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Abstract: The advent of nanotechnologies such as nanocarriers and nanotherapeutics has 
changed the treatment strategy and developed a more efficacious novel drug delivery system. 
Various drug delivery systems are focused on drug-targeting of brain cells. However, the 
manifestation of the brain barrier is the main hurdle for the effective delivery of chemother
apeutics, ultimately causing treatment failure of various drugs. To solve this problem, various 
nanocarrier-based drug delivery system has been developed for brain targeting. This review 
outlines nanocarrier-based composites for different brain diseases and highlights nanocarriers 
for drug targeting towards brain cells. It also summarizes the latest developments in 
nanocarrier-based delivery systems containing liposomal systems, dendrimers, polymeric 
micelles, polymeric nanocarriers, quantum dots (QDs), and gold nanoparticles. Besides, the 
optimal properties of nanocarriers and therapeutic implications for brain targeting have been 
extensively studied. Finally, the potential applications and research opportunities for nano
carriers in brain targeting are discussed. 
Keywords: brain targeting, nanocarriers, blood–brain barrier, nanotherapeutics, in-vivo

Introduction
Despite the developments and advances of research, brain targeting is considered 
one of the challenging tasks. Among the most prominent central nervous system 
(CNS) disorders are brain tumor or glioma, Parkinson’s disease, Alzheimer’s 
disease, multiple sclerosis, strokes, seizure or epilepsy, schizophrenia, migraine, 
traumatic brain injuries, cerebral palsy, CNS infection, and several psychological 
disorders including depression, anxiety, depression and many others.1 Multiple 
therapies including surgery, deep brain stimulation, intravenous (IV), oral and 
topical dosage forms, and rehabilitation therapies are currently available. 
However, conventional therapies have certain limitations that aid the drug entry 
into general blood circulation after passing different physiological barriers like the 
blood–brain barrier (BBB) as part of the apparent blood distribution volume.2 After 
that drug cargo reaches the brain to a lesser amount, exhibits limited therapeutic 
efficacy. In comparison, surgical approaches and brain implants are considered 
unsafe, short-term and highly invasive treatment approaches.3,4

One of the critical obstacles to therapeutics entry into the CNS is the BBB. The 
blood–brain barrier acts as a neuroprotective barrier by maintaining CNS home
ostasis by displaying a sure sign of a higher metabolic rate. The brain is 
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a challenging organ for medication administration since 
the BBB is the finest gatekeeper, shielding the CNS from 
external drugs. As a result, drug transport to the brain is 
problematic since many pharmaceuticals lack solubility, 
lipophilicity, and bioavailability, and the BBB can inhibit 
98% of drugs. Because conventional medication therapies 
are inadequate, developing strategies to deliver therapeutic 
pharmaceuticals to the CNS safely and effectively is cri
tical. Treatment failure in brain targeting is associated with 
a variety of difficult pharmaceutical issues, such as phar
macological or toxicity concerns, multiple drug resistance 
(MDR), the complex anatomical structure of delivery vehi
cles, and brain capillary endothelial cells (BCECs) that 
form the BBB.5,6

BCECs are classically considered a significant oppor
tunity for brain drug targeting due to a wide-ranging net
work of receptors and transporters that enable the transport 
of essential components, including small solutes and large 
hydrophilic compounds (insulin, transferrin, etc.). The 
BBB also protects brain tissues and neural cells from 
pathogenic toxins and is selective for the transport of 
large size drug molecules via lacking fenestrations for 
drug uptake.7,8

It is evident from previous prestigious research that 
nanocarriers (NCs) targeting is the exceptional approach 
to treating brain diseases by overcoming the barriers, ie, 
the BBB. Drug delivery systems (DDS) based on nano
carriers has revolutionized therapeutic applications by 
improving the pharmacological and pharmacokinetic pat
terns of various drugs, allowing them to cross the BBB 
without disrupting its functionalization.9 Furthermore, 
DDS based on nanocarriers have some promising physi
cochemical and biological characteristics, including long 
blood circulation time, capacity to cross different barriers, 
cellular uptake, small size and large surface area, advanced 
pharmacokinetic features, ability to attach different mole
cules to their surface, and particular structural character
istics. Additionally, the utilization of nanocarriers led to 
the development of a highly effective regimen by increas
ing the therapeutic index and drug concentrations at the 
target site.10,11

Furthermore, the latest advances in nanotechnology 
have anticipated the development of novel nanotherapeu
tics. For example, by binding to an appropriate ligand, 
NCs can sustain and target drug cargo directly into the 
brain, thereby reducing peripheral toxicity. Furthermore, 
researchers have highlighted some exciting approaches to 
NCs to increase the drug residence time (DRT) by 

coupling them with preactivated and thiolated polymers 
to constrain the P-glycoprotein (P-gp) outflow efficiently. 
In this regard, various types of nanocarriers, including 
polymeric micelles, polymeric nanocarriers, dendrimers, 
liposomal systems (active-targeting, cationic, stimuli- 
sensitive conventional and long-circulating), gold nanopar
ticles, and quantum dots (QDs), were utilized for brain 
targeting via coupling with identified receptors to cross the 
BBB proficiently. Yet, one of the most intriguing mechan
istic approaches to NCs is that NCs are endocytosed by 
endothelial cells after crossing the BBB, ultimately releas
ing the drug into the target cell.12

This review focused on different nanocarriers for drug 
targeting in the brain for various CNS-related disorders. 
We have highlighted the application of these NCs and their 
BBB pathology in brain diseases. In addition, the latest 
developments in nanocarrier-based delivery systems con
taining liposomal systems, dendrimers, polymeric 
micelles, polymeric nanocarriers, quantum dots, and gold 
nanoparticles (Au-NPs) are given in detail. Besides, the 
optimal properties of nanocarriers and therapeutic implica
tions for brain targeting have been thoroughly discussed.

The Pathophysiology of Brain
In terms of its shape and number of nerve cells, the brain 
is the most complicated organ in the body, attributable to 
its branched and extended structure, complex interconnec
tions, and scattering qualities.13 Specified cerebrovascular 
endothelial cells, astrocytes, neurons, and pericytes consti
tute the blood–brain barrier (BBB). Paracrine interactions 
between the brain’s endothelium and nearby glia are 
necessary for its optimal functioning, however. As 
a result of brain injuries, patients suffer from cognitive, 
motor, and sensory dysfunctions.14 Immediate and irrever
sible initial damage to the parenchyma triggers acute and 
irreversible primary damage to the brain, with secondary 
brain injuries occurring at a rather gradual rate, creating 
a window of opportunity for therapeutic approaches. The 
hallmarks of secondary brain damage include Wallerian 
degeneration of axons, mitochondrial malfunction, excito
toxicity, oxidative stress, and apoptotic cell death of neu
rons and glia. “Design to inspire action”.15 A brain injury, 
whether it is an ischemic stroke, a hemorrhagic stroke, or 
a traumatic brain injury, causes disruption of the BBB. 
Changes due to injuries in the BBB are linked to brain 
tissue loss and influence how neuroprotective drugs 
respond. Studies by Chodobski et al.16 Composed of spe
cialised endothelial cells that line the blood–brain barrier 
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(BBB), tight junction complexes combine to form the 
barrier, which acts as a physical barrier to paracellular 
transport and promotes high transendothelial electrical 
resistance (TEER) associated with the BBB. The results 
of.17

Paracellular Transport and Transcytosis
In terms of how the BBB functions, two different mechan
isms must be considered: paracellular transport and trans
cellular transport. The CSF “sink” of the brain allows for 
a clearer description of intracranial mass and constitutive 
equilibrium.18 Since tight connections are found between 
the blood and the brain, paracellular transit is restricted.19 

The movement of macromolecules from the apical to the 
basolateral plasma membrane is referred to as unidirec
tional transcytosis in polarised cells. Endocytosis, intracel
lular vesicular trafficking, and exocytosis are a few of the 
many steps on this pathway.20 It was due to the existence 
of specialised tight junctions that allowed the CNS barrier 
qualities to be maintained at low levels of transcytosis. 
Due to this revelation, it is now apparent that transcytosis 
suppression at the BBB is an active process, and genetic 
programmes particular to the CNS work to maintain this 
barrier.19 The transcytosis receptor is also present in all 
brain endothelial cells. It might be hypothesised that lower 
expression levels of certain receptors compared to trans
cytosis pathway inhibition could result from a reduced 
permeability to macromolecules across the blood–brain 
barrier.21

Extra Approaches
Li et al explained some additional opportunities including 
transporters and receptors, enzyme responsive system, tis
sue microenvironment-responsive nanomedicine, actively 
targeted nanomedicine and externally triggerable nanome
dicine for developing smart functionalities.22

The Transporters and Receptors
BBB shuttles are expressed in the endothelium by several 
molecular transporters and receptors, including transferrin 
receptor (TfR) and glucose transporter type 1 (GLUT1). 
These attempts aimed to get the shuttles involved in 
improved brain targeting.23

Enzyme Responsive System
Cathepsins and MMPs are two enzymes that have been 
linked to disease progression and thus could act as 
a trigger. Poly[N-(2-hydroxypropyl) methacrylamide] 

GlyPheLeuGly-doxorubicin (DOX), a prodrug (synthetic 
polymer) conjugate originally developed by Kopeck et al, 
wherein the peptidyl linker of GPLG might be sliced to 
release doxorubicin through the use of cathepsins in the 
lysosome, is the first example of a clinically investigated 
enzyme responsive system.24

Tissue Microenvironment-Responsive 
Nanomedicine
In other circumstances, such as 2,3-dimethyl maleic 
amide, the chemical structure could be designed to be 
broken by tumour extracellular acidity to improve tissue 
penetration and cellular uptake.25

Actively Targeted Nanomedicine
The term “actively targeted nanomedicine” refers to nano
medicine that uses surface-decorated affinity ligands to 
engage receptors, allowing for extended tissue retention 
and higher cellular uptake using active nanomedicine, 
resulting in high bioavailability. In addition to small mole
cules and antibodies, peptides and aptamers are among the 
most commonly employed ligands.26

Externally Triggerable Nanomedicine
External energy, such as light, magnetic fields, and ultra
sound, can be used to directly interact with nanomedicine- 
retained tissue as an alternative. Photocleavage/photoi
somerization events, as well as photodynamic/photother
mal effects, could be induced by light illumination, 
increasing the performance of nanomedicines. Tissue 
microenvironment-responsive nanomedicines, while excit
ing and promising, attain elegance through biological sig
nals, which are typically heterogeneous.27

Various Types of Nanocarrier-Based 
Delivery Vehicles for Drug Targeting 
in Brain Tumors
Recent advances in nanotechnology have significant 
effects on nanomedicine for biological applications.28 It 
helps develop emerging tools for diagnosis, treating, mon
itoring, and controlling biotechnological systems, facilitat
ing the synthesis and manipulation of materials on the 
nanoscale. Nanomaterials are defined as a set of nanoscale, 
internal or surface-structured substances with any external 
dimension, approx. in size range 1 to 100 nm.29 Such 
nanostructured materials are a smart technique since they 
can infiltrate the blood–brain barrier because of their 
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nanosized structure and the transportation of therapeutic 
compounds to their target location.30 Different nanomater
ials, like polymeric micelles, polymeric nanocarriers, den
drimers, liposomal systems, quantum dots, and gold 
nanoparticles, were examined concerning potential drug 
delivery to the brain. Research outcomes of different nano
carriers and their indications have been presented in 
Table 1. The ability of NPs to overcome the restrictive 
nature of BBBs to drug molecules efficiently targets drugs 

to the brain.31 Low concentrations of pharmaceuticals, 
therapeutic complexes or medicines can be injected 
directly into the brain, than conventional doses of free 
medicinal goods, resulting in safe medicinal administra
tion for therapeutic efficiency. Nanocarriers have far more 
specialized physicochemical characteristics compared to 
their parallel bulk materials including large surface area, 
high drug loading, the feasibility of incorporating hydro
philic, hydrophobic chemicals, and high stability. The 

Table 1 Various Novel Nanocarrier-Based System and Their Outcomes for Brain Targeting

Nanocarrier- 
Based System

Targeting Agent Indication Outcomes References

Liposomes Doxorubicin (DOX) Glioma P1NS/TNC-FeLPs have shown GBM-specific cellular uptake and 

drug release profile. 
Developed NPs show a thermo-responsive transport, reduced 

tumor cell proliferation without affecting healthy brain cell 

function. 
Less toxic and greater drug accumulation in cancerous cells and 

long-term survival.

[38]

Pegylated 

Liposomes

Doxorubicin Brain tumor 

Regression

[39]

Dendrimers Borneol and 

doxorubicin

Dual-functional 

glioma 

Targeting

Improved area under the curve (AUC) and drug accumulation 

in brain tumors, prolonged half-life time and enhanced drug 

accumulation in glioma cells

[40]

Uptake mechanism 

of dendrimers into 
brain cells

Enhance permeation and uptake of polyether-copolyester 

(PEPE) dendrimers across the BBB

[41]

Polymeric 
Micelles

Dapoxetine (DPX) Reduce DPX 
medication 

dependence

DPX micelles show improved bioavailability, brain delivery and 
efficacy across the BBB.

[42]

Polymeric 
nanoparticles

Curcumin Alzheimer’s disease 

(AD)

Curcumin-loaded CS-BSA NPs penetrated the BBB, activated 

microglia, and expedited the phagocytosis of the Aβ peptide. 

Further, NPs showed promise in influencing macrophage 
polarisation in AD.

[43]

Anti-amyloid tibody Alzheimer’s disease 
(AD)

Increased absorption and ability to permeate the BBB to target 
cerebrovascular amyloid formation.

[44]

Gold 
nanoparticles 
(Au-NPs)

L-DOPA Parkinson’s disease Developed gold nanoparticles are readily absorbed by brain 
macrophages and cause no inflammation, effectively permeate 

the BBB,

[45]

Quantum 
dots (QDs)

Aromatic drugs 

paired α-COOH and 

NH2 groups

Brain tumor Selective targeting and imaging to brain cancerous cells [46]

Monoclonal 

antibodies (Ri7)

Brain endothelial 

delivery

Ri7-quantum dots complexed form has 4 times larger Vd in 

brain tissues, complicate endocytosis by brain capillary 
endothelial cells

[47]
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qualities of the NPs rely on form and size, apart from their 
composition.32,33 To achieve monodispersed NPs for cell 
internalization, it is important to verify their shape and size 
and to minimize their accumulation.34,35

The potential for high biological and chemical stabili
zation of such NPs, the feasibility of the integration of 
hydrophilic and hydrophobic medicinal products, and the 
capability for different routes are even more attractive for 
healthcare purposes. NPs can also work by covalent con
jugation with different ligands (such as proteins and apta
mers) in certain tissues.36 The high volume-to-surface 
ratio of NPs allows many duplicates of a ligand to be 
linked and their binding affinity to be substantially 
enhanced via the multifunctional function. The greater 
surface-mass ratio of some NP applications other than 
conventional particles allows them to bind/conjugate, 
absorb, or transport other particles. In addition, two or 
more materials can be utilized or produced to improve 
their physical properties.37 The most popular nanocarriers 
and their penetration through BBB for brain targeting are 
reported in Figure 1 with their mechanism of targeting the 
brain.

The Liposomes
Liposomes are sphere-shaped vesicles consisting of natural 
(Biodegradable) or synthetic bilayers of phospholipids and 
aqueous partitions.48 Because of the amphiphilic nature of 
phospholipids, these nanospheres form spontaneously.49 

Depending on the technique of synthesis and post- 
formation processing, they are classified as unilamellar 
vesicles (ULVs) or multilamellar vesicles (MLVs). ULVs 

encapsulate an enormous aqueous core and are suitable for 
encapsulating drugs containing hydrophilic structure, but 
MLVs are better for encapsulating lipid-soluble 
pharmaceuticals.50 In general, MLVs have a larger 
entrapped volume than ULVs, while unilamellar liposomes 
with a hydrodynamic diameter of 250 nm and 2–3 lamellar 
bilayers release much faster than MLVs.51 They can inter
mingle with the cells of the tumor and use endocytosis to 
release drugs in the extracellular matrix. Liposomes can be 
targeted by passive or active mechanisms.52,53 While 
active targeting of tumors is not always more effective 
than passive targeting, targeting micrometastasis, vascula
ture, and blood tumors is advantageous. Polyethylene gly
col (PEG) engineering and coating liposomes can increase 
biocompatibility, water-solubility, targeted drug delivery, 
controlled release, and half-life and decrease toxicity.54 

The liposome surface can even be used to improve blood 
circulation and brain-focusing drug delivery through incor
porating a broad range of macromolecules, like antibodies, 
peptides, aptamers, polymers, or polysaccharides. 
Presentation of the main liposomal medications and target
ing agents that improve liposomal affinity and brain target
ing is depicted in Figure 2.55 Liposomal formulations size 
has a significant impact on their half-life in the blood; 
liposomal nanostructures having a size up to 100 nm easily 
penetrate tumor cells, larger liposomes, on the other hand, 
have a shorter half-life due to better identification.56 For 
the past few years, liposomes have been widely used for 
nanomedicines to treat various cancers and neurological 
disorders.57,58 Two chemotherapeutics erlotinib and dox
orubicin (DOX) were assembled in these produced 

Figure 1 Novel nanocarriers and their penetration through BBB for brain targeting.
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liposomes to improve their translocation via the BBB to 
invasive glioblastoma tumors. Tf-Pen liposomes were 
encapsulated by Erlotinib and doxorubicin and signifi
cantly enhanced translocation (15%) through the BBB 
shown, resulting in tumor reversal in an in vitro brain 
tumor prototype. The in vitro study of hemocompatibility 
and cytotoxicity confirmed excellent biocompatibility, 
indicating acceptability for in vivo usage. Tf-Pen lipo
somes in the mouse brain were 3.3 and ~12 times higher 
than free drugs, loaded with erlotinib and doxorubicin. The 
nano-liposomal systems have also demonstrated impro
vised anticancer efficacy, associated with reverting about 
90% of the tumor in the rat brain deprived of toxic 
effects.56,59

The potential for improving vitamin E’s therapeutic 
attributes has been dramatically enhanced by polyethylene 
glycolate (PEGylated) like D-tocopherol, PEG 1000 suc
cinate or TPGS used in the pharma and food industry. 
Muthu et al have manufactured and used TPGS-packed 
liposomes for docetaxel encapsulation to develop and treat 
a brain tumor medicinal supply system.60 Liposomes 
loaded with coumarin-6 or docetaxel were prepared using 
a solvent injecting procedure, then described, and the 
cellular absorption and cytotoxicity with C6 glioma cells 
were assessed.61 The particle size was 126–191 nm in the 
range of TPGS-coated liposomes. After a 24-hour culture 
with C6 glioma cells, an IC50 of 31.04, 37.04, 7.70, and 
5.93 g/mL was shown in the nude commercial Taxotere, 
PEG, and TPGS covered liposomes, respectively. The 
TPGS-capped nanoliposomes had higher advantages 
in vitro compared to PEG liposomes.

Paclitaxel is an antitumor drug directed by microtu
bules that shows potent activity against various tumors, 

including lung, ovary, brain tube, etc. However, owing to 
the deficiency of BBB penetration ability, the efficiency 
of the paclitaxel preparation available on the market is 
not adequate for glioma.62 Artemether also demonstrates 
strong cytotoxicity against several types of cancer cells 
by down-regulating VEGF production, hypoxia- 
inducible factor-1a, metalloproteins 9 matrices, and cer
tain proteins implicated. Previously, drug translocation 
through the BBB, vasculogenic imitation brain channel 
destruction and stem cell eradication were considered 
functional nanotherapeutic systems.63 A new kind of 
liposomal system, loaded with paclitaxel and artemether 
was developed as an antitumor medicine and apoptosis 
regulator. The increased effectiveness for liposomes was 
linked to the destruction and induction of the 
Vasculogenic Channel (VM) mimics in brain cancer 
cells by inducing apoptotic enzymes and pro-apoptotic 
proteins while inhibiting anti-apoptotic protein factors.63

The Dendrimers
Dendrimers nanosized polymers of the highest order of 
ramification.64 Researchers have developed a broad range 
of dendrimers in recent times, and new types of dendri
mers continue to be designed and prepared. Because of 
their well-organized three-dimensional architecture and 
extensive surface functions, these hyperbranched polymers 
are regarded as attractive drug carriers.65–67 Drug mole
cules can be attached or embedded in the interior empti
ness of dendrimers on the surface groups. Different 
functional groups can effectively accommodate therapeutic 
molecules and drugs on the dendrimer surface.68–70

Nanosystems, particularly dendrimers, have been 
developed to prevent some of the limitations of various 

Figure 2 Presentation of the main liposomal medications and targeting agents that improve liposomal affinity and brain targeting.
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conventional drugs, including (i) low water solubility, (ii) 
a slight absorption, (iii) low targeted ability, (iv) strong 
affinity for plasma proteins, (v) speedy drug elimination, 
and (vi) low biodistribution affinity.71 To be considered 
a promising excipient, the dendrimer must cross the organ
ism’s biological barriers. The dendrimer’s size, chemical 
composition, surface structure, and shape all influence its 
volume of distribution and cytotoxicity. Furthermore, these 
qualities enable us to comprehend how dendrimers are 
metabolised as well as the long-term influence of dendri
mers at the cell level.72

Using nanocarrier-based DDS for example dendrimers, 
nanomedicine has shown great promise in treating many 
CNS diseases. These nanocarriers have demonstrated pro
mising features in CNS drug administration, such as mini
mal toxicity and immunogenicity, as well as enhanced 
drug solubility, stability, and permeability. Dendrimers 
also have more efficient paracellular and transcellular 
transport across the BBB, making them suitable carriers 
for transporting medications to the brain that are insoluble 
in water.73

Katare et al examined the potential of PAMAM den
drimer for intranasal efficacy of the water-insoluble anti
psychotic drug haloperidol to advance the delivery of 
water-insoluble drugs to the brain. They found that the 
dendrimer-based formulation boosted haloperidol’s aqu
eous solubility. A higher distribution of haloperidol in 
the brain and plasma was seen in the experimental formu
lation than in a placebo control.74

The most famous dendrimer synthesis molecule may 
be poly (amidoamine) of PAMAM. The central part of 
PAMAM is the diamine (usually ethylenediamine), which 
is responded to generation-0 PAMAM by methyl acrylate 
and then by an additional ethylenediamine. Subsequent 
reactions create generations of higher levels. Dendrimers 
have shown interparental or intraventricular injections, 
that PAMAMs dendrimer functionality dramatically 
affects the diffusion into the CNS tissues in vivo and 
penetrates the live neurons.75,76 Kannan et al demonstrated 
that polyamidoamine dendrimers were supplied systemi
cally to locate newborn rabbits with cerebral palsy in 
activated microglia and astrocytes and provide possibilities 
as a means of conveying therapeutic messages for the 
treatment of neuroinflammatory disorders.77 Liu et al 
encapsulated a Fourth-generation PAMAM dendrimer 
BBB-penetrating nanocarrier system, incorporating angio
pep-2 peptide and then combining a new peptide to 
enhance the effect of glioma targeting following 

penetration of the epidermal factor receptor (EGFR).78 

The anticancer medicine doxorubicin (DOX) was then 
fed into the interior vacuums via non-covalent connec
tions. In reaction to the tumor’s acidic environment, the 
dendrimer channel controls the release of integrated med
icines and decreased the toxic effects in vivo and in vitro 
for normal tissues. In addition, the combination of peptides 
with the dendrimer carriers significantly improved the 
penetration of BBB and enhanced their antitumor activities 
following BBB crossing.79 In vivo testing reveal the 
enhanced permeability of the BBB and anti-glioma effects 
of DOX by the twofold functionality of the dendrimer 
nanocarriers.80

These studies confirm that modified dendrimers will be 
future drug nanocarriers able to enter BBB following 
transcytosis and reach the glioma location for targeted 
brain cancer treatment. The figure shows the easiest way 
to build an active, targeted drug delivery nanoparticle for 
glioma ligand-decorated, interconnected with PEG to 
enhance bioavailability.81 A Simple approach for ligand- 
decorated nanoparticles, linked to PEG for increased bioa
vailability for active, targeted medication in the glioma 
sector is shown in Figure 3.

While the use of these nanostructures as 
a pharmacological excipient provides significant advan
tages, the toxicity of dendrimers is critical to assess. 
Because these cell components are of the same dimension, 
the dendrimers interact with the cell membrane, nucleus, 
and proteins because of the size of the cell (1–100 nm). 
Moreover, dendrimers can complex certain metal ions for 
the hemoglobin’s biological action and renal function, 
such as iron and zinc. Dendrimer toxicity is mostly deter
mined by the charge of the dendrimer’s surface. 
Pharmacokinetics and bioavailability influence polymer 
toxicity in vivo. As a result, biodistribution tests become 
essential for determining more cells and tissues that can 
store the medication, resulting in higher potential 
toxicity.82

Polymeric Micelles
Micelles are an intriguing family of amphiphilic spherical 
nanomaterial’s that form when amphiphilic molecules self- 
aggregate in water over a specific critical concentration 
(critical micelle concentration).83 Both hydrophilic and 
hydrophobic domains are present in micelles.84 The hydro
philic region of the molecules surrounds the shell of 
micelles, Though this hydrophobic zone captures the lipo
philic bioactives, the lipophilic region forms the cores, 
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where the hydrophobic bioactives are entrapped.85,86 

These attractive nanocarriers carry large levels of che
motherapeutic agents for targeting ovarian cancers specific 
targets. Polymeric micelles are made by amphiphilic copo
lymers that create polymeric micelles in aqueous condi
tions, having hydrophilic layers on the outside and 
hydrophobic cores.87 Stability can be improved by cross
linking the shell and core chains. Polymeric micelles are 
made with additional adjustable properties, and these 
enable them to be sensitive to external stimuli such as 
pH, light, temperature, ultrasound, etc., resulting in 
a regulated release of the pharmaceuticals contained 
within the micelle.88

Yin et al formulated a delivery system of nano-drug 
consisting of doxorubicin (lactic-glycolic) acidlysoGM1 
micelles, with a good percentage of encapsulation of this 
low-solubility drug (TSI) (total 61%). In vivo studies of 
mouse and zebrafish, this system might easily pass through 
the BBB and build up in the brain parenchyma using 
micropinocytosis and lysosomal pathways. 
Nanoformulation has shown excellent anti-glioma out
comes in rats, which shows its potential as an anti- 
glioma medicine.89

Shiraishi et al carried out the study in which gadoli
nium-micelles (Gd-micelles) was made as a contrasting 
agent for MRI. Later intravenous injection into a rat for 
approximately half an hour, ischemic hemisphere con
trasted images have shown the BBB and its distribution 
area in the ischemic hemisphere.90

Sonali et al fabricated the docetaxel (DTX)-transferrin- 
loaded Vitamin E TPGS micelles to treat brain tumors. 
Solvent casting method was employed to formulate the 
micelles with and without transferrin conjugate. These 
synthesized conjugate micelles achieved over 80% OF 
encapsulation efficiency, 520 nm size, and continued 
drug release throughout 24 hrs. Increased solubility, per
meability, and targeted drug delivery enable polypills to 
better deliver prescribed medications to the patients who 
need them. TPGS micelles were found to be a promising 
nanocarrier for brain therapy, resulting in more prolonged 
and more effective DTX brain targeting than non-targeted 
micelle formulations.91

In recent years, micelles have also been a leader in 
targeted treating brain tumors with drugs amongst nano
carriers. Because of its nano-dimensions, the phagocytic 
system is not easily identified, nor are its hydrophilic 
shells more permeable and retainable.92,93 Agarwal et al. 
The mechanism of bio-adhesive micelles charged with 
docetaxel has been hypothesized for brain tumor therapy. 
Chitosan has been combined with transferrin during 
micelle formation because of its exceptional bioadhesive 
properties to obtain synergistically assisted transcytosis 
through both the chitosan and transferrin receptors. The 
use of the Docetaxel encapsulated micelles in glioma cells 
of C6 was improved by this nano therapy approach and the 
effectiveness of the bio-adhesive micelle suggested to treat 
brain tumors was demonstrated. After a treatment of 48 
hours, the targeted and non-targeted nano-micelles 

Figure 3 Scientific approach for ligand-decorated nanoparticles, linked to PEG for brain targeting.
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bioavailability was 4.08 and 2.89 times higher than that of 
pristine docetaxel.94

Polymeric Nanoparticles
Polymer NPs have a polymer core that usually has medi
cation that is dispersed into the matrix between 60 and 200 
nm in diameter.95 In addition to various drug delivery 
formulations, many drug delivery carriers have been 
employed. Several polymers have recently found use in 
the medical field and have gained traction in the bioactive 
agent release category.96 Several of these products are 
degraded in the body. Polylactides (PLA), polyglycolide 
(PGA). Poly lactic-co-glycolic acid (PLGA), polyanhy
drides, polycyanoacrylates, and polycaprolactone are the 
most popular ones. Natural polymers, such as chitosan, are 
also used despite developing several synthetic and semi- 
synthetic polymers.97 Furthermore, it reported that in 
terms of increased drug delivery to the brain, these tech
nologies have been offered as polymeric NPs. Mice were 
administered to the PLGA embedding drugs (isoniazid, 
rifampicin, ethambutol and pyrazinamide), maintaining 
high drug levels 5–8 days in plasma and 9 days in the 
brain, which is significantly longer than free drug.98 Five 
NP dosages (compared to 46 administrations of traditional, 
free medicines) results in undetectable germs in the 
meninges Mycobacterium tuberculosis-infected mice. 
Polybutylcyanoacrylate (PBCA) NPs successfully deliv
ered neurons and neuronal cell lines to functional 
proteins.44,99

The recent tests focused on using poly(lactide-co- 
glycolic) acid as a material to synthesize nanoparticles 
for encapsulating therapeutic agents for Alzheimer’s dis
ease and brain cancer.100 It has been demonstrated that 
polymer nanoparticles are more effective at penetrating the 
brain, reducing oxidative stress, inflammation, and plaque 
stress, improve the delivery of curcumin in Alzheimer’s 
disease treatment, and improve doxorubicin internalization 
in human glioma cells, leading to cytotoxic effects for 
cancer cells.101 An in vivo experiment involving the co- 
delivery of cisplatin and bolden, an antioxidant agent 
using the poly (lactide co-glycolic) nanocarriers, also 
achieve a successful target delivery for therapeutic appli
cations in brain therapy.102 In addition, the use of the 
positive-charge polymers, poly (ethylene Imine), and 
poly (ethylene imine) copolymers were reported as vehi
cles for gene delivery (L-lysine). The backbone of the 
polymer was fixed to increase the cytocompatibility of 
L-glutathione (the ethylene imine) which also enhance 

the passage of the blood–brain barrier. Thus, the potential 
of nanoparticles was demonstrated based on poly (ethylene 
imine) for providing gene therapy genes for brain cancer. 
Another polymer for synthesizing nanoparticles within the 
brain is poly (allylamine).103 Kynurenic acid has been 
encapsulated into the core-shell structure during in vitro 
and in vivo experiments and has demonstrated neurologi
cal disorders’ neuroprotective and therapeutic potential. 
Other trials have focused on andrographolide in serum- 
albumin-based nanoparticles and poly-ethyl cyanoacrylate 
nanoparticles to manage neurodegenerative inflammation 
disease.104,105 The results showed that nanoparticles used 
for human serum albumin are slightly more porous.

In contrast, nanoparticles used for the in vitro experiment 
have reversibly affected the integrity of the monolayer 
cells.106 The development delivered docetaxel of an amphi
philic polymer-lipid nanoparticles treatment system for brain 
metastasis.107 Tests conducted in vivo have shown that the 
accumulation of nanoparticles on the tumor site has been 
inhibited with tumor growth and median survival increased 
compared to an equivalent dose of clinically used docetaxel 
solution formulation.108 Chitosan combined with L-valine 
was used as a vehicle to treat Alzheimer’s disease, 
a hydrophilic healing agent, for the supply of saxagliptin. 
In vivo studies, plasma stability in nanoparticles has been 
demonstrated to prevent the premature release and increase 
brain supply compared to the suspension of saxagliptin.109 

Figure 4 shows the polymeric nanoparticles targeting tumor 
cells to treat brain cancer.

The Gold Nanoparticles
Researchers are fascinated by gold nanoparticles for over 
a century and have extensively used these nanocarriers for 
biomedical and theranostics applications. Au-NPs are 
heavily utilized owing to multifunctional characteristics 
in imaging, therapeutics, and drug delivery 
systems.110,111 Some remarkable characteristics of AuNPs 
include tunable nanomaterial properties, for example, por
osity or optical responsiveness, and the comparatively 
large surface area responsible for the conjugation of dif
ferent targeting ligands. Other notable features include low 
toxicity, biocompatibility, high-X-ray absorption coeffi
cient and high-atomic number, ease of synthesis, and cost- 
effectiveness.112,113 However, synthetic nanoparticle-based 
delivery systems, including AuNPs, show less selectivity 
towards targeting cells due to the lack of specific moieties 
that differentiate concerning targeted and non-targeted 
sites. To overcome these issues, cell-targeting ligands 
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(antibodies, proteins, peptides, or aptamers) have been 
combined with AuNPs, consequently leads to the efficient 
delivery of AuNPs to the brain.114,115 In treating several 
CNS-related disorders, eg, brain cancer, Alzheimer’s, 
Parkinsonism’s, and efficient delivery of drug cargoes 
and biological therapeutics across blood–brain barrier sur
faces, modifications of AuNPs are needed.116,117

Khongkow and colleagues reported a promising platform 
of AuNPs with brain-targeted exosomes to develop novel 

nanomaterials. It is considered as brain-targeted AuNPs 
synthesis with exosomes supposed to be a promising strat
egy for targeting moieties into the brain. Exosomes were 
derived from genetically engineered mammalian cells, and 
the surface modification of AuNPs (Figure 5) was performed 
for easy penetration into the brain.118

In another study, Gonzalez et al prepared L-DOPA- 
decorated Au-NPs termed multi-branched nanoflowers 
and investigated their brain targeting ability and efficiency 

Figure 4 Mechanism of polymeric nanoparticles for brain tumor.

Figure 5 Modified Au nanoparticles for improved BBB penetration with neuron-targeted exosome.
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to cross the BBB. The seed-mediated method was used to 
synthesize these nano vehicles (L-DOPA-AuNFs), cate
chols, a type of molecule, are used as a direct reducing- 
cum-capping agent. Results indicate that L-DOPA-AuNFs 
can cross the BBB and more efficiently internalize without 
causing inflammation by brain macrophages than other 
AuNFs functionalized with a non-targeting ligand. These 
findings indicate that L-DOPA-AuNFs is an efficient nano
carrier for delivering drug cargoes into the brain and acting 
as non-inflammatory BBB-penetrating nano vehicles.45

Over brain capillaries, surface transferrin receptors 
(TfR) are a popular strategy for brain-targeting. Johnsen 
et al reported TfR-targeted gold nanoparticles (AuNPs) 
and their transport through the BBB to enter the brain 
parenchyma. Valency and affinity of the AuNP- 
conjugated antibodies have a significant impact on the 
uptake capacity. Results indicate that monovalent ligands 
have a favorable impact on attaining TfR-targeted nano
medicines’ transcytosis through the BBB and remarkably 
improve uptake capacity. In contrast, antibodies with low 
and high reactivity induce an intermediate and low absorp
tion of AuNPs into the brain, accordingly.119

The Quantum Dots
Quantum dots (QDs) have been used extensively as nano
carriers for brain targeting and neurological disorders in 
recent years. QDs are artificial semiconductor nanocarriers 
with a size range of 100 nm with excitons restricted in all 
three spatial dimensions. QDs were discovered in the 
1980s by Alexie Ekimov, having fluorescence (20 times 
brighter) than ordinary fluorescent materials.120 Owing to 
their remarkable property, including large absorption spec
tra, high photobleaching and stability, they are considered 
ideal candidates for diagnosis, sensing, drug delivery and 
targeting applications. The emission spectra of QDs are 
adjustable from 450 to 1800 nm by varying the shape, size, 
and composition.121,122

QDs, both conjugated and single, can visualize differ
ent structures extending either from brain vasculature or 
towards single receptor molecules. Additionally, for the 
complete understanding of tumor development mechanism 
and development of novel methods for tumor treatment, 
these fluorescent nanocarriers can be easily detected by 
targeted to tumors can be detected by optical imaging. So, 
the surgeon uses a valuable strategy to detect and identify 
the brain tumor during biopsy and resection in real- 
time.123 Some examples of several well-known quantum 
dots are silver QDs,124 gold QDs,125 carbon QDs,126 

selenium QDs,127 and silicon QDs.128 In addition, studies 
are also available on graphene-based nanocarriers for 
example reduced graphene and graphene oxide.129,130

Central nervous system (CNS) related disorders are 
characterized by a wide-ranging brain illness with various 
disabilities.131 A new paradigm for CNS-related disorders 
(Alzheimer’s, Parkinsonism) is provided by the nanocar
riers approach.132 Several new Nanoparticles have been 
used for brain-targeted applications. Because of the poten
tial for medicinal products throughout BBB, graphene 
quantum dots (GQDs) are among those carbon-based 
nanoparticles. Also, contribute to the administration of 
tumor-specific drugs.133

One of the primary causes of dementia is Alzheimer’s 
(neurodegenerative disease), which is triggered because of 
amyloid peptide accumulation in the brain.134,135 

Therefore, agents that act by inhibiting the aggregation 
of amyloid are mainly used as treatment strategies for 
Alzheimer’s.136 Among these agents, GQDs are reported 
as a promising treatment for Alzheimer’s by inhibiting the 
aggregation of amyloid β peptides. Additionally, GQDs 
are also preferred as they protect from the cytotoxicity of 
peptides.137 Correspondingly, tramiprosate affinity towards 
amyloid β peptide and after binding produce an inhibitory 
effect on their aggregation. Covalently linkage of GQDs 
with tramiprosate was reported as one of the effective 
inhibitors of amyloid-β aggregation, consequently 
a synergistic effect produced by their combination in treat
ing Alzheimer’s disease.138

Among the neurodegenerative disorders, the second pre
valent disease is Parkinson’s disease. It was evident that its 
pathogenesis was linked with the transmission and accumu
lation of α-synuclein (α-syn) aggregates in the 
midbrain.139,140 To date, no anti-aggregation agents reported 
as fruitful for the treatment of the disease; however, GQDs 
have therapeutic powers and protect cells against α- 
synuclein toxicity. In animals, GQDs prevent α-synuclein 
fibrillization, and its spread between neurons also promotes 
their disaggregation. Recently, a research group studied the 
in vivo permeability of the BBB by using GQD–biotin for 
immunohistochemical analysis of the brain. According to 
the results, an enormous amount of GQD–biotin was iden
tified in the CNS region, along with the cerebellum, the 
olfactory bulb, neocortex, and midbrain specifying the 
in vivo ability of GQDs to penetrate the BBB in vivo. 
These promising activities promise and BBB permeability 
GQDs are considered an effective therapy against neuronal 
disorders.141
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In another study, dual amperometric and fluorescence- 
sensitive curcumin-graphene QDs were fabricated as DNA 
sensors for a variety of neurologic and vascular disorders. 
Dual GQDs-ITO transparent electrode used to sense APO 
e4, biomarker protein, responsible for Alzheimer’s disease. 
The developed system reveals high metrological presenta
tions, for example, reproducibility, selectivity, repeatabil
ity, and long storage stability. All experiments were carried 
out by using human blood plasma (clinical fluids).142

Several new nanoparticles have been used for brain- 
targeted applications. Because of the potential for medic
inal products throughout BBB, GQDs are among those 
carbon-based nanoparticles that also contribute to the 
administration of tumor-specific in vivo molecular and 
cellular imaging. However, their low blood–brain barrier 
permeability. Their low blood–brain barrier permeability, 
and poor stability, on the other hand, is a concern and 
severely limit their ability to enter, and following parent
eral injection, they operate on their target locations in the 
CNS. To overcome these issues, Gao and collages created 
a brain imaging device, in which poly (ethylene glycol) 
poly (lactic acid) nanoparticles were coated with QDs and 
injected into the brain through the nasal route. The resul
tant nanoparticles are water-soluble, stable, and have good 
brain focus and picture characteristics with high payload 
capacity. Because the surface of the nanoparticles is avail
able with PEG functional terminal categories, this nanop
robe enables conjugating different biological ligands with 
substantial potential for the creation of specialized ima
ging agents for diverse CNS.143

Despite the number of studies and research on QDs, 
they may be toxic due to ROS generation and toxic ele
ments such as cadmium, selenium, tellurium, etc. As 
a result, various strategies for reducing QD toxicity have 
been developed, the most common of which are non-toxic 
materials and surface coatings with biocompatible 
molecules.

The Future Perspectives
Conventional therapies for brain targeting often remain 
unsuitable for penetrating the brain by crossing the BBB 
to accomplish targeting roles. However, with the advent 
of nanotechnology, it has become possible to actively 
target brain cells. In this review, various nanocarrier- 
based DDS such as polymeric micelles, polymeric nano
carriers, dendrimers, liposomal systems, quantum dots 
(QDs), and gold nanoparticles have been discussed to 
penetrate the BBB with promising applications. The use 

of novel nanocarriers, their flexible properties, and in vivo 
targeting for CNS disorders are potential findings of this 
review with novel discoveries. On the other hand, safety 
concerns are of utmost importance before discussing the 
clinical applications of these nanocarriers. To summarize, 
we reviewed the currently developed nanoplatforms for 
brain targeting and promising strategies for CNS-related 
disorders, including GBM, AD, and PD. Several studies 
have made fruitful progress in the last decade in finding 
biomarkers and developing nanomedicines designed to 
target biomarkers, and clinicians are about to overcome 
the current constraints that impede the clinical translation 
of CNS-targeting therapies. To highlight the remarkable 
capabilities of hybrid nanomedicines, several in vitro and 
in vivo experiments have been performed, which have 
resulted in successful clinical translation. These advance
ments in nanotechnology will enable the development of 
more advanced multifunctional nanomedicines for the 
synthesis and functionalization of biomarkers and nano
medicines, with these approaches resulting in 
a substantial improvement in the markers and nanomedi
cines that can be used to battle central nervous system 
diseases.
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