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Abstract: Despite recent advances in the diagnosis and treatment of breast cancer (BC), it
remains a global health issue affecting millions of women annually. Poor prognosis in BC
patients is often linked to drug resistance as well as the lack of effective therapeutic options
for metastatic and triple-negative BC. In response to these unmet needs, extensive research
efforts have been devoted to exploring the anti-BC potentials of natural products owing to
their multi-target mechanisms of action and good safety profiles. Various medicinal plant
extracts/essential oils and natural bioactive compounds have demonstrated anti-cancer activ-
ities in preclinical BC models. Despite the promising preclinical results, however, the clinical
translation of natural products has often been hindered by their poor stability, aqueous
solubility and bioavailability. There have been attempts to overcome these limitations,
particularly via the use of nano-based drug delivery systems (NDDSs). This review high-
lights the tumour targeting mechanisms of NDDSs, the advantages and disadvantages of the
major classes of NDDSs and their current clinical status in BC treatment. Besides, it also
discusses the proposed anti-BC mechanisms and nanoformulations of nine medicinal plants’
extracts/essential oils and nine natural bioactive compounds; selected via the screening of
various scientific databases, including PubMed, Scopus and Google Scholar, based on the
following keywords: “Natural Product AND Nanoparticle AND Breast Cancer”. Overall,
these nanoformulations exhibit improved anti-cancer efficacy against preclinical BC models,
with some demonstrating biocompatibility with normal cell lines and mouse models. Further
clinical studies are, however, warranted to ascertain their efficacy and biocompatibility in
humans.

Keywords: breast cancer, drug delivery, molecular mechanisms, nanoparticles, natural

products, phytomedicine

Introduction

Breast cancer (BC) has been recognised as a global health issue, as it is the most
common type of cancer and the major cause of cancer death in women.' In 2020,
BC recorded high global incidence (2,261,419 cases) and mortality (684,996
deaths) rates.” Advancements in technology (eg, mammography, ultrasound, mag-
netic resonance imaging, computerised tomography and positron emission tomo-
graphy) have enabled the early detection of BC.? Nevertheless, approximately 30%
of patients with early-stage BC eventually relapse with metastases.*> Metastatic BC
is considered to be largely incurable, with a 5-year survival rate of only 26%
despite currently available treatment options.’
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BC is a disease of heterogenous nature.” Based on
the receptor expression status, BC can primarily be
categorised into three major subtypes, including lumi-
nal A/B, human epidermal growth factor receptor 2
(HER2)-enriched  and triple-negative  subtypes’
(Figure 1). Different BC subtypes exhibit distinct bio-
logical features, with variabilities in their prognosis
and treatment response.® In particular, triple-negative
breast cancer (TNBC) is associated with worse prog-
nosis, more aggressive behaviour, lack of validated
molecular targets and limited therapeutic options (ie,

chemotherapy),
9,10

thereby rendering its management

challenging.

A multimodal approach is often employed for BC
treatment, whereby a combination of surgery, radiotherapy,
endocrine therapy, HER2-targeted therapy or chemother-
apy may be included in the treatment plan depending on
the stage and subtype of BC as well as the tolerance of
patients.'' Table 1 summarises the typical systemic ther-
apeutic options for the three major BC subtypes.'>'?
However, there have been reports of resistance to endo-
crine therapy, HER2-targeted therapy and chemotherapy
clinically.'* Both drug resistance and the lack of effective
therapeutic options for metastatic BC and TNBC represent
the major obstacles in treating BC. Therefore, BC remains
a medical area with unmet needs and has attracted
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Figure | Stages and subtypes of breast cancer.
Note: Created with BioRender.com.
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bones, lungs, brain and
liver)

2-5cm i
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Subtypes of Breast Cancer

Luminal A/B (70%)
HR+ (ER+ and/or PR+), HER2-/+

HER2-enriched (15-20%)
HR- (ER- and PR-), HER2+

Triple-negative (15%)

HR- (ER- and PR-), HER2-

Abbreviations: ER, Estrogen receptor; HER2, Human epidermal growth factor receptor 2; HR, hormone receptor; PR, progesterone receptor.

researches into the discovery of novel anti-BC drugs that
offer higher efficacy with minimal toxicity.

Historically, different forms of natural products (eg, oils,
potions, remedies and traditional medicines) have been used
to treat various diseases and injuries.'> The medicinal proper-
ties of natural products have subsequently attracted attention
into identifying the bioactive compound(s) of interest, mak-
ing natural products a vital source for drug discovery in
various therapeutic areas, especially in cancer and infectious
diseases.'® For instance, the majority (>60%) of clinically
available anti-cancer drugs are natural product-derived.'” Of
these drugs, paclitaxel from Taxus brevifolia, vinca alkaloids
from Catharanthus rosea, etoposide from Podophyllum pel-
tatum as well as topotecan and irinotecan from Camptotheca
acuminata represent some of the most effective chemother-
apeutic agents in clinics.'” There was a decline in the pursuit
of natural product-based drug discovery by the pharmaceu-
tical industry in the 1990s, mainly due to challenges in high-
throughput screening, bioactive compound identification and
synthesis as well as lead optimisation.'® However, recent
technological advancements have helped to address these

challenges and thereby revitalised the industry’s interest to
re-explore natural products as a potential source of new
drugs.'®

Natural products are often tested for desired bioactivities in
the form of extracts.'® Extracts demonstrating the bioactivity
of interest are then subjected to fractionation for the isolation
and identification of bioactive compound(s).'® Plants, in parti-
cular, represent a natural source that has been heavily explored
for their anti-cancer potentials.'® Studies have reported anti-
cancer activities of various plant extracts and isolated phyto-
chemicals, which are the biologically active non-nutritive
plant chemicals, in preclinical BC models.”**' More recently,
studies have also suggested the potential of using essential oils
to treat various cancers, including BC.2*% Essential oils,
which are produced and secreted by specialised secretory
structures of plants, are complex mixtures of lipophilic and
volatile plant secondary metabolites.”**> Natural extracts,
essential oils and their bioactive compounds are known to
exhibit multi-target mechanisms of action with minimal side
effects, of which would be advantageous for cancer
treatment.”>%°
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Table | Systemic Therapeutic Options for Three Major Breast Cancer Subtypes

Luminal A/B

HER2-Enriched Triple- References

Negative

Endocrine Therapy

-Selective estrogen-receptor modulators (SERMs; eg,
tamoxifen)

-Aromatase inhibitors (Als; eg, exemestane, anastrozole and

letrozole)

-Used in all

patients

-Used only in patients with -N/A [13]

HR-positive breast tumours

HER2-targeted Therapy

-Trastuzumab * pertuzumab

-N/A

-Used in all patients -N/A [13]

Chemotherapy

-Cyclophosphamide + methotrexate + 5-fluorouracil (CMF)
-Doxorubicin + cyclophosphamide (AC)

-5-Fluorouracil + epirubicin + cyclophosphamide (FEC)
-Cyclophosphamide + doxorubicin + 5-flurouracil (CAF or FAC)
-Doxorubicin + cyclophosphamide + paclitaxel (AC-T)

-Docetaxel + cyclophosphamide (TC)

-Used only in

some patients

-Used in

all patients

-Used in all patients [12,13]

Despite the promising preclinical findings, the physico-
chemical properties of natural products generally lead to poor
stability, aqueous solubility and bioavailability, all of which
can hinder their clinical application.***” Additionally, the clin-
ical application of essential oils has also been challenged by
their high volatility, high sensitivity to environmental condi-
tions (eg, high temperature, light and oxygen), low stability and
high lipophilicity.>**> Attempts made in trying to resolve these
limitations are considered promising, especially through the
use of nano-based drug delivery systems (NDDSs).2* !

This review first describes the tumour targeting
mechanisms of NDDSs, and summarises the major classes
of NDDSs by highlighting their advantages, disadvantages
and current clinical status in BC treatment. Thereafter, the
anti-BC mechanisms of selected natural products (includ-
ing extracts, essential oils and natural bioactive com-
their that
demonstrated preclinical anti-BC activities are discussed.

pounds) and nanoformulations have

The Tumour Targeting Mechanisms
of Nano-Based Drug Delivery

Systems

NDDSs represent a rapidly developing area of science,
where nanoscale materials are utilised as carriers for deli-
vering drugs to their sites of action.*? The use of NDDSs
for drug delivery can enhance the bioavailability of poorly
water-soluble drugs, enable the co-delivery of multiple
drugs, provide targeted drug delivery, protect normal

cells from drug toxicity and prolong drug action.***

Targeted drug delivery to tumours is of the utmost impor-
tance to enhance the efficacy of anti-cancer drugs while
minimising their systemic toxicity, and it may be achieved
by NDDSs via passive and active targeting mechanisms
(Figure 2).%%%¢

The Passive Tumour Targeting Mechanism
Passive tumour targeting generally depends on a phenom-
enon called the enhanced permeation and retention (EPR)
effect.®® Tumour angiogenesis is stimulated in response to
the needs of tumours for nutrients, oxygen and waste
excretion.”’ However, the new tumour vasculature exhibits
both
instance, the newly formed blood vessels surrounding

structural and functional abnormalities.>” For
tumours are leaky (with pore sizes ranging from 100 nm
to 2 puM), thus allowing for enhanced permeation of
NDDSs.*® Moreover, tumours also lack normal lymphatic
drainage system, leading to enhanced retention of these
NDDSs.*® Overall, the EPR effect can improve the speci-
ficity of drug delivery to tumours over normal tissues by
approximately 20-30%.** However, NDDSs must (1) have
reasonable stability in the blood circulation and (2) be able
to avoid clearance by the reticuloendothelial system (RES)
and sequestration by the mononuclear phagocyte system
(MPS) in order to reach the tumours and achieve the EPR
effect.’® These two challenges have specifically been
addressed via the PEGylation of NDDSs, which can
their their

immunogenicity.*?

improve hydrophilicity and decrease
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Figure 2 Passive and active targeting mechanisms of nano-based drug delivery systems to tumours.

Notes: Created with BioRender.com. Data from Byrne et al*®

Abbreviation: NDDSs, nano-based drug delivery systems.

The Active Tumour Targeting Mechanism
Following the tumour accumulation of NDDSs through the
EPR effect, drug efficiency can be further improved via
active tumour targeting.®> Active tumour targeting is
achieved by binding on the NDDS surface of any ligands
that interact with receptors that are overexpressed on the
surface of cancer cells.*® This action increases the affinity
of NDDSs for cancer cells and may enhance their uptake
by cancer cells via receptor-mediated endocytosis.>**°
Interestingly, NDDSs have also been actively targeted to
tumour microenvironment (TME),*® tumour endothelial

cells*' and organelles of tumour cells*? for cancer therapy.

The Major Classes of Nano-Based
Drug Delivery Systems Evaluated
for Breast Cancer Therapy

The use of NDDSs for cancer therapy is promising, as
NDDSs have demonstrated potentials in enhancing the
efficacy of anti-cancer drugs, reducing their toxicity to
normal cells and overcoming drug resistance.*> NDDSs

and Rosenblum et a

can generally be grouped into three different categories,
namely organic, inorganic and hybrid (made of >2 types of
nanomaterials) NDDSs.** Several major classes of NDDSs
have been investigated for the delivery of anti-BC agents**
(Figure 3). Each of these NDDS classes is associated with
certain advantages and disadvantages (Table 2), thus
reflecting the importance of selecting the most appropriate
delivery system for a particular drug.

The Organic Nano-Based Drug Delivery

Systems

The Carbon-Based Nanocarriers

The capability of carbon atoms to undergo sp-, sp>- and
sp3-hybridisation explains the existence of multiple carbon
allotropes.*> In addition to the three naturally occurring
carbon allotropes (ie, amorphous carbon, diamond and
graphite), several synthetic carbon allotropes (eg, carbon
nanotubes, carbon nanocones, carbon nanohorns, fuller-
ene, graphene and nanodiamond) have also been
developed.*> In recent years, carbon-based nanocarriers
have been extensively exploited for different biomedical
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Nano-Based Drug Delivery Systems for Breast Cancer Therapy

|

Organic Nano-Based Drug Delivery Systems

Carbon-Based Nanocarriers Dendrimers

o
[ I

Carbon
Nanotubes

R G

Graphene PAMAM

Lipid-Based Nanocarriers Polymer-Based Nanocarriers

o ine

’\f e ‘\‘V‘
f““-” o

®

Liposomes Niosomes Chitosan PLGA
Protein-Based Nanocarriers
A4 V3 5

Gelatin

Solid-Lipid Nanoparticles Albumin

(SLNs)

Figure 3 Major classes of nano-based drug delivery systems for breast cancer therapy.

Note: Created with BioRender.com.
Abbreviations: PAMAM, poly(amidoamine); PLGA, poly(lactic-co-glycolic acid).

applications (eg, bio-sensing and drug delivery) owing to
their unique profiles of chemical and physical properties
(eg, electrical and thermal conductivity, mechanical
strength, optical properties and structural diversity).**”
Moreover, other aspects of carbon-based nanocarriers
such as their large surface area, high chemical stability,
preferential tumour accumulation and high cellular entry
have also made them potentially promising as drug carriers
in cancer treatment.*®

An activated carbon nanoparticle-epirubicin suspension
was developed and tested clinically as regional lymphatic
chemotherapy in BC patients.*’ It was reported that BC
patients subjected to regional injection of activated carbon
nanoparticle-epirubicin suspension had higher epirubicin
concentration in the lymph nodes and lower plasma epirubi-
cin concentration than those subjected to intravenous injec-
tion of free epirubicin, indicating that this nanoformulation

|

Inorganic Nano-Based Drug Delivery Systems

Metallic Nanoparticles

Gold
Nanoparticles

Silver
Nanoparticles

Mesoporous Silica Nanoparticles

Mesoporous Silica
Nanoparticles (MSNs)

Silk Protein
Fibroin

can improve the therapeutic efficacy of epirubicin while
minimising its systemic toxicities. This nanoformulation is
also capable of releasing epirubicin slowly in the lymph
nodes, which may prolong its chemotherapeutic action.
Further development of carbon-based nanocarriers is, how-
ever, often hindered by controversies surrounding their inher-
ent toxicities.*®

The Dendrimers

Dendrimers are three-dimensional polymeric macromole-
cules that are characterised by their well-organised and
highly branched structures.’® A typical dendrimer consists
of a symmetric central core, together with an inner shell
and an outer shell.’' The precise molecular weight, bio-
compatibility, monodispersity, high aqueous solubility,
high biological barrier penetrability and polyvalency of

dendrimers have contributed to their extensive biomedical
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and therapeutic applications (eg, imaging, gene therapy
and drug delivery).’>? The exploitation of dendrimers
for drug delivery dates back to the late 1990s.* In fact,
dendrimers have been considered to be multi-functional
drug carriers, as they can enhance the solubility, dissolu-
tion, adsorption, bioavailability, stability and efficacy of
drugs as well as enable controlled drug release and tar-
geted drug delivery.’>>

Various types of dendrimers have been investigated as
drug carriers in oncology, including dendrimer based on
2,2-bis(hydroxymethyl) propionic acid, melamine-based
dendrimer, poly(amidoamine) (PAMAM) dendrimer, poly
(glycerol-succinic acid) dendrimer, poly(propylene imine)
(PPI) dendrimer, 5-aminolevulinic acid (ALA)-containing
(PLL) dendrimer.’*>’
However, while neutral and anionic dendrimers are usually

dendrimer and poly-L-lysine
non-toxic, cationic dendrimers often confer high toxicity.>®
Cationic dendrimers tend to interact with negatively
charged biological membranes, which can consequently
lead to membrane integrity disruption, cytosolic protein
leakage and eventually cell lysis.’® It has been reported
that the (eg,
PEGylation) can mask their charge(s) and thereby reduce

surface modification of dendrimers

their toxicities.”

A PEGylated PLL dendrimer-based nanoformulation
of docetaxel demonstrated superiority over conventional
docetaxel in terms of efficacy, safety and pharmacokinetics
in the Phase I trial, in which patients with advanced brain,
breast, cervical, gastro-oesophageal, lung, pancreatic,
prostate and renal cancers were enrolled.”’ Based on the
positive Phase I results, nanoformulated docetaxel has
been advanced to Phase I1.°7 Similarly, a PEGylated PLL
dendrimer-based nanoformulation of SN-38 has also pro-
gressed to Phase II following the observation of improved
anti-cancer efficacy and safety as compared to conven-
tional irinotecan in breast, colorectal and pancreatic cancer

patients in the Phase I component of its Phase I/II trial.®

The Lipid-Based Nanocarriers

Lipid-based nanocarriers (eg, liposomes, niosomes and
solid-lipid nanoparticles [SLNs]) have attracted consider-
able attention in drug delivery owing to their ease of
preparation, large-scale and low-cost production, biocom-
patibility, biodegradability, targetability, high stability and
high drug loading capacity.’>*°° Additionally, they can also
prolong drug action by enabling controlled drug release
and extending drug half-life.®® Lipid-based nanocarriers
are particularly considered to have revolutionised cancer

treatment, as they have been reported to improve the
efficacies of anti-cancer drugs as well as reduce their
therapeutic doses, associated toxicities and drug
resistance.®

Liposomes are the first generation of lipid-based nano-
carriers developed for drug delivery.’ They are spherical
lipid vesicles consisting of an aqueous core that is sur-
rounded by at least one phospholipid bilayer.®* Due to the
amphipathic nature of phospholipids, liposomes are cap-
able of loading both hydrophobic and hydrophilic drugs
into the lipid bilayer and the aqueous internal compart-
ments, respectively.””®" In 1995, PEGylated liposomal
doxorubicin was approved by the US Food and Drug
Administration (FDA) for the treatment of AIDS-related
Kaposi’s sarcoma, making it the first FDA-approved
nanomedicine.®® Tt is currently also indicated for the clin-
ical treatment of recurrent ovarian cancer, metastatic BC
and multiple myeloma.®* In all settings, PEGylated lipo-
somal doxorubicin has shown reduced cardiotoxicity in
comparison to free doxorubicin.®® Liposomal cytarabine
obtained FDA approval for the intrathecal treatment of
lymphomatous meningitis in 1999.% Since then, a number
of clinical trials have been underway to establish the
effectiveness of liposomal cytarabine in other cancer
types.®® It was found in a Phase III trial that systemic
therapy plus intrathecal liposomal cytarabine resulted in
better median progression-free survival than systemic ther-
apy alone (3.8 vs 2.2 months) in BC patients with newly
diagnosed leptomeningeal metastasis.®’ Nonetheless, the
development of liposomal nanoformulation is limited by
difficulties with large-scale manufacturing, sterilisation
and stability.®®

Niosomes are spherical vesicles with closed bilayer
structures that arise from the self-clustering of cholesterol
and non-ionic surfactants in aqueous media.”® They have
similar structures and physical-chemical properties as lipo-
somes, and can also load both hydrophobic and hydrophi-
lic drugs.68’69 In contrast to liposomes, however, niosomes
require simpler fabrication methods, lower production
costs and possess greater stability.®® Therefore, niosomes
have been proposed as an alternative to liposomal delivery
of anti-cancer drugs.’® Niosomal nanoformulations of
cisplatin,”® doxorubicin’' and tamoxifen citrate’”> have
been reported to possess higher anti-cancer efficacy than
their free drugs in preclinical BC models, but none of
these has been advanced to clinical trials to date. One
of niosomes is that their

disadvantage currently
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commercially available non-ionic surfactants (ie, Spans
and Tweens) are all polydisperse.69

SLNs, a relatively new colloidal drug delivery system,
are made of lipid matrices that remain in a solid state at
physiological temperatures.®® Similar to liposomes and
niosomes, SLNs are also capable of incorporating both
hydrophobic and hydrophilic drugs.®® However, they are
superior to liposomes in terms of reproducibility, feasibil-
ity of large-scale production, stability and entrapment effi-
ciency for hydrophobic drugs.”® Although no SLN-based
nanoformulation of anti-cancer drugs has been clinically
studied for BC treatment to date, there have been precli-
nical reports of the anti-BC activities of doxorubicin-,”*
loaded
SLNs. However, SLNs are associated with several draw-

methotrexate-,”> paclitaxel-’® and tamoxifen-"’
backs, including low drug loading capacity and risk of
drug expulsion due to crystallisation during storage.”®

The Polymer-Based Nanocarriers
In general, polymer-based nanocarriers are able to protect
drugs from rapid metabolism and clearance by RES, liver
and kidney as well as offer targeted delivery and sustained
release of drugs.”” They can be prepared from either
natural or synthetic polymers.*® As opposed to natural
polymers, synthetic polymers are abundantly present, pos-
sess better thermal stability and mechanical properties and
can be more easily processed to achieve desired pore size
and scaffold geometry."! However, synthetic polymers
often come with impurities that can affect their biocompat-
ibility, while natural polymers generally offer better bio-
compatibility and biodegradability.®* In recent years, semi-
synthetic polymers, which are derived from the modifica-
tion of natural polymers via blending, crosslinking or
grafting with synthetic polymers, have been introduced.
They exhibit combined advantageous properties of both
natural and synthetic polymers and thus are a highly pro-
mising type of nanomaterial for drug delivery.®'
Polysaccharides represent a class of natural polymer that
has been extensively exploited for drug delivery.*® They can
be obtained naturally from algal (eg, alginate), animal (eg,
chitosan, chondroitin and hyaluronic acid), plant (eg, pectin,
cellulose and gum arabic) and microbial (eg, dextran,

xanthan gum and hyaluronic acid) origins,**®

among
which alginate, chitosan, dextran and hyaluronic acid have
been most frequently utilised for delivering anti-cancer
drugs.® Various synthetic polymers have also been exploited
for the preparation of NDDSs, including hydrophobic poly-

mers such as poly(lactic-co-glycolic acid) (PLGA), poly

(lactic acid) (PLA) and polycaprolactone (PCL) as well as
hydrophilic polymers such as poly(ethylene glycol) (PEG),
poly(glutamic acid) (PGA), poly(ethyleneimine) (PEI), poly
(acrylamide) (PAM) and poly(vinyl alcohol) (PVA).¥*5¢

Polymer-based nanoformulations of various chemother-
apeutic agents have also been clinically tested for BC treat-
ment. In a Phase III trial, a monomethoxy-poly(ethylene
glycol)-block-poly(D,L-lactide) (mPEG-PDLLA) micellar
formulation of paclitaxel was found to offer superior clinical
efficacy (ie, objective response rate of 39.1% vs 24.3%) and
manageable toxicities in comparison to conventional pacli-
taxel in patients with recurrent or metastatic HER2-negative
BC.*” This micellar formulation of paclitaxel is now on the
South Korean market for treating metastatic BC, non-small
cell lung cancer (NSCLC) and ovarian cancer.*® Another
nanoformulation, PGA-paclitaxel, has also been evaluated
in Phase II trials for the treatment of BC, NSCLC and ovarian
cancer.® Specifically, a Phase II trial reported that the com-
bination of PGA-paclitaxel plus capecitabine showed signif-
icant efficacy and reasonable tolerability in metastatic BC
patients.”® Notably, PGA-paclitaxel have been advanced to
Phase III trials for the treatment of NSCLC and advanced
ovarian cancer.®

The Protein-Based Nanocarriers

Protein-based nanocarriers consist of multiple protein sub-
units that can undergo spontanecous and precise self-asso-
with
Over the past few years, there has been a

ciation to form nanocarriers internal hollow
cavities.”!
rapid expansion in the practical applications (eg, biocata-
lysis, diagnostic imaging, drug delivery and vaccine devel-
opment) of protein-based nanocarriers owing to their
unique properties.”” In addition to being biocompatible
and biodegradable, protein-based nanocarriers also offer
other advantages such as ease of synthesis and size con-
trol, cost-effectiveness, high stability, amenability to sur-
face modification for targeted drug delivery and ability to
provide controlled drug release.”**** However, nanocar-
riers derived from different proteins have been associated
with certain disadvantages such as high cost (eg, albumin
and ferritin), risk of prion transmission from animal
sources (eg, collagen and gelatin), low mechanical
strength (eg, gelatin), slow degradation (eg, silk protein
fibroin), fast degradation (eg, gelatin and gliadin), large
nanoparticle size (eg, gliadin) and low yield (eg, legumin,
protamine and silk protein sericin).”*"*

The most extensive use of protein-based nanocarriers

as NDDSs has been seen in oncology. There has been a
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heavy focus particularly on albumin nanocarriers, as albu-
min has been reported to preferentially accumulate in solid
tumours.”” For example, nanoparticle albumin-bound
paclitaxel that demonstrated greater anti-cancer efficacy
and lower toxicity than conventional paclitaxel in both
preclinical and clinical studies successfully obtained
FDA approval for the treatment of metastatic BC in
2005.°%°7 In a Phase 1 trial, nanoparticle albumin-bound
rapamycin also showed preliminary evidence of response
and stable disease as well as acceptable tolerability in
patients with advanced non-hematologic cancers, includ-
ing BC.”® Tt is currently being tested in Phase II trials,
either alone or in combination with other therapies, for the
treatment of various cancers such as high-grade glioma,
newly diagnosed glioblastoma®® and advanced malignant

perivascular epithelioid cell tumour.'®

The Inorganic Nano-Based Drug Delivery

Systems
The Metallic Nanoparticles
Metallic nanoparticles are colloidal particles with diameters

ranging from 10 to 1000 nm.'"!

They are known for their
unique catalytic, electrical, magnetic, optical and thermal
properties, simple surface chemistry and functionalisation as
well as ease of synthesis.'”® These features have led to the
extensive investigation of metallic nanoparticles in a wide
range of biomedical applications (eg, diagnostic testing, ima-
ging, radiotherapy enhancement, thermal ablation as well as
gene and drug delivery), rendering them multi-purpose.'**

Metallic nanoparticles are associated with both intrin-
sic and extrinsic anti-cancer effects.'®> For instance, sev-
eral metallic nanoparticles (eg, silver, gold, cerium oxide,
copper oxide, iron oxide, titanium oxide, titanium dioxide
and zinc oxide) have been reported to mediate intrinsic
anti-cancer activities via different mechanisms.'®*'** The
extrinsic anti-cancer activities of metallic nanoparticles are
seen in targeted hyperthermic therapy.'® For example, a
thermal therapy product based on iron oxide nanoparticles
has been approved by the European Medicines Agency
(EMA) to treat glioblastoma.'®® Following the direct injec-
tion of aqueous iron oxide nanoparticle dispersion into the
tumour, an alternating magnetic field is applied to generate
heat for killing the cancer cells.'®

Besides being useful as anti-cancer agents, metallic nano-
particles can also be utilised as NDDSs for anti-cancer drugs.
They have high drug loading capacity and possess a large
chemical

surface area-to-volume ratio that facilitates

modification.'®” Moreover, superparamagnetic metallic nano-
particles (eg, iron oxide) can also enable site-specific delivery
of drugs via the application of an external magnetic field.'”® A
metallic nanoformulation, colloidal gold-bound tumour necro-
sis factor, has completed Phase I trials in patients with different
cancers, including BC.' It could be administered at doses
that exceeded the maximum tolerated dose of native tumour
necrosis factor while showing reasonable tolerability and
tumour targetability.''® However, some metallic nanoparticles
have been associated with toxicities even though the metals
used are relatively inert (eg, gold, silver and copper), as well as
with low stability and biocompatibility.**'"!

The Mesoporous Silica Nanoparticles

Mesoporous silica nanoparticles (MSNs) are silica materials
with a highly ordered porosity of 2 to 50 nm in diameter.''?
They have emerged as an ideal NDDS owing to their unique
properties, including simple fabrication, tunable particle size
and shape, large internal pore volume and surface area giving
rise to high drug loading capacity, good stability, good bio-
compatibility, easy surface modification and functionalisation
as well as capability to incorporate both hydrophilic and
hydrophobic drugs.''*'*?

The first introduction of MSNs as NDDSs dates back
to 2001 when Vallet-Regi et al''® successfully encapsu-
lated an anti-inflammatory drug (ie, ibuprofen) into MSNs.
Considerable research efforts have since been devoted to
the development of MSNs for treating various diseases,
particularly cancer.''> MSN-based nanoformulations of

117 and

various chemotherapeutic agents (eg, doxorubicin
epirubicin''®) and nucleic acids (eg, siPlkl plus miR-
200c'"” and HER2-targeted siRNA'?°) have demonstrated
anti-BC effects preclinically. However, the clinical transla-
tion of MSNs may be limited by its reported toxicities (eg,
cardiotoxicity, pulmonary toxicity, renal toxicity and

genotoxicity).'*' %

The Anti-Breast Cancer Mechanisms
of Medicinal Plant Extracts/Essential
Oils and Anti-Breast Cancer Activities
of Their Nanoformulations in
Preclinical Models

Extracts/essential oils of certain medicinal plants contain a
cocktail of bioactive compounds that exert anti-BC activ-
ities via different mechanisms of action (Table 3). These

bioactive compounds may exhibit synergistic effects,
thereby allowing the extracts and essential oils to exhibit
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higher anti-cancer activities than a single bioactive
compound.'** However, the clinical use of extracts and
essential oils in cancer treatment is often limited by their

References

[198]

poor bioavailability.>**” In line with this, multiple studies

have developed nanoformulations for medicinal plant
extracts/essential oils that have demonstrated anti-BC
potentials preclinically but could not be translated clini-
cally due to bioavailability issues (Table 4).

The Adiantum capillus-veneris and Pteris

quadriaurita Extracts

Adiantum capillus-veneris, or southern maidenhair fern, is a
type of herb generally cultivated in temperate and tropical
regions.'*> It is widely distributed in America, Europe,
Atlantic coast as far as Ireland, southern Alpine valley regions,
Australia and Iran.'*® Traditionally, 4. capillus-veneris is uti-

Mechanisms of Action

-Stimulation of ROS generation

o1 Intracellular ROS level

-Intercalation between DNA strands
-Induction of DNA damage

o1 8-oxoguanine formation

o7 DNA migration

-Induction of mitochondrial apoptotic pathway
o| A,

o1 Caspase-3 activity

lised either as a single herbal medicine or in multi-herbal

formulations to treat human diseases such as bronchial dis-
orders, cold, cough, fever, hepatitis, jaundice, skin disorders
and tumours.'?>'?° Its therapeutic potential is further reflected
by a range of reported pharmacological activities, including

7 anti—inﬂammatory,128 antimicrobial,129 anti-

131

anti—diabetic,12
nociceptive,'** hypocholesterolemic,'>' wound healing,'**
antioxidant and anti-cancer'*® activities.

Pteris, one of the largest fern genera, consists of

Cell Models/Animals (Sex)

-MDA-MB-231 cell line

approximately 200250 species.'>* Pteris spp. are widely

distributed on all continents except Antarctica. They have

been used by humans as ornamental plants, arsenic hyper-

accumulators, food, spices and medicines.' 34133

Essential Oil

Extract/
Essential oil

Importantly, Pferis is known to be rich in ent-kaurane

diterpenoids, a compound class whose members often
possess good anti-cancer activity.'*® For example, Pteris

quadriaurita (striped brake fern) has been reported to

136 in addition to anti-bacterial,

137

exhibit anti-cancer activity
anti-fungal, anti-haemolytic and antioxidant activities.

The methanolic leaf extracts of both A. capillus-veneris
and P. quadriaurita have demonstrated anti-cancer activ-
ities against BC cell lines.”*® In the same study, the
researchers synthesised gold nanoparticles (AuNPs) from

Plant Common Name

Avishan-e-Shirazi

these extracts and evaluated the effects of the resulting
AuNPs on MCF-7 and BT-47 BC cell lines. Only P
quadriaurita AuNPs were found to possess greater cyto-

toxicity against MCF-7 cells than its free extract (ICs
values of 9 pg/mL vs 380 ug/mL). Nonetheless, subse-
quent gene and protein expression analyses revealed that
MCF-7 and BT-47 cells treated with A. capillus-veneris
and P quadriaurita AuNPs had a more significant

Table 3 (Continued).
Plant Botanical Name

Zataria multiflora
receptor; ROS, reactive oxygen species; SOD, superoxide dismutase; VEGF, vascular endothelial growth factor; ZEBI, zinc finger E-box binding homeobox I; 12/15-HETE, 12/15-hydroxyeicosatetraenoic acid; A¥,,, mitochondrial

membrane potential.

Abbreviations: Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; BRCAI/2, Breast cancer gene 1/2; BRCC3, BRCAI/BRCA2-containing complex subunit 3; CAT, catalase; CDK4, cyclin-dependent kinase 4, DMBA, 7,12-

dimethylbenz(a)anthracene; DNA, deoxyribonucleic acid; EGFR, epidermal growth factor receptor; EMT, epithelial-mesenchymal transition; ER, estrogen receptor; ERa, estrogen receptor-alpha; ERE, estrogen response element; GPx,
glutathione peroxidase; GSH, glutathione; ICAM-1, intercellular adhesion molecule-1; IkBa, inhibitor kappa B-alpha; LTB,, leukotriene B4; MAPK, mitogen-activated protein kinase; MDA, malondialdehyde; MMP-9, matrix metallopepti-

dase-9; MSH6, MutS homolog 6; NBSI, Nibrin; NF-kB, nuclear factor-kappa B; NO, nitric oxide; PCNA, proliferating cell nuclear antigen; PGE,, prostaglandin E; PI3K/AKT, phosphoinositide 3-kinase/protein kinase B; PR, progesterone

Notes: 1, increased; |, decreased.
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reduction in the protein level of proliferating cell nuclear
antigen (PCNA; ie, a proliferation marker) than those
treated with free extracts. A more significant reduction in
the mRNA and protein levels of cyclin D1 and the protein
level of cyclin-dependent kinase (CDK)4, as well as a
more significant increase in the mRNA level of p21 (e,
a CDK inhibitor) and the protein level of nuclear p21
relative to cytosolic p21 were also observed. Moreover,
both A. capillus-veneris and P. quadriaurita extracts and
their AuNPs also induced apoptosis in MCF-7 and BT-47
cells, as evidenced by a significant increase in the number
of TUNEL- and Annexin V-positive cells. Apoptosis was
further confirmed to be mediated by the mitochondrial
apoptotic pathway, as indicated by a drop in mitochondrial
membrane potential (AY,,); a significant increase in the
mRNA and protein levels of Bcl-2-associated X protein
(Bax; ie, a pro-apoptotic protein) and the protein levels of
caspase-9 (ie, an initiator caspase of the mitochondrial
apoptotic pathway), caspase-3 (ie, an effector caspase)
and cytosolic cytochrome c relative to mitochondrial cyto-
chrome c; as well as a significant decrease in the mRNA
and protein levels of B-cell lymphoma 2 (Bcl-2; ie, an
AuNPs
greater changes in the expression of the abovementioned

anti-apoptotic protein). Importantly, induced
apoptotic markers than their free extracts. Taken together,
these findings suggest that the formulation of 4. capillus-
veneris and P. quadriaurita extracts into AuNPs can
improve their anti-proliferative, cell cycle arrest-inducing

and pro-apoptotic activities against BC cells.

The Annona muricata Extracts

Annona muricata is a fruit tree widely cultivated in the
tropical regions of Central and South America, Western,
Central and Eastern Africa as well as Southeast Asia.'*® It
is known by a range of common names at different places,
including Soursop (English), Guanabana (Latin American
Spanish), Graviola (Portuguese) and Omusitafeli/Ekitafeli
(Uganda)."®® Traditionally, different parts of A. muricata
such as fruits, leaves, seeds, flowers, bark and roots have
been used to treat cancer, diabetes, malaria, parasitic infec-
tions and stomach ache, ete. 38137 More recent studies have
discovered various pharmacological activities of 4. muricata

extracts, including anti-arthritic,'*® anti-convulsant,'*' anti-

diabetic,142 anti-hypertensive,143 antioxidant,144 anti-

parasitic,'”>  hypolipidemic,'*®  wound  healing,'*’
149

gastroprotective,'*® hepatoprotective,'*® anti-inflammatory
and analgesic'” activities. In particular, extracts prepared

from A. muricata leaves, fruits and seeds have demonstrated

both in vitro and in vivo anti-BC activities.'”''** These anti-
BC activities have been linked to the regulation of immune
system, the reduction of inflammation, the suppression of
various signalling pathways (eg, epidermal growth factor
receptor [EGFR],
[MAPK], phosphoinositide 3-kinase/protein kinase B
[PI3K/AKTT] and nuclear factor-kappa B [NF-«kB]), the mod-
ulation of cell cycle regulators, as well as the stimulation of

mitogen-activated protein  kinase

ROS generation and consequent induction of caspase-depen-
dent apoptosis.'>!+133154

Sabapati et al'> loaded 4. muricata ethanolic fruit
extract into SLNs and found that extract-loaded SLNs
caused a greater dose-dependent reduction in MCF-7 cell
viability than the free extract (ICsq values of 12 ug/mL vs
30 pg/mL). Flow cytometric analysis of Annexin V-FITC-
stained cells further showed that extract-loaded SLNs
could induce a significantly higher percentage of apoptotic
MCF-7 cell death than the free extract (86.0% vs 71.34%).
Interestingly, void SLNs did not elicit significant cytotoxi-
city against MCF-7 cells. Collectively, these findings indi-
cate that SLNs are biocompatible NDDSs capable of
enhancing the cytotoxicity and pro-apoptotic activity of
A. muricata extract against BC cells.

In another study, Jabir et al'>®

reported the green
synthesis of silver nanoparticles using silver nitrate solu-
tion and A. muricata aqueous peel extract. The resulting
silver nanoparticles (AMSNPs) elicited a significant, time-
dependent anti-proliferative effect on AMJ-13 BC cell line
(ICs0 = 17.34 pg/mL) but had a less significant effect on
normal HBL breast epithelial cell line. This anti-prolifera-
tive activity of AMSNPs was linked to the induction of
apoptosis via p53 signalling, as evidenced by the observa-
tions of disrupted membrane integrity and lysosomal
vacuoles, increased percentage of sub-Gl phase corre-
sponding to apoptotic cells, A¥,, loss and upregulated
p53 expression in treated AMIJ-13 cells. However, the
study did not compare the anti-BC effect of AMSNPs
with that of free A. muricata aqueous peel extract.

The Ipomoea turpethum Extracts

Ipomoea turpethum (or Operculina turpethum), commonly
known as “transparent wood rose”, can be found in many
countries such as Africa, America, Bangladesh, China, India,
Madagascar, Mauritania, Pakistan, Philippines and Sri
Lanka."”'*® It is one of the medicinal plants that have
been employed in the Ayurvedic medicine for treating bron-
chitis, cancer, cervical lymphadenitis, chronic gout, constipa-
tion, dysmenorrhea, fever, fistulas, hemorrhoids, herpes,
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induced lacrimation, inflammation, jaundice, neurological
obesity, 157,158

Additionally, . turpethum extracts (ie, from stems, roots,

disorders, skin disorders and ulcers.
aerial and whole part) have also demonstrated anti-cancer
potentials in preclinical BC models."**"'*° One study further
showed that the anti-BC activities of I turpethum stem
extract are mediated, at least partly, via its antioxidant
activity.'>’

Similarly, Mughees et al'®' found that 1. aurpethum etha-
nolic extracts prepared from different plant parts (ie, flowers,
leaves, roots, aerial and whole part) demonstrated significant
cytotoxicities against both MCF-7 and MDA-MB-231 BC cell
lines. The root extract that exhibited the greatest cytotoxicity
(ICsq values of 452.35 pg/mL for MCF-7 cells and 310 pg/mL
for MDA-MB-231 cells) was subsequently loaded into poly
(N-isopropylacrylamide) (NIPAAM,; for temperature sensitiv-
ity), N-vinyl pyrrolidone (VP; for temperature sensitivity) and
acrylic acid (AA; for pH sensitivity) co-polymeric nanoparti-
cles. The TME is generally more acidic and has a higher
temperature than normal tissues owing to the excessive lactic
acid produced from enhanced glycolysis and the secretion of
pyrogenic substances by tumour cells.'® Intriguingly, the
NIPAAM-VP-AA double-triggered nanoparticle

takes advantage of these TME characteristics for targeted
161

system

delivery of loaded root extract to the tumour sites.
Expectedly, it was observed that this nanoformulation exerted
greater cytotoxicity than the free root extract (ie, ICsq values of
221.81 pg/mL for MCF-7 cells and 171.13 pg/mL for MDA-
MB-231 cells). Moreover, ICsq concentrations of this nano-
formulation also markedly reduced MCF-7 (from 99.2% to
57.7%) and MDA-MB-231 (from 99.3% to 55.4%) cell pro-
liferation; as well as significantly increased the percentage of
early and late apoptotic MCF-7 (from 2.2% to 3.4% and from
4.1% to 9.2% respectively) and MDA-MB-231 (from 6.3% to
14.7% and from 4.5% to 7.3% respectively) cells, the con-
densation of nuclear chromatin and the accumulation of MCF-
7 (from 50.7% to 63.4%) and MDA-MB-231 (from 57.9% to
81.3%) cell populations in GO/G1 phase. These observations
collectively indicate that the NIPAAM-VP-AA co-polymeric
nanoparticle-based nanoformulation can enhance the cytotoxi-
city of I. turpethum extract as well as exert anti-proliferative,
pro-apoptotic and cell cycle arrest-inducing activities against
BC cells.

The Mirabilis jalapa Extracts

Mirabilis jalapa (four o’clock flower), a medicinal plant that
can be found in Brazil, India and Mexico, has been used
traditionally in the treatment of abscess, boils, bruises,

diarrhoea, inflammation, pain, piles, ulcers, urticaria and
wounds.'® It has been reported to contain ribosome-inactivat-

ing proteins (RIPs).'®

RIPs are a family of proteins with
N-glycosidase activity that catalyses the removal of a single
adenine from ribosomal ribonucleic acid, thereby leading to
protein synthesis inhibition.'®* They play a key role in defend-
ing plants against attacks from pathogens and insects.'®
Interestingly, RIPs isolated from M. jalapa leaves have
demonstrated cytotoxicity against T47D BC cell line.'*
However, more needs to be done to fully elucidate the anti-
BC mechanism(s) of RIPs.

As proteins are subjected to rapid enzymatic degradation
following oral administration and have poor membrane per-
meability, Wicaksono et al'®” formulated a RIP extract of M.
Jjalapa leaves (RIP-MJ) into anti-EpCAM antibody-conju-
gated alginate-chitosan nanoparticles. Epithelial cell adhe-
sion molecule (EpCAM) is a transmembrane glycoprotein
that is lowly expressed in normal breast tissues but becomes
overexpressed in breast carcinomas.'®® As such, conjugation
of nanoparticles with anti-EpCAM antibody enables active
breast tumour targeting. For instance, anti-EpCAM antibody-
conjugated and unconjugated RIP-MJ nanoparticles elicited
greater cytotoxicity against T47D cells than free RIP-MJ
(ICsg values of 13.27 ug/mL and 14.87 pug/mL vs 1842.03
pg/mL).'%” Interestingly, while free RIP-MJ had a lower ICs
value in normal Vero kidney cells than in T47D cells
(1387.87 pg/mL vs 1842.03 pg/mL), the opposite was
observed for anti-EpCAM antibody-conjugated (ICs, values
of 33.62 pug/mL vs 13.27 ug/mL) and unconjugated (ICs,
values of 27.84 pg/mL vs 14.87 pg/mL) RIP-MJ nanoparti-
cles. These findings collectively suggest that the use of
NDDS and targeting ligand can improve both the cytotoxi-
city and the selectivity of RIP-MJ against BC cells.

The Plectranthus amboinicus Extracts

Plectranthus amboinicus, commonly known as Indian
borage, is an Asian native plant that can also be found in
the Americas.'®® It has been used in Brazil to treat various
medical conditions such as inflammation and cancer.'”® In
particular, its leaves have been reported to contain com-
pounds with anti-cancer activities (eg, cinaminics, essen-
tial 109

Unsurprisingly, preclinical studies focussing on P. amboi-
169-174

oils, flavonoids and terpene derivatives).
nicus leaf extract revealed its anti-BC activities.
one of these studies, the pro-apoptotic activity of P. amboi-
nicus leaf extract was linked to the activation of caspase-3

171
and caspase-7.""
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Hasibuan and Sumaiyah'’> loaded P. amboinicus etha-
nolic leaf extract into chitosan-sodium tripolyphosphate
nanoparticles (PAEEN) and reported that 24 h of PAEEN
treatment could cause a dose-dependent reduction in T47D
cell viability (ICso=89.166 ng/mL). Interestingly, although
T47D cell proliferation increased following 24 h of PAEEN
treatment, a dose-dependent reduction in T47D cell prolif-
eration was seen following 48 h and 72 h of PAEEN treat-
ment. Subsequent flow cytometric analysis revealed that
PAEEN could also induce apoptosis in T47D cells.
However, the study did not compare these observed cyto-
toxic, anti-proliferative and pro-apoptotic activities of
PAEEN with those of free P. amboinicus ethanolic leaf
extract.

The Punica granatum Extracts

Punica granatum (pomegranate), a deciduous shrub native
to Asian countries such as Iran and India, is also widely
cultivated in Mediterranean countries, such as Egypt,
Morocco, Spain, Tunisia and Turkey.'”®!'”” The therapeu-
tic potentials of various P. granatum parts (ie, bark, flow-
ers, fruits, leaves, roots and seeds) have been recognised
early and exploited in different traditional medicine sys-
tems (eg, Ayurveda, Chinese, Islamic and Persian) for
treating diarrhoea, dysentery, heart choking, intense
cough, jaundice, nasal bleeding, periodontitis, sore throat,
spleen diseases, ulcers, etc.'”™ These medicinal benefits of
P. granatum are attributed to its pharmacological activities
such as antimicrobial,”g antioxidant,180 wound healing,181

cardioprotective,'® anti-inflammatory =~ and  anti-
nociceptive'® activities. There has also been extensive
preclinical evaluation of the potential utilisation of P,
granatum fruit and peel extracts in BC treatment.'®*'%8
Evidences from these studies suggested that the anti-BC
activities of P granatum extracts are mediated via the
suppression of NF-kB and B-catenin signalling pathways;
the downregulation of Rho GTPases; the modulation of
cellular eicosanoid profile, metastasis-related and epithe-
lial-mesenchymal transition (EMT) markers; the downre-
gulation of DNA repair genes and consequent induction of
DNA double-strand breaks; and its anti-estrogenic activity.

Shirode et al'®® encapsulated P. granatum fruit extract
into poly(lactic-co-glycolic acid)—poly(ethylene glycol)
(PLGA-PEG) nanoparticles and reported that P. granatum
extract-loaded nanoparticles induced a more significant
reduction in MCF-7 and Hs578T BC cell growth than the
free extract (ICso values of 19.36 = 3.70 ng/mL vs 44.34 +

7.81 pg/mL in MCF-7 cells and 29.17 + 7.60 pg/mL vs

61.93 + 16.11 pg/mL in Hs578T cells). Interestingly, void
PLGA-PEG nanoparticles had no significant effect on
MCF-7 and Hs578T cell growth. These observations col-
lectively indicate that the PLGA-PEG nanoparticle system
is biocompatible and capable of enhancing the growth-
inhibitory activity of P. granatum extract against BC cells.

Besides, Badawi et al'®® loaded P granatum fruit
extract into SLNs and found that this nanoformulation
significantly reduced MCF-7 cell viability to a greater
extent than the free extract, with a 47-fold reduction in
ICso value (1.05 pg/mL vs 49.2 pg/mL). Similarly, void
SLNs were observed to exhibit cytotoxicity against MCF-
7 cells. The observed enhancement in cytotoxicity may
thus, at least partly, be explained by the synergistic effect
between P. granatum extract and SLNs. Importantly, P.
granatum extract-loaded SLNs had a higher ICs( value in
normal HFB-4 melanocytes than in MCF-7 cells (19.34
pg/mL vs 1.05 pg/mL), suggesting that this nanoformula-
tion is BC cell-selective. Collectively, these observations
suggest that SLNs can enhance the cytotoxicity of P,
granatum extract against BC cells, possibly via synergism
and improvement of BC cell selectivity.

The Putranjiva roxburghii Extracts

Putranjiva roxburghii (or Drypetes roxburghii), an ever-
green tree native to India, is locally referred to as
“Amulet-Plant or Wild Olive or Child-Life-Tree”.'"" It is
also widely distributed in Bangladesh, Myanmar, Nepal,
Sri Lanka, Thailand, Papua New Guinea, Taiwan, the
United States, Trinidad and Tobago.'®"'"? Traditionally,
it has been used in Ayurveda for treating conditions such
as azoospermia, burning sensation, hot swellings, eye dis-
orders, smallpox as well as mouth and stomach ulcers.'””
More recent studies have revealed the anti-BC, anti-epi-
leptic, antioxidant, anti-inflammatory, antimicrobial, anti-
nociceptive and anti-pyretic potentials of P. roxburghii leaf
and seed extracts.'”> !> However, further mechanistic
studies are required to explain how P. roxburghii extracts
exert these pharmacological activities.

Balkrishna et al'®® carried out the green synthesis of
silver nanoparticles using silver nitrate solution and P. rox-
burghii aqueous seed extract. The study revealed that P
roxburghii silver nanoparticles (PJSNPs) could exert more
potent cytotoxic effect on MDA-MB-231 cells than the free
extract (ICso values of 0.26 mg/mL vs 7.7 mg/mL). This
promising finding may be attributed to the small size (~8 £2
nm) and negative zeta potential (—26.71 mV) of PJSNPs,
which can enhance both their bioavailability and cellular
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uptake. Furthermore, ICs, concentration of PJSNPs also
increased the percentage of apoptotic cells (69%) and
induced DNA fragmentation in MDA-MB-231 cells.
Notably, PJSNP treatment did not show marked cytotoxi-
city against peripheral blood mononuclear cells (PBMCs).
Taken together, this nanoformulation can enhance the cyto-
toxicity of P. roxburghii extract and exert pro-apoptotic
activity against BC cells while sparing toxicities against
PBMCs. Another study by Nayaka et al'”’ similarly
reported the cytotoxicity of PJSNPs against MCF-7 cells
(ICs0 = 72.32 pg/mL).

The Zataria multiflora Essential Oils

Zataria multiflora, or Avishan-e-Shirazi, is a thyme-like
plant that can be found extensively in Iran, Afghanistan
and Pakistan.'”® It is not only a popular condimental plant
but also a traditional medicinal plant that has been
employed as anaesthetic, analgesic, anthelmintic, anti-diar-
rheal, antiseptic, anti-spasmodic, carminative, diaphoretic,
diuretic, stimulant and vermifuge agents.'®® More recent
studies have evaluated the pharmacological activities of Z.
multiflora essential oil (ZEO), the constituents of which
are dominated by oxygenated monoterpenes, monoterpene
hydrocarbons and sesquiterpene hydrocarbons.””® Besides
202 anti-cholinesterase and
ZEO has

reported to mediate potent anti-BC activities via the sti-

antioxidant,
203

antimicrobial,”"!

anti-inflammatory activities, also been
mulation of ROS generation, the intercalation of DNA
strands, the induction of DNA damage and the eventual
induction of mitochondrial apoptotic pathway.'*®2%
Salehi et al*%’

hindering the clinical development of essential oils via the

attempted to overcome the limitations

development of a citrus pectin-based nanoemulsion for
ZEO (CP-ZEO NE). Both ZEO and CP-ZEO NE treat-
ments dose-dependently decreased MCF-7, MDA-MB-231
and T47D cell proliferation but had no significant effect on
the proliferation of normal L929 fibroblast cells. However,
a reduced sensitivity to ZEO was observed in MDA-MB-
231 and T47D cells 24 h following treatment, possibly due
to the high volatility and low stability of ZEO.
Interestingly, CP-ZEO NE preparation may have improved
ZEQ stability, as CP-ZEO NE-treated MCF-7, MDA-MB-
231 and T47D cells demonstrated the highest sensitivity to
CP-ZEO NE at 72 h. This finding is consistent with the
lower ICsy values of CP-ZEO NE over ZEO at 72 h in
MCF-7 (5.38 pg/mL vs 33.1 pg/mL), MDA-MB-231 (20.4
pg/mL vs 30.54 pg/mL) and T47D (0.0016 pg/mL vs
37.03 pg/mL) CP-ZEO NE also

cells. Similarly,

demonstrated greater anti-proliferative activity against
MDA-MB-231 spheroids than ZEO, as reflected by a
lower ICsq value after 48 h of treatment (65.5 pg/mL vs
118.4 pg/mL). Moreover, CP-ZEO NE also showed pro-
apoptotic activity against MCF-7, MDA-MB-231 and
T47D cells, as evidenced by apoptosis-related morpholo-
gical changes (eg, small, rounded, wrinkled and irregular
blebbing);
increased orange-red fluorescence, nuclear fragmentation

cell shape, low-density and membrane
and chromatin condensation in dual acridine orange/ethi-
dium bromide (AO/EB) staining test; a DNA ladder pat-
tern on agarose gel electrophoresis; increased number of
TUNEL-positive cells; “Hedgehog tails” in comet assay;
increased apoptotic cell population in Annexin V-FITC/PI
staining; and increased percentage of sub-G1 phase corre-
sponding to apoptotic cells. Pro-apoptotic activity of CP-
ZEO NE was similarly observed in MDA-MB-231 spher-
oids. Additionally, CP-ZEO NE treatment also induced a
G2/M phase arrest in MDA-MB-231 cells but a S phase
arrest in MDA-MB-231 spheroids. Taken together, CP-
ZEO NE is a biocompatible nanoformulation that is cap-
able of enhancing the stability and anti-proliferative activ-
ity of ZEO as well as exerting pro-apoptotic and cell cycle
arrest-inducing activities against BC cells and spheroids.

The Anti-Breast Cancer
Mechanisms of Natural Bioactive
Compounds and Anti-Breast
Cancer Activities of Their

Nanoformulations in Preclinical
Models

A number of bioactive compounds isolated from natural
sources have been proven to be effective in the treatment
of human diseases, including cancer.’°® Table 5 sum-
marises the proposed anti-BC mechanisms of selected
natural bioactive compounds. However, the clinical utili-
sation of natural bioactive compounds is often challenged
by their low stability, poor aqueous solubility and low
bioavailability.**” One approach to overcoming these chal-
lenges includes the exploitation of NDDSs (Table 6).

Balanocarpol

Balanocarpol, a resveratrol dimer, can be isolated from
many Hopea spp., particularly Hopea dryobalanoides
and Hopea mengarawan found in the Malaysian rain
forest.?** 2! Its anti-BC potential has been preclinically
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established and linked to the inhibition of sphingosine
kinase 1 (SK1) enzymatic activity and expression.>*’
SK1 catalyses the conversion of sphingosine to sphingo-
sine-1-phosphate, the signalling of which has been impli-
cated in cell survival, proliferation, migration and
angiogenesis.”''*'? SK1 overexpression has been corre-
lated with drug resistance, worse prognosis and reduced
overall survival in many cancers, thus making it a promis-
ing anti-cancer target.”'' Additionally, balanocarpol’s anti-
BC potential has also been linked to the induction of poly-
ADP ribose polymerase (PARP) cleavage and the reduc-
tion of DNA synthesis.”*® However, its high toxicity, low
aqueous solubility and poor bioavailability have greatly
hindered its clinical translation.*'°

To address the abovementioned limitations of balano-
carpol, Obeid et al*'” encapsulated balanocarpol into nio-
somes comprising span 80 and cholesterol (1:1). It was
found that void niosomes at doses below 625 pg/mL were
not cytotoxic to A2780 ovarian cancer cells and ZR-75-1
BC cells. Therefore, 625 pg/mL noisome was used to
deliver balanocarpol for ensuring any observed cytotoxi-
city was induced solely by balanocarpol. Balanocarpol-
encapsulated niosomes exhibited significantly greater
cytotoxicity against ZR-75-1 cells than free balanocarpol
(ICsp values of 57.97 uM vs >196.6 uM), indicating

improved anti-BC efficacy.

Cordycepin

Cordyceps spp., an entomopathogenic fungus, is usually
found in Asia, Europe and North America.>"* Cordycepin
(3-deoxyadenosine), an adenosine analogue, is the main
bioactive constituent of Cordyceps spp.2'* It has been exten-
sively investigated for its pharmacological activities, includ-

215-219 . . 1220 221
C, antimicrobial,

ing anti-B anti-inflammatory,
analgesic,”** hypoglycaemic,”** hypolipidemic®** and plate-
let inhibitory**® activities. As a nucleoside antagonist, cordy-
cepin is known to exert anti-cancer effects principally by
inhibiting RNA synthesis.?'” Further investigations into its
anti-BC mechanisms have suggested that the induction of
autophagy-associated cell death, mitochondrial apoptotic
pathway and caspase-dependent apoptosis; the regulation of
p53 and estrogen signalling pathways; the promotion of
DNA double-strand breaks and DNA damage response; the
inhibition of poly(ADP)ribosylation; the suppression of
hedgehog and Notch signalling pathways; the modulation
of EMT markers; and the stimulation of ROS generation
are also involved.”'> %' However, the clinical application

of cordycepin has been hindered due to toxicity to normal

cells as well as poor bioavailability resulting from low aqu-

eous solubility and rapid metabolism by adenosine

deaminase.”*°

A study reported the encapsulation of cordycepin into
PLGA nanoparticles (CPNPs) and observed that CPNPs had
a higher uptake by MCF-7 cells than free cordycepin.**’ This
translated to a significantly greater cytotoxic effect of CPNPs
on MCF-7 cells (ICs, values of 16.79 pg/mL vs 47.84 pg/mL).
In addition, CPNPs also enabled the sustained release of
cordycepin (65% release in ten days), thus prolonging its
anti-BC action. Importantly, while free cordycepin elicited
hemolytic activity against rat red blood cells at 50 to 100 pg/
mL, CPNPs of equivalent doses did not cause hemolysis. As
opposed to free cordycepin, these findings suggest that CPNPs
can exert marked and prolonged anti-BC activity at a non-
hemotoxic concentration.

Curcumin

Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-hep-
tadiene-3,5-dione] is a major natural polyphenol found in
the rhizome of Curcuma longa (turmeric).?*® It has shown
benefits in diseases such as inflammatory conditions, kid-
ney conditions, metabolic syndrome and pain, most of
which have been attributed to its anti-inflammatory and
antioxidant activities.”*® Importantly, it has also demon-
strated anti-cancer potentials both preclinically and clini-

230-233 colorectal, >4 pancreatic,23 3

k237

cally in oral,**° breast,

236 a5 well as head and nec

skin cancers. Specifically,
the anti-BC activities of curcumin have been linked to the
modulation of cell cycle regulators and metastasis-related
markers; the induction of caspase-dependent apoptosis and
mitochondrial apoptotic pathway; the suppression of PI3K/
AKT/mammalian target of rapamycin (mTOR), extracel-
lular signal-regulated kinase (ERK), NF-kB and B-catenin
signalling pathways; the activation of p53 signalling path-
way; as well as the inhibition of angiogenesis.”** %
However, the clinical applicability of curcumin is chal-
lenged by its poor bioavailability resulting from low aqu-
eous solubility, poor absorption, extensive metabolism,
rapid degradation at physiological pH and rapid systemic
elimination,**23?

Different NDDS classes (eg, dendrosomes, liposomes,
polymer-based nanocarriers, protein-based nanocarriers,
metallic nanoparticles and MSNs) have been employed
to overcome the poor bioavailability of curcumin. For
example, Farhangi et al*** prepared dendrosomal curcu-
min (DNC) and tested its effects on both in vitro and in

vivo metastatic BC models. While free curcumin caused
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an obvious reduction in 4T1 cell viability only at 72 h,
DNC dose- and time-dependently suppressed 4T1 cell
viability from 24 to 72 h (ICso values of 32.5 uM at 24
h, 25 uM at 48 h and 17.5 uM at 72 h). Furthermore, DNC
also dose-dependently elicited greater anti-migratory and
anti-adhesive effects on 4T1 cells than free curcumin.
Interestingly, DNC only demonstrated slight cytotoxic
effects on normal mouse embryonic fibroblastic cells at
high doses, indicating its biocompatible nature. When
mice bearing 4T1 xenografts were subjected to intraper-
itoneal injection of DNC for seven days, it was found that
doses up to 80 mg/kg were remarkably safe whereas 160
and 320 mg/kg DNC caused mild symptoms of hemato-
toxicity, hepatotoxicity and renal toxicity. These suggest
that <80 mg/kg DNC may be more physiologically rele-
vant in treating BC. In comparison to untreated controls,
DNC-treated mice (40-80 mg/kg; 35 days) showed higher
survival rates, lower tumour incidence, smaller tumour
volume and tumour weight as well as lower incidence of
metastasis. In addition, these mice also had lower mRNA
levels of NF-kB pl105 and its downstream effectors (eg,
matrix metalloproteinase [MMP]-9, vascular endothelial
growth factor [VEGF] and cyclooxygenase-2 [COX-2])
in BC xenografts, brain, liver, lungs and spleen. Taken
together, DNC is both biocompatible and capable of
enhancing the anti-BC efficacy of curcumin, and its
observed in vitro and in vivo anti-BC activities are likely
correlated with the suppression of NF-kB signalling.
Hasan et al**' loaded curcumin into nanoliposomes
derived from salmon, soya or rapeseed lecithins. While
free curcumin, soya curcumin-loaded nanoliposomes and
rapeseed curcumin-loaded nanoliposomes induced an
obvious reduction in MCF-7 cell index only from 12 to
20 puM, salmon curcumin-loaded nanoliposomes could
significantly reduce MCF-7 cell index from 5 to 20 uM.
Interestingly, void salmon nanoliposomes were reported to
exert greater anti-proliferative effect on MCF-7 cells than
void soya and rapeseed nanoliposomes. Lipid profiling
revealed that salmon lecithins uniquely contained a high
proportion of eicosapentaenoic acid (EPA) and docosahex-
anoic acid (DHA),?*! both of which have previously been
reported to possess anti-cancer potentials.>** Collectively,
these findings suggest that the observed higher anti-BC
efficacy of salmon curcumin-loaded nanoliposomes may
be partly attributed to the synergistic effect between EPA-
and DHA-containing salmon nanoliposomes and curcu-
min. In another study, the same research group coated
lecithin nanoliposomes with chitosan and found that

chitosan-coated curcumin-loaded nanoliposomes exhibited
greater anti-proliferative activity against MCF-7 cells than
their uncoated counterparts.”** This improvement in anti-
BC efficacy offered by chitosan coating is potentially
linked to enhanced permeation and encapsulation effi-
ciency of nanoliposomes.

Besides, gum arabic-based nanoformulations have also
been developed. For instance, a study reported the pre-
paration of curcumin loaded-gum arabic aldehyde-gelatin
(Cur/GA Ald-Gel) nanogels.*** In the study, free curcumin
was found to significantly reduce MCF-7 cell viability
from 3.125 to 50 pg/mL. In contrast, Cur/GA Ald-Gel
nanogels could only induce significant cytotoxic effects
on MCF-7 cells from 12.5 to 50 pg/mL, and these effects
were less significant than those induced by equivalent
doses of free curcumin. This lower in vitro anti-BC effi-
cacy of Cur/GA Ald-Gel nanogels may be explained by
the slow release of curcumin (ie, <65% during the treat-
ment period of 24 h). Nonetheless, the nano-range size
(452 £ 8 nm) of Cur/GA Ald-Gel nanogels may promote
their in vivo tumour accumulation via the EPR effect, and
their large negative zeta potential (—27 £ 4 mV) may
confer good in vivo stability. Additionally, the release
rate of curcumin was observed to be higher under an acidic
condition (pH 5) than a neutral condition (pH 7.4), which
is suggestive of preferential curcumin release at the
tumour sites. Although Cur/GA Ald-Gel nanogels induced
dose-dependent hemolysis, the observed percentages of
hemolysis was <5%;*** thus classifying them as “hemo-
compatible” according to the ISO/TR 7406 standard.**
Overall, these findings suggest that although Cur/GA
Ald-Gel nanogels did not demonstrate superior in vitro
anti-BC efficacy as compared to free curcumin, they are
hemocompatible and their nano-range size, large negative
zeta potential and pH-dependent release property may lead
to superior in vivo anti-BC efficacy. Another study
reported the encapsulation of curcumin into gum arabic-
(Cur/GA-Alg) 239
Cytotoxicity assay revealed that the ICsq values of Cur/

sodium  alginate nanoparticles.
GA-Alg nanoparticles against MCF-7 cells were consis-
tently lower than those of free curcumin at 24 h (48.40 ng/
mL vs 68.20 ug/mL), 48 h (33.26 pg/mL vs 55.86 pg/mL)
and 72 h (16.84 pg/mL vs 32.10 pg/mL). Importantly, void
GA-Alg nanoparticles showed no significant cytotoxicity
against MCF-7 cells, indicating that this NDDS is capable
of enhancing the anti-BC efficacy of curcumin while being

biocompatible.
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Poly(vinyl alcohol)/cellulose nanocrystal (PVA/CNC)
hydrogel membranes, another type of polymer-based nano-
carrier, have also been developed.**® Curcumin-loaded PVA/
CNC hydrogel membranes were found to induce significant
morphological changes (eg, cell shrinkage and increased
apoptotic bodies) and dose-dependent reduction in viability
in MCF-7 cells. Furthermore, while free curcumin demon-
strated greater cytotoxicity in normal HFB-4 human melano-
cytes than in MCF-7 cells, curcumin-loaded PVA/CNC
hydrogel membranes were not cytotoxic to HFB-4 cells.
These findings collectively indicate that curcumin-loaded
PVA/CNC hydrogel membranes are biocompatible and BC
cell-selective. Another study reported a novel water-soluble
nanomicelle that is formed via the self-assembly of pectin-
curcumin conjugates, with hydrophobic curcumin sitting in
the core and hydrophilic pectin polymer backbone forming
the outer shell.**’ It was observed that pectin-curcumin con-
jugates elicited greater cytotoxicity against MCF-7 cells than
free curcumin (ICso values of 12.0 = 3.0 uM vs 48.3 £ 2.9
uM). This enhancement in cytotoxicity is likely attributed to
improved aqueous solubility and stability. Notably, pectin-
curcumin conjugates also demonstrated lower cytotoxicity
against normal 293 A human kidney cells than free curcumin
(ICsp values of 139.4 £ 2.1 uM vs 70.7 = 1.5 pM). Taken
together, conjugation to pectin can enhance the anti-BC
efficacy of curcumin (via solubility and stability improve-
ment) while minimising its toxicity to normal cells.

Different protein-based nanoformulations of curcumin
have also been developed. For example, Jithan et al*** devel-
oped curcumin-encapsulated albumin  nanoparticles
(CEANSs) and found that CEANs (20-120 pM) exhibited
greater anti-proliferative effect on MDA-MB-231 cells than
free curcumin. This enhancement in anti-BC efficacy may be
a result of enhanced dissolution rate and aqueous solubility.
Furthermore, it was observed in rats following a single
intravenous injection of 10 mg CAENs that CAENs tended
to accumulate in brain and lungs, which are the common sites
of BC metastases. These observations collectively reflect the
potentials of CAENSs in enhancing the anti-BC efficacy of
curcumin and in treating metastatic BC. Metwally et al**®
encapsulated curcumin into gelatin (Cur/Gel) nanoparticles
and found that Cur/Gel nanoparticles exhibited cytotoxicity
against MCF-7 cells after 48 h (IC5y = 64.8 pg/mL). This
ICso value is close to but higher than that of 48 h free
curcumin treatment (ICs, = 53.18 pg/mL) observed in

another study,**

which may be explained by the slow release
of curcumin from nanoparticles (ie, only 40-60% after 48

h).2% Moreover, void Gel nanoparticles yielded a high ICs,

value of 2.9 mg/mL against MCF-7 cells. These findings
collectively suggest that Gel nanoparticles are biocompatible
and capable of prolonging curcumin action, although they do
not significantly improve the anti-BC efficacy of curcumin.

Curcumin has also been encapsulated into metallic
nanoparticles. In a study, curcumin-encapsulated
PEGylated iron oxide-gold nanoparticles (Cur/PEGylated
Fe;04@AuNPs; 0-15 puM) elicited greater cytotoxicity
against SKBR3 BC cells than free curcumin, possibly
attributable to improved stability and preferential curcu-
min release under acidic conditions.>>® Cur/PEGylated
Fe;04@AuUNPs also demonstrated pro-apoptotic activity
against SKBR3 cells. Subsequent gene expression analysis
linked this pro-apoptotic activity to Bax upregulation and
Bcl-2 downregulation. Additionally, MMP-9 downregula-
tion was also observed. Taken together, Cur/PEGylated
Fe;04@AuNPs mediate enhanced cytotoxic effect on BC
cells by upregulating Bax/Bcl-2 ratio and inducing apop-
tosis; and they may potentially inhibit BC cell migration
by downregulating MMP-9.

Folic acid (FA) has a strong binding affinity for folate
receptors, which are glycosylphosphatidylinositol-
anchored membrane proteins often overexpressed in
BC.*! Therefore, J. Wang et al**? loaded curcumin into
calcium-doped dendritic MSNs conjugated with FA (Cur-
Ca@DMSNs-FA) for achieving active BC cell targeting
and facilitating cellular uptake of nanoparticles. In the
study, Cur-Ca@DMSNs-FA demonstrated improved aqu-
eous solubility and in vivo bioavailability as compared to
free curcumin, and showed a remarkably higher curcumin
release rate under acidic (80% in 0.5 h) than neutral (35%
in 12 h) conditions. Unsurprisingly, it was further observed
that Cur-Ca@DMSNs-FA (5-20 uM) exhibited more sig-
nificant cytotoxicity (9% vs 33% cell viability), pro-apop-
totic activity (25.85% vs 12.5% of total apoptosis ratio)
and G2/M-phase arrest-inducing activity (41.07% vs
24.54% of cells in G2/M phase) against MCF-7 cells
than comparable doses of free curcumin. Interestingly,
void Ca@DMSNs-FA (320 pg/mL) was non-toxic to
MCF-7 cells and had a hemolytic ratio of 4.38% (<5%).
Taken together, this NDDS is biocompatible and capable
of enhancing the anti-BC efficacy of curcumin via
enhanced cellular uptake, improved aqueous solubility
and bioavailability as well as pH-dependent curcumin
release. The same study reported higher ROS production
in MCF-7 cells treated with Cur-Ca@DMSNs-FA than
those treated with free curcumin. Further protein expres-
sion analysis revealed that Cur-Ca@DMSNs-FA also
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induced greater upregulation of caspase-3, caspase-9, cyto-
chrome c, PARP, p53 and inhibitor of NF-xB (IkB); as
well as greater downregulation of Bcl-2, B-catenin, NF-kB
p65, PI3K, phosphorylated AKT and phosphorylated
mTOR in MCF-7 cells than free curcumin. Collectively,
these findings linked the anti-BC activities of Cur-
Ca@DMSNs-FA to the induction of oxidative stress and
mitochondrial apoptotic pathway, as well as the suppres-
sion of PI3K/AKT/mTOR, B-catenin and NF-«xB signalling
pathways.

Diallyl Disulfide

Allium sativum (garlic), native to Central Asia and north-
eastern Iran, is now widely cultivated throughout the
world.>>*2%* It has commonly been used as both a spice
and a medicinal plant in treating bone diseases, cancer,
cardiovascular diseases, diabetes, gastric diseases, hyper-
tension, metabolic disorders, microbial infections, skin
diseases, etc.”>>?>* These health benefits of A. sativum
are attributed to its diverse range of bioactive compounds.-
253 Its major organosulfur compound, diallyl disulfide, has
been reported to mediate anti-BC activities by inducing
caspase-dependent apoptosis and mitochondrial apoptotic
pathway, inhibiting histone deacetylation, modulating
metastasis-related and EMT markers, suppressing p-cate-
nin and SRC/rat sarcoma virus (Ras)/ERK signalling path-
ways, activating c-Jun N-terminal kinase (JNK) and p38
signalling pathways, upregulating miR-34a and tristetra-
prolin (TTP) as well as downregulating urokinase-type
plasminogen activator (uPA).>*2" Diallyl disulfide has
also demonstrated superior anti-BC efficacy in comparison
to conventional chemotherapeutic agents (eg, 5-fluoroura-
cil and cyclophosphamide), thus suggesting its potential to
be developed as an anti-BC agent.?®!

Although the clinical translation of diallyl disulfide has
been restricted by its low water solubility, poor bioavail-
ability and short half-life, these problems have been
tackled by NDDSs. Talluri et al*** reported the loading
of diallyl disulfide into SLNs (DADS-SLNs). DADS-
SLNs were found to have higher uptake by MCF-7 cells
than free diallyl disulfide. DADS-SLNs could also prefer-
entially release diallyl disulfide under acidic conditions
(pH 4.5) and enable sustained diallyl disulfide release up
to 48 h. As expected, DADS-SLNs (1.562—-100 uM) were
capable of eliciting greater cytotoxic and pro-apoptotic
effects on MCF-7 cells than free diallyl disulfide. This
enhancement in anti-BC efficacy was further reflected by
changes in cellular oxidative status and apoptotic marker

expression. For instance, DADS-SLN-treated MCF-7 cells
had higher ROS production; higher levels of pro-apoptotic
proteins (eg, Bax, Bcl-2-associated agonist of cell death
[Bad], caspase-3 and caspase-9); and lower level of anti-
apoptotic protein (Bcl-2) than diallyl disulfide-treated
MCF-7 cells. Importantly, DADS-SLNs were not cyto-
toxic to normal MCF-10A human breast epithelial cells.
Taken together, this nanoformulation is biocompatible and
capable of enhancing the anti-BC efficacy of diallyl dis-
ulfide by exhibiting enhanced cellular uptake as well as
enabling both pH-dependent and sustained release of dia-
11yl disulfide.

Receptor for advanced glycation end products (RAGE),
a multi-ligand single transmembrane receptor belonging to
the immunoglobulin superfamily, is frequently overex-
pressed in late-stage BC.?®* Therefore, the same research
group further conjugated DADS-SLNs with anti-RAGE
antibody (RAGE-DADS-SLNs) to enable active BC cell
targeting.'® As expected, RAGE-DADS-SLNs (1.562—100
puM) exhibited significantly higher cellular uptake and cyto-
toxicity in MDA-MB-231 cells than DADS-SLNs. RAGE-
DADS-SLNs also showed higher pro-apoptotic activity, as
reflected by their ability to induce a greater increase in the
level of pro-apoptotic protein (eg, caspase-9) and a greater
decrease in the levels of anti-apoptotic proteins (eg, Bcl-2
and survivin) than DADS-SLNs. Furthermore, it has been
reported that RAGE activation can lead to the stimulation of
signalling pathways (eg, ras-related C3 botulinum toxin
substrate 1 [Racl], MAPK and NF-kB) implicated in cell
migration and invasion, thereby contributing to tumour
progression.”** This indicates that the observed greater
cytotoxicity and pro-apoptotic activity of RAGE-DADS-
SLNs than DADS-SLNs may be the consequence of both
cellular uptake enhancement and RAGE inhibition. "’

Epigallocatechin Gallate

Green tea, one of the most widely consumed beverages
worldwide, is obtained from the leaves of Camellia sinen-
sis tea plant.’®> Green tea consumption has long been
associated with health-promoting properties in athero-
sclerosis, bacterial and viral infections, cancers of the
breast, colon, oesophagus, kidney, lung, mouth, pancreas,
small intestine and stomach, diabetes, heart diseases, liver
diseases, obesity, etc.”®> Epigallocatechin gallate (EGCG),
the major green tea catechin, is believed to contribute to
the majority of green tea-associated health benefits.>*®
Specifically, EGCG has been reported to mediate anti-BC
effects preclinically via the modulation of metastasis-
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related markers; the suppression of PI3K/AKT and B-cate-
nin signalling pathways; the suppression of hypoxia-indu-
cible factor-1 alpha (HIF-lo) and NF-xB signalling
pathways and consequent inhibition of angiogenesis; the
induction of mitochondrial apoptotic pathway, death
receptor apoptotic pathway, miR-25-dependent apoptosis
and autophagy; as well as the inhibition of glucose meta-
bolism and human telomerase reverse transcriptase
(hTERT) transcription.”®” *’* Despite these promising pre-
clinical findings, the clinical application of EGCG is hin-
dered due to its poor bioavailability and low stability at
physiological pH.*"°

Radhakrishnan et al*”? encapsulated EGCG (5% w/w)
into SLNs, and found that this nanoformulation enabled
sustained EGCG release (ie, >90% release in 24 h) and
improved EGCQG stability. Expectedly, EGCG-SLNs could
induce a more significant dose-dependent reduction in
MDA-MB-231 cell viability than free EGCG (ICs values
of 9.7 £ 0.6 pg/mL vs 78.9 £ 4.3 pg/mL). Moreover,
EGCG-SLNs also elicited greater pro-apoptotic activity
against MDA-MB-231 cells than free EGCG, as evidenced
by the observations of more extensive morphological
changes (eg, cell shrinkage and elongated-to-spherical
cell shape), nuclear shrinkage and apoptotic body forma-
tion in EGCG-SLN-treated MDA-MB-231 cells.
Importantly, void SLNs (10-100 pg/mL) lacked observa-
ble cytotoxicity against MDA-MB-231 cells, suggesting
that this NDDS is biocompatible and capable of enhancing
the anti-BC efficacy of EGCG via its sustained release and
stability improvement.

Bombesin (BBN; a 14-amino acid peptide) is a natural
ligand for gastrin-releasing peptide receptor, which is a
G-protein coupled receptor that is overexpressed in var-
ious cancers, including BC.>’* The same research group
thus further conjugated EGCG-SLNs with BBN to achieve
active BC cell targeting.?’> In the study, increased cellular
uptake of BBN-conjugated EGCG-SLNSs relative to uncon-
jugated EGCG-SLNs was observed. Consequently, BBN-
conjugated EGCG-SLNs could exert greater cytotoxicity
(ICsp values of 3.2 + 1.7 pg/mL vs 6.9 = 1.1 pg/mL) and
pro-apoptotic activity against MDA-MB-231 cells than
unconjugated EGCG-SLNs. Although both EGCG-SLNs
and BBN-conjugated EGCG-SLNs exhibited greater anti-
migratory effect on MDA-MB-231 cells than pure EGCQG,
the effect of the latter was more intensive. Collectively, the
results indicate that enhanced cellular uptake mediated by
BBN conjugation can improve the anti-BC efficacy of
EGCG-SLNs.

Gallic Acid

Gallic acid (3,4,5-trihydroxybenzoic acid), one of the most
common plant phenolic acids, can be found in a variety of
medicinal plants and fruits such as Quercus spp. and Punica
spp.>’® It has been associated with tremendous health bene-
fits owing to the wide range of its pharmacological

277-281
G,

activities, including anti-B anti-inflammatory,***

1,283

antimicrobial antioxidant,?%* cardioprotective,285

6 activities.

gastroprotective®™®  and  neuroprotective™’
Specifically, the anti-BC activities of gallic acid have been
linked to various mechanisms such as the modulation of p53,
Mcl-1 and p21 expression and consequent induction of mito-
chondrial apoptotic pathway; the activation of p38 signalling
pathway as well as consequent modulation of cell cycle
regulators and induction of caspase-dependent apoptosis;
the modulation of metastasis-related markers; as well as the
suppression of NF-«kB signalling pathway and consequent
downregulation of NF-kB target genes signifying anti-
inflammatory (ie, interleukin [IL]-6, IL-8 and COX-2),
anti-angiogenic (ie, VEGF), pro-apoptotic (ie, Bcl-2 and
X-linked inhibitor of apoptosis protein [XIAP]) and anti-
metastatic (ie, C-X-C chemokine receptor type 4 [CXCR4])
effects.”’” 2! However, the therapeutic potential of gallic
acid as an anti-BC agent is restricted by its low bioavailabil-
ity resulting from poor absorption and rapid metabolism.***

Hassani et al*®® reported the preparation of gum arabic-
stabilised gallic acid nanoparticles (GANPs). It was
observed that GANPs could exert more significant cytotoxi-
city against MCF-7 and MDA-MB-231 cells than free gallic
acid, as well as retard the migratory capacity of MCF-7 and
MDA-MB-231 cells. Interestingly, GANPs demonstrated
differential cellular uptake in different BC cell lines,
whereby a significantly higher uptake was seen in MCF-7
than MDA-MB-231 cells. This may potentially explain the
greater cytotoxic and anti-migratory effects of GANPs on
MCF-7 than MDA-MB-231 cells. Importantly, GANPs
showed negligible cytotoxicity against normal MCF-10A
human breast epithelial cells and preferentially released
gallic acid under acidic condition (pH 4.8; 95.96%) rather
than neutral condition (pH 7.4; 74.56%), reflecting the
biocompatibility and BC cell selectivity of this
nanoformulation.

In the same study, various in vitro antioxidant assays (ie,
2.2-diphenyl-1-picrylhydrazyl radical [DPPH], nitric oxide
scavenging and B-carotene bleaching assays) consistently
suggested that GANPs exhibited greater antioxidant activity

than free gallic acid.”®® This activity enhancement may partly
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be attributed to the synergistic effect between gallic acid and
gum arabic, both of which have previously been reported as
potent antioxidants.****** Cancer cells are often in a pro-
oxidative state.”’® ROS is implicated in cancer initiation and
progression as it can induce gene mutations and changes in
various signalling pathways involved in cell differentiation,
survival, growth, proliferation, protein synthesis and glucose
metabolism.*”'**? Using antioxidants to deplete cancer cells
from these ROS-induced cellular events may thus have pre-
ventive and therapeutic effects. Taken together, GANPs are
biocompatible and can improve the anti-BC efficacy of gallic
acid by enhancing its BC cell selectivity and antioxidant
activity.

Punicalagin and Ellagic Acid

Punicalagin [2,3-(S)-hexahydroxydiphenoyl-4,6-(S,S)-gal-
lagyl-D-glucose], the major P. granatum polyphenol, is
an ellagitannin that has been reported to mediate anti-BC
effects via the downregulation of golgi phosphoprotein 3
(GOLPH3) and consequent modulation of metastasis-
related and EMT markers, as well as its antioxidant
activity and consequent inhibition of oxidative DNA
damage.?**?°* However, ellagitannins are not absorbable
in the gastrointestinal tract.”> They usually undergo phy-
siological pH- and/or gut microbiota-facilitated hydrolysis
in the stomach or small intestine to yield ellagic acid
(2,3,7,8-tetrahydroxychromeno[ 5,4,3-cde]chromene-5,10-
dione).?”> Ellagic acid can be subjected to further meta-
bolism by colonic microbiota to yield bioavailable
urolithins.?*® Similar to punicalagin, ellagic acid has
demonstrated anti-BC activities preclinically, with the
associated molecular mechanisms being the inhibition of
angiogenesis via vascular endothelial growth factor
receptor 2 (VEGFR2) signalling pathway suppression;>’’
the regulation of transforming growth factor-beta (TGF-
B)/Smads signalling pathway;**® the suppression of B-
catenin signalling pathway via actinin alpha 4 (ACTN4)
downregulation and consequent downregulation of stem-

. . 2
like markers, cyclins and mesenchymal markers;*” as

well as the inhibition of CDK6 expression and activity.>*’
However, the poor absorption and bioavailability of puni-
calagin and ellagic acid, together with the short elimina-
tion half-life of ellagic acid, can limit their in vivo anti-
BC efficacies.’*!>"

A polymer-based nanoformulation of punicalagin and
ellagic acid has been reported by Shirode et al.'® In the
study, it was found that punicalagin- and ellagic acid-
encapsulated PLGA-PEG nanoparticles

could exert

significantly greater growth-inhibitory effects on MCF-7
and Hs578T cells than free punicalagin and ellagic acid.
Interestingly, punicalagin-encapsulated PLGA-PEG nano-
particles were more potent than ellagic acid-encapsulated
PLGA-PEG nanoparticles in both MCF-7 (ICso values of
7.5 uM vs 50.5 pM) and Hs578T (ICsq values of 4.1 uM
vs 83.5 uM) cell lines.

Sulforaphane

Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)butane] is
an isothiocyanate organosulfur compound that naturally
occurs in the form of biologically inactive glucoraphanin in
cruciferous  vegetables, especially Brassica oleracea
(broccoli).>® The conversion of glucoraphanin to sulfora-
phane occurs via myrosinase-catalysed hydrolysis and/or gut
microbiota-mediated degradation.®” Sulforaphane has been
extensively investigated for a range of pharmacological prop-

304 305

erties,  including

1’306

anti-aging,
307

anti-inflammatory,

antimicrobia antioxidant, hypoglycemic®®  and
neureportective®® activities. Sulforaphane has also been pre-
clinically recognised as a promising anti-BC candidate.*'*"3
Its anti-BC effects have been proposed to be mediated via the
targeting of heat shock response and consequent modulation
of tumour suppressors and induction of caspase-dependent
apoptosis;”'° the suppression of PI3K/AKT/mTOR/ribosomal
protein S6 kinase 1 (S6K1) signalling pathway and consequent
induction of autophagy and inhibition of protein synthesis;*"'
the disruption of histone deacetylase 5-lysine-specific histone
demethylase 1A (HDACS5-LSDI) axis and consequent upre-

312 a5 well as the mod-

gulation of tumour suppressor genes;
ulation of markers associated with aggressive phenotype (eg,
downregulation of EMT markers, metastasis-related markers,
pro-inflammatory cytokines and pro-angiogenic growth
factors).’'® However, the industralisation of sulforaphane has
been hindered due to its low aqueous solubility as well as
instability resulting from high sensitivity to light, pH, tempera-
ture and oxygen.*'*

In a study, it was found that sulforaphane-encapsulated
PEGylated Fe;04@AuNPs (SF/PEGylated Fe;04@AuNPs;
0-15 uM) could exert greater cytotoxicity against SKBR3
cells than free sulforaphane, possibly due to enhanced stabi-
lity of sulforaphane and its preferential release under acidic
conditions provided by this nanoformulation.”** The cyto-
toxicity of SF/PEGylated Fe;O4@AuNPs against SKBR3
cells was mediated by apoptosis induction, whereby down-
regulation of Bcl-2 and upregulation of Bax were observed.
The further observation of MMP-9 downregulation reflected
SF/PEGylated

the  anti-migratory = potential  of
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Fe;04@AuNPs in SKBR3 cells. Collectively, these findings
suggest that the encapsulation of sulforaphane into
PEGylated Fe;O4@AuNPs can enhance its anti-BC efficacy,
and this nanoformulation exhibits pro-apoptotic and anti-
migratory activities against BC cells.

Future Perspectives

Plant-based natural products have long been recognised as a
vital source of anti-cancer drugs. This review introduces nine
selected medicinal plants, including 4. capillus-veneris, P.
quadriaurita, A. muricata, I. turpethum, M. jalapa, P. amboi-
nicus, P. granatum, P. roxburghii and Z. multiflora, the
extracts/essential oils of which have been evaluated for
anti-BC potentials. Another nine natural bioactive com-
pounds that have previously demonstrated anti-BC poten-
tials, including balanocarpol, cordycepin, curcumin, diallyl
disulfide, EGCG, gallic acid, punicalagin, ellagic acid and
sulforaphane, have also been highlighted. Mechanistic stu-
dies have linked the anti-BC activities of these natural pro-
ducts to a wide range of molecular targets or mechanisms,
including the modulation of angiogenesis, apoptotic path-
ways, autophagy, cell cycle regulators, cellular eicosanoid
profile, DNA structure, synthesis, repair genes and damage
response, EMT markers, enzymes, epigenetic mechanisms,
glucose metabolism, heat shock response, immune system,
inflammation, markers associated with aggressive pheno-
type, metastasis-related markers, miRNA, oxidative status,
proliferation markers, protein synthesis, RNA synthesis, sig-
nalling pathways, stem-like markers and tumour suppressors.
However, there is a lack of investigation into the anti-BC
mechanisms of I. turpethum, M. jalapa, P. amboinicus and P.
roxburghii extracts, which represents a future research direc-
tion to be addressed.

Although the abovementioned natural products have
shown promising anti-BC activities in preclinical studies,
they have not been advanced further into clinical settings.
This may be attributed to their undesirable physicochem-
ical properties, which may result in poor stability, aqueous
solubility and bioavailability that can adversely influence
their anti-BC efficacies in humans. There have been
attempts to resolve these issues, particularly via the
employment of NDDSs. Carbon-based nanocarriers, den-
drimers, lipid-based nanocarriers, polymer-based nanocar-
riers, protein-based nanocarriers, metallic nanoparticles
and MSNs represent the major classes of NDDSs that
have been exploited for BC therapy. As each of these
NDDS classes is associated with different advantages

and disadvantages, the selection of the best suited delivery
system for a specific natural product is critical.

The development of nanoformulation has been reported
for all selected natural products. In particular, curcumin
has attracted the greatest research interests, where dendro-
somes, liposomes, polymer-based nanocarriers, protein-
based nanocarriers, metallic nanoparticles and MSNs
have all been employed as NDDSs for curcumin.
Generally, an enhancement in anti-BC efficacy and a
reduction in toxicity to normal cells have been observed
with nanoformulations as opposed to their free counter-
parts. These observed benefits are intensified when the
surface of nanoformulations are conjugated with targeting
ligands (eg, anti-RAGE antibody and BBN) to achieve
active BC cell targeting. In addition, nanoformulations of
curcumin (ie, Cur/GA Ald-Gel nanogels, Cur/PEGylated
Fe;04@AuNPs and Cur-Ca@DMSNs-FA), diallyl disul-
fide (ie, DADS-SLNs), gallic acid (ie, GANPs) and sulfor-
aphane (ie, SF/PEGylated Fe;O4@AuNPs) also have the
tendency to release encapsulated natural products under
acidic conditions, which enables the targeting of breast
tumours with acidic TME. Furthermore, nanoformulations
of cordycepin (ie, CPNPs), curcumin (ie, Cur/GA Ald-Gel
nanogels and Cur/Gel nanoparticles), diallyl disulfide (e,
DADS-SLNs) and EGCG (ie, EGCG-SLNs) exhibit sus-
tained release properties, thus prolonging the anti-BC
actions of these natural products. Notably, nanoformulated
L turpethum extract (ie, I. turpethum extract-loaded
NIPAAM-VP-AA co-polymeric nanoparticles), P. grana-
tum extract (ie, P. granatum extract-loaded PLGA-PEG
nanoparticles), P. roxburghii extract (ie, PJSNPs) and
ZEO (ie, CP-ZEO NE) as well as nanoformulated curcu-
min (ie, DNC and CEANSs), diallyl disulfide (ie, DADS-
SLNs and RAGE-DADS-SLNs), EGCG (ie, EGCG-SLNs
and BBN-conjugated EGCG-SLNs), gallic acid (ie,
GANPs), punicalagin and ellagic acid (ie, punicalagin-
and ellagic acid-encapsulated PLGA-PEG nanoparticles)
have shown anti-cancer activities in preclinical TNBC
models, and thus are highly promising for further devel-
opment. Of note, in addition to the surface modification
and release properties of nanoformulations mentioned
above, other aspects such as the efficiency and cost of
their preparation should also be considered to ensure the
feasible development of these nanoformulations.

Despite the abovementioned promising preclinical
findings, however, it is of the utmost importance to estab-
lish the biocompatibility or safety profiles of these nano-
natural While  AMSNPs,

formulated products.
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unconjugated and anti-EpCAM antibody-conjugated RIP-
MJ nanoparticles, P. granatum extract-loaded SLNs,
PJSNPs, CP-ZEO NE, CPNPs, DNC, Cur/GA Ald-Gel
nanogels, curcumin-loaded PVA/CNC hydrogel mem-
branes, pectin-curcumin conjugates, DADS-SLNs and
GANPs have been confirmed to be biocompatible with
preclinical models by current studies, further studies are
required to ascertain the biocompatibility of other nano-
formulations in preclinical models and subsequently, all
nanoformulations in humans. Additionally, strategies that
may further improve the functionality of nanoformulated
natural products in humans should also be considered.”"”
For example, nanoformulations could be tailored to be
responsive to biological cues in the TME (eg, pH and
redox status) or external cues (eg, magnetic field and
ultrasound) for enhancing precision in the delivery and
release of natural products. Moreover, the TME could
also be reprogrammed to enhance the tumour accumula-
tion of nanoformulations. For instance, passive and active
tumour targeting of nanoformulations may be improved
via the promotion of tumour vascular permeability and the
upregulation of receptor expression, respectively.
Furthermore, the development of nanoformulations with
transcytosis capability may also facilitate deep tumour
penetration. These represent some interesting aspects that
may be important for the future development of more

functional nanoformulated natural products.
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