulating elec
trodes in the lead were built from two platinum-iridium 
wires to provide bipolar contact for DRG stimulation. 
This design caused breaks in a portion of the wires. 
Similar to our findings, they also found that insertion of 
the leads caused no evidence of pain-related behavior, 
while DRG stimulation resulted in decreased pain-related 
behavior, which is in agreement with our findings. The 
observed reversal of the pain-related behavior induced by 
the SNL model in our study occurred immediately after 
the DRG stimulation, which corresponds to the clinical 
experience 18 and experimental results. The behavioral 

results were in line with our previously published results 
in which we confirmed that simple withdrawal in the von 
Frey test is not a less effective measure of peripheral 
nerve injury pain in rats than hyperalgesic-type response. 
In addition to the different study designs, that is probably 
the reason why we did not observe a similar response to 
stimulation in von Frey test.

Regardless of the relatively numerous publications on 
DRG stimulation, the mechanisms of how DRG stimulation 
alleviates chronic pain are still not fully understood. In vitro 
studies on healthy DRGs reported that DRG simulations 
resulted in reduced excitability of the DRG neurons. It is 
proposed that DRG stimulation amplifies the filtering ability 
of the DRG T-junction and limits the propagation of trains of 
action potentials.59,60 Recent in vivo studies evaluated the 
effect of tonic and burst DRG stimulation as well as the 
possible mechanism of DRG stimulation in rats after tibial 
nerve injury.61,62 The authors confirmed that both burst and 
tonic stimulation can be used for the treatment of neuropathic 
pain; furthermore, they confirmed findings from in vitro stu
dies about a possible mechanism where DRG stimulation 
blocks propagation of afferent action potentials and enhances 
T-junction filtering of action potentials in the sensory 
neuron.61,62

Our stimulator can be easily used in future animal studies 
using various neuropathic pain models designed to investi
gate and clarify the DRG stimulation mechanisms. 
Furthermore, studies on animal models can serve as a great 
starting point for optimizing stimulation parameters, in terms 
of the number of sessions, session duration, variable constant 
current square biphasic or monophasic pulsed waveform of 
variable amplitudes to achieve better intervention outcomes 
for different pain conditions. In addition, the stimulator can 
also be used for testing new treatment modalities, such as 
high-frequency stimulation, 57,63 but also in SCS and periph
eral nerve stimulation preclinical studies.

Although the value of our stimulator can be questioned 
because of the already established clinical practice of DRG 
stimulation, research on the physiological mechanisms of 
neuromodulation can hardly be done in the clinical setting. 
The value of the device can be additionally justified when 
a lack of evidence in this field presented in recent sys
tematic reviews is considered.6,23

Conclusion
We have developed and validated an implantable, pro
grammable, and wireless DRG stimulator for rats, and 
our initial animal experiment verified the usability of the 
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stimulator system in healthy animals as well as in animals 
with neuropathic pain model. We present a stimulator 
design that is economical, easy to use and enables 
a broad spectrum of research applications, from adjusting 
parameters of stimulation for different pain conditions, 
trying new stimulation modes such as high-frequency sti
mulation to get answers about analgesic mechanisms of 
DRG stimulation.
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