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Abstract: Obesity-related glomerulopathy (ORG) is a secondary glomerular disease caused 
by obesity, with clinical manifestations such as proteinuria and glomerulomegaly. Currently, 
the high incidence of obesity brings a change in the spectrum of kidney diseases across the 
globe, including China. ORG has become another important secondary nephropathy leading 
to end-stage renal disease (ESRD), and its incidence has increased significantly. This trend is 
bound to bring about a serious socioeconomic burden. Therefore, it is urgent to study its 
pathogenesis and intervention measures. Currently, the occurrence and development mechan
isms in ORG are complicated by many factors, which are still unclear. In the past 20 years, 
with the continuous intensive research on mechanisms such as hypoxia in the metabolic 
process, immune inflammation, and pyroptosis, there have been new advances in the 
mechanism of ORG, especially the important role of inflammation in podocyte injury and 
its impact on the progress of ORG. Here, we briefly review the possible pathogenic role of 
the inflammasome in the podocyte damage in ORG and summarize the possible therapeutical 
strategies targeting inflammasome. 
Keywords: obesity, NLRP3 inflammasome, ORG, podocyte, Chinese herbal medicines

Introduction
Over the past several decades, the worldwide prevalence of obesity in people has 
doubled since 1980, including Latin American countries.1–6 As the more years 
obesity continues, the more damaging coexisting illnesses, such as chronic kidney 
disease, develop.7 Since the first case of obesity-related glomerulopathy (ORG) was 
reported in 1974, more and more studies have suggested that obesity has become an 
independent risk factor for the development of chronic kidney disease (CKD).8,9 

ORG usually has an insidious onset, with microalbuminuria or clinically dominant 
proteinuria as the primary manifestation, with or without impaired renal function, 
and a small number of patients manifesting with microscopic hematuria or nephro
tic syndrome. Pathologically, it is characterized by increased glomerular volume, 
focal segmental glomerulosclerosis (FSGS) and foot process widening, but the 
proportion of foot process fusion is low.10 Currently, It is recognized that the 
diagnosis of ORG should meet the following criterion:10–13 (1) body mass index 
(BMI, weight in kg/height in meters2) ≥ 30kg/m2(Chinese population should be> 
28kg/m2), excluding endocrine obesity, drug-induced obesity and diabetes, accom
panied by elevated fasting blood glucose or abnormal glucose tolerance; (2) 
different clinical levels of proteinuria (> 0.3g/24h), without gross hematuria and 
obvious microscopic hematuria; (3) renal pathology manifestations of glomerular 
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hypertrophy with or without FSGS, immuno-fluorescence 
staining being oligo-immune complex deposition, which 
may be accompanied by IgM, C3 non-specific or segmen
tal deposition; (4) excluding obese patients with primary 
renal diseases, such as IgA nephropathy, membrane 
nephropathy, and other secondary factors that could 
cause increased glomerular volume or FSGS, such as 
diabetic nephropathy, and lipoprotein glomerulopathy.

In this review, we will mainly describe the pathogen
esis and treatment of ORG, especially the application 
research of Traditional Chinese Medicine (TCM), in 
order to provide new therapeutic targets for ORG.

BMI and Obesity
In 2016, Okabayashi et al reported 20 patients with mod
erate obesity (BMI <30 kg/m2) may also develop ORG, 
probably caused by the renal factor(s), such as low glo
merular density, as well as BMI.14 Therefore, does BMI 
still have its shortcomings in assessing the incidence 
of ORG?

In clinical practice, BMI is usually used to assess the 
degree of obesity,15 but CKD patients often experience 
changes in body composition, such as muscle and adipose 
tissue, visceral adipose tissue (VAT) and subcutaneous 
adipose tissue (SAT). BMI cannot distinguish the distribu
tion of these tissues, especially the distribution of adipose 
tissue because there is considerable number of evidence 
that, compared with SAT, excessive VAT will bring more 
insulin resistance, and increase the risk of kidney 
disease.16 More recent data highlight that waist circumfer
ence (WC) as a measure of abdominal obesity which is 
related to VAT, provides an indicator of body composition 
and adds critical information along with BMI in clinical 
evaluations.17–20

Recently, studies have put forward the concept of 
Metabolic Healthy Obesity (MHO), which is a healthy 
way of storing fat with small fat cells (hyperplasia), and 
Metabolic Unhealthy Obesity (MUO), which is large 
hypoxic fat cells.21 Necrosis may occur in the large 
hypoxic fat cells due to hypoxia in the metabolic process, 
leading to immune cell infiltration, inflammation, and 
insulin resistance in adipose tissue, and ultimately leading 
to increased circulating lipids and glucose, as well as 
ectopic lipid deposition which causes inflammation in 
liver, muscle, heart, kidney, pancreas and other tissues.

It is declared that obesity is a chronic, relapsing progres
sive disease.22 The metabolic state of the human body can 

change from a “metabolic health” state to an unhealthy 
phenotype.23 This transition may be related to continued 
obesity, aging, insufficient vascularization, hypoxia, 
decreased adiponectin secretion.24 And it gradually declines 
SAT ability to proliferate and effectively store lipids.25

Obesity-Related Genes
According to a new study by researchers at the University 
of Chicago, a series of genetic variations affect the 
expression of obesity-related genes in the brain and adi
pose tissue. The research team found that changes in the 
expression of obesity-related genes are associated with 
changes in metabolism and behavior, indicating that 
these variants have a combined effect that increases the 
risk of obesity. The strongest genetic association with 
human obesity corresponds to a set of genetic variations 
in a gene called FTO. More than 40% of people have one 
copy of these variants, and 16% have two copies, which 
increases their risk of becoming obese by 70%. Their 
study shows that multiple variants on a common haplo
type modify the regulatory properties of several enhan
cers targeting IRX3 and IRX5 from mega-base distances. 
They demonstrate that these enhancers affect gene expres
sion in multiple tissues, including adipose and brain, and 
impart regulatory effects during a restricted temporal 
window.26 These findings may also provide us with orien
tation of gene therapy targets for obesity. And whether 
these genes are related to ORG remains to be further 
studied.

Risk Factors of ORG
ORG is a kidney disease secondary to obesity, but obe
sity is not the only factor that causes ORG. The degree 
of renal damage in ORG is not necessarily related to the 
severity of obesity. Current research indicates that there 
are the following additional or susceptibility factors to 
explain the significant differences in susceptibility to 
kidney injury caused by obesity between individuals:27 

(1) visceral fat obesity; (2) low nephron number, may 
due to low birth weight, intra-uterine growth retardation 
and preterm birth; (3) obesity-associated conditions or 
complications (eg, sleep apnea syndrome, pulmonary 
hypertension and right ventricular overload, nonalcoholic 
fatty liver disease); (4) congenital or acquired nephron 
mass reduction (eg, unilateral renal agenesis, nephrect
omy); (5) progressive loss of functioning nephron (eg, 
chronic kidney disease of any cause, aging).
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Pathogenesis of ORG
However, the mechanism by which obesity causes kidney 
disease is unclear. The pathogenesis of ORG is mainly sum
marized in three aspects: hemodynamic changes and renin- 
angiotensin-aldosterone system (RAAS) activation, adipose 
tissue-related factors and inflammation. The progression 
mechanism of ORG is also diverse and very complex, 
among wtih podocyte damage caused by chronic low-grade 
lipid accumulation, compensatory hyperplasia, fibrosis, oxi
dative stress and apoptosis is particularly important 
(Figure 1).

Hemodynamic Changes and RAAS 
Activation
Hemodynamic changes can appear in the early stages of 
obesity. Histopathologically, FSGS found in ORG are very 
likely caused by single-nephron hyperfiltration following 
abnormally increased renal plasma flow and filtration frac
tion. As the body weight increases, the whole body volume 
and kidney load also increase, which leading to increased 
kidney blood flow, high glomerular filtration, and high pres
sure within the glomerular. Those changes cause the glomer
ular basal membrane expansion, glomerular hypertrophy, 
and ultimately lead to renal impairment, such as decreased 
podocyte density and detachment of podocytes.28,29 Denic 
et al described a human model of the handling of multiple 
proteins by the proximal renal tubule. This model suggests 
that hyperfiltration itself may cause proteinuria since renal 

protein excretion appears to be very sensitive to single- 
nephron glomerular filtration rate (SNGFR). Increased 
SNGFR decreases the time that glomerular filtrate proteins 
are available for proximal tubular endocytosis, so protein 
reabsorption decreases and proteinuria develops.30,31 

Changes in the structure of the glomerulus lead to narrowing 
of the glomerular filtration cavity, reduced filtration area, 
decreased urinary sodium excretion, and water and sodium 
retention. Long-term unbalanced sodium-salt balance regu
lation and ultrafiltration will further aggravate glomerular 
damage and form a vicious circle.

Not only renal hemodynamic changes caused by obesity, 
but also RASS activation is an important factor in the renal 
damage pathway.32 Previous studies have shown that 
increased loop reabsorption sodium, high leptin, high insu
lin, sympathetic nervous system (SNS) activation and acti
vated RASS cause an increasing in angiotensin (Ang II), 
while renal sodium retention and urinary sodium excretion 
are being increased, further aggravating the kidney damage. 
Ang II is closely related to the occurrence and development 
of ORG. Therefore, blocking the activation of RASS has 
a better effect on reducing obesity-related glomerular pro
teinuria and delaying the progression of renal function.

Role of Adipose Tissues and Inflammation
In obesity, Adipose tissue not only has the function of 
storing and providing energy, but also as an endocrine 
organ to widely influence and regulate the body’s energy 

Figure 1 Pathogenesis of ORG.
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metabolism and various functions. Adipose tissue in and 
around the kidneys secretes adipokines, such as leptin, 
adiponectin, cytokines (TNF-α, IL-6, and IL-1β) in local 
inflammation, and the chemotaxis of a variety of cell 
populations such as macrophages, endothelial cells, fibro
blasts, and leukocytes. The adipokines can activate c-Jun 
N-terminal kinase (JNK) and nuclear factor 
κ-light-chain-enhancer of activated B cells (NF-κB) sig
naling pathways. These inflammatory signaling pathways 
are involved in the phosphorylation of different proteins 
and transcriptional factors, causing an increased secretion 
of proinflammatory molecules (TNF-α, IL-6), chemokines 
[monocyte chemoattractant protein 1 (MCP-1), and 
proatherogenic mediators [plasminogen activator inhibi
tor-1 (PAI-1)].33 Furthermore, many studies have provided 
evidence that the activation of complement system can 
increase adipose tissue inflammation which can conversely 
promote the production of complement components in 
adipose tissue and enhance adipocyte hypertrophy.34–37 

Inflammation is often associated with leukocyte infiltra
tion, via nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase and reactive oxygen species (ROS) 
generation. These mechanisms all lead to glomerulosclero
sis, renal fibrosis, and finally proteinuria.38 At present, we 
mainly focus on leptin, adiponectin and inflammation.

Leptin
Leptin is mainly a small peptide hormone produced by adipose 
tissue, especially visceral fat, which can be bound to receptors 
in the hypothalamus to regulate the balance of energy intake. It 
can affect kidney function through direct and indirect effects. 
At the same time, when the level of renal function decreases, 
the level of leptin in the body will also increase significantly, 
further impairing renal function. On the one hand, leptin can 
be bound to specific receptors in the glomerulus to cause up- 
regulation of the pro-fibrotic transforming growth factor-β 
(TGF-β) response and increase the production of extracellular 
matrix components, directly affecting the kidneys. On the 
other hand, leptin also causes high blood pressure by activat
ing SNS, which indirectly affects the kidneys. Current studies 
have shown that leptin activates SNS through the JAK/STAT 
pathway and binding to the melanocortin 4 (MC4) receptor. 
These mechanisms indicate that obesity plays an important 
role in kidney disease and its related hypertension.39

Adiponectin
Adiponectin has anti-atherosclerosis, anti-inflammatory 
and anti-diabetic properties, by which activate a number 

of important regulatory cell signaling mechanisms, 
including adenosine monophosphate-activated protein 
kinase (AMPK), mitogen-activated protein kinase (p38- 
MAPK) signaling pathways and lipid metabolism 
pathways.40 There are two receptors that adiponectin 
binds to, Adiponectin receptor 1 (AdipoR1) and 
Adiponectin receptor 2 (AdipoR2). At the renal level, 
AdipoR1 is found in the podocytes and proximal tubule. 
The protective effect of adiponectin on the kidney is also 
closely related to podocytes. Xu et al used palmitic acid 
(PA) to induce podocyte injury in vitro. After adiponectin 
was added, the expression of nucleotide binding and oli
gomerization domain like receptor protein 3 (NLRP3) 
inflammasome-related proteins and inflammatory cyto
kines (IL-18 and IL-1β) decreased, indicating that adipo
nectin down-regulates ROS/NF-κ B/NLRP3 pathway to 
protect podocytes.41 These mechanisms demonstrate 
a link between hypo-adiponectinemia and kidney 
dysfunction.

NLRP3 Inflammasome
In addition to lipid metabolism disorders, activation of 
RAAS and SNS in the pathogenesis and progression of 
ORG, the activation of glomerular immune inflammation 
also plays a unique role.42

As is known to all, immune inflammation is the body’s 
innate response to various injury factors in vivo and 
in vitro. When body’s metabolism is abnormal, a large 
number of internal danger signals will be released by 
damaged and dead cells, which are collectively referred 
to a danger-associated molecular patterns (DAMPs).43 

DAMPs can interact with a wide range of germline- 
encoded pattern recognition receptors (PRRs) to initiate 
a pro-inflammatory response related to metabolic 
disorders.44 Since the inflammasome was reported in 
2002, the mechanism of inflammation caused by the 
inflammasome has been paid more and more attention. 
NLRP3 is the particular important member in the nucleo
tide-binding oligomerization domain-like receptor (NLR) 
family. NLRP3 inflammasome is an intracellular multi- 
protein complex (NLRP3/ASC/caspase-1 complex), 
which contains NLRP3, apoptosis-related spot-like protein 
(ASC) and caspase-1. When PRRs are activated by the 
DAMPs, it can promote K+ efflux, Ca2+ signaling, mito
chondrial dysfunction, and ROS production, lysosomal 
disruption, etc., leading to NLRP3 inflammasome activa
tion and finally resulting in cells releasing factors such as 
interleukins (IL-18 and IL-1β).45,46
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As an important secretory organ, adipose tissue can 
secrete a variety of adipokines. When human body con
sumes too much energy, adipokines will activate adipose 
tissue macrophages (ATM) to shift from anti-inflammatory 
M2 to pro-inflammatory M1 and trigger inflammation. 
This was also confirmed by the research of He et al.47

Podocyte Injury in ORG
As is known to all, Podocytes are the main component of 
the glomerular filtration barrier. Podocytes cover the sur
face of glomerular capillaries through their crossed foot 
processes. The stability of this structure is essential for 
maintaining glomerular function.48,49 When podocytes 
are damaged, the stability of this structure will be 
destroyed, and the dysfunction, injury, and apoptosis of 
podocytes which are critical for the pathogenesis of pro
teinuria and development of ORG are inevitable.50 

Through the study of ORG kidney pathology, it was 
found that the podocyte foot process was widened, 
some of the foot process disappeared, the density and 
number of podocytes was decreased, and the podocytes 
were even detached from the basement membrane. These 
structural changes eventually lead to the destruction of 
the function of the podocytes. Because the regenerative 
capacity of podocytes is extremely small, once it is 
damaged, it is difficult to repair.51,52 Therefore, it is 
vital to protect podocytes from damage and apoptotic 
cell death.

However, the damage mechanism of podocytes in 
ORG is still not very clear. At present, it is agreed that 
podocyte injury contains a variety of pathophysiological 
processes. In recent years, with the in-depth study of 
inflammasomes, more and more researchers have paid 
attention to the pathogenic role of inflammation in ORG 
podocytes injury.53–55 In our review, we sort out and 
analyze the research on the signal pathways of podocyte 
injury in ORG in the past 20 years, providing a new 
perspective to alleviate podocyte damage and delay the 
progression of ORG. These studies are mainly based on 
animal models or cell cultures, and there is a lack of 
research data on human kidney tissue (Table 1).

Therapeutic Target
At present, there is still a lack of specifically effective drug 
for the treatment of ORG. However, with the continuous 
in-depth research on the pathogenesis of ORG, the treat
ment of ORG has gradually changed from traditional body 
mass reduction, antihypertensive, metabolism regulation to 

targeted therapy that can improve kidney metabolism and 
inhibit inflammatory pathway.

Traditional Treatment
In actual clinical practice, it is generally believed that 
actively reducing proteinuria is an important means to 
delay the progression of CKD. Therefore, the application 
of proteinuria control drugs is a common treatment for 
ORG, such as angiotensin-converting enzyme inhibitor 
(ACEI), angiotensin II type 1 receptor blocker (ARB), 
ACEI/ARB combination. At the same time, controlling 
the intake of protein, NaCl, and fat, and if necessary, 
combining treatment with lipid-lowering drugs and aldos
terone antagonists are adopted.

However, the most basic treatment is to lose weight. 
Currently, there are already many clinical guidelines to 
guide the treatment of obesity.70–73 The main measures 
include lifestyle changes, exercise (including walking and 
cycling in our daily commuting mode74), weight loss with 
drugs, and bariatric surgery. In drug weight loss, recent 
studies have confirmed that sodium-glucose cotransporter 
2 inhibitors and glucagon-like peptide 1 agonists protect 
kidney while losing weight.75–78 However, the efficacy 
and safety of these two drugs still need to be further 
clarified by a large randomized prospective study with 
long-term follow-up. And among all of those therapies, 
personalized precision medicine may contribute to the 
medical management and care of obesity patients.79

Traditional Chinese Medicine in ORG
Although people currently agree that in the early stages of 
the disease, active weight control is the most effective 
treatment for proteinuria, the current methods of weight 
loss still cannot effectively control obesity. And as the 
disease progresses, there is still a lack of effective long- 
term weight loss methods.

The study of the regulation of NLRP3 inflammasomes 
through diet and fatty acid-induced obesity will open up 
new ways to treat or alleviate the complications of meta
bolic inflammatory diseases. The improving knowledge of 
the pathophysiologic mechanisms of podocyte injury in 
ORG could bring the development of new antiproteinuric 
therapy to slow down the progression of ORG. Therefore, 
based on these visions, people hope to find more effective 
weight-loss drugs such as Chinese herbal medicines 
(CHMs).

TCM is based on the principles of the “holism” and 
“treatment based on syndrome differentiation.” Clinical 

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021:14                                               https://doi.org/10.2147/DMSO.S334199                                                                                                                                                                                                                       

DovePress                                                                                                                       
4375

Dovepress                                                                                                                                                              Wei et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1 The Pathway in the Podocyte Injury

Author 
(Year)

Study Material Intervention Signal 
Pathway

Ref.

Cell Culture Animal Model In vitro In vivo

Xu et al 

(2021)

MPC5 transfected with siRNAs against 

adiponectin

6-week-old male C57BL/6J 

mice

1. PA 

2. MCC950 

3. PDTC

HFD ROS/NF-κ 
B/NLRP3

[41]

Control group: MPC5 transfected with 

negative control siRNAs

Shi et al 

(2020)

2-month-old male PPKO mice HFD PKA/PTEN/ 

cofilin

[56]

Zhao 

et al 

(2019)

MPC transfected with mouse CD36 siRNA 

or control siRNA-A

6-week-old male C57BL/6J 

mice

Leptin HFD CD36/ 

PPARα/ 

NLRP3

[57]

Control group: MPC transfected with 

control siRNA-A

Ye et al 

(2019)

C57BL/6 J male mice 1. HFD 

2. HFD +Liraglutide

TNF-α/NF-κ 
B /MAPK

[58]

Li et al 

(2019)

8-week-old male ob/ob mice 1.HFD 

2.HFD +Pioglitazone

PPAR γ/ 

AMPK

[59]

Control group: C57BL/6 (wild- 

type) mice

Zhu et al 

(2018)

MPC 6-week-old male C57BL/6J 

mice

1.Aldosterone 

2.Aldosterone + 

eplerenone 

3.Eplerenone 

4.Aldosterone 

+DKK1 

5.DKK1

1.HFD 

2.HFD +Spironolactone

Wnt/β- 

catenin

[60]

Zhao 

et al 

(2018)

4-week-old male Sprague 

Dawley rats

HFD Cx43 [61]

Hou et al 

(2018)

MPC 5-week-old male C57BL/6J 

mice

1.Leptin 

2.Leptin +A438079 

3.A438079 

4.Leptin +KN-62 

5.KN-62

HFD P2X7R/ 

NLRP3

[62]

Guo et al 

(2018)

5-week-old male C57BL/6 

mice

1.HFD 

2.HFD+LXA4 

3.HFD+Boc-2 +LXA4

NF-κB / 

ERK/p38 

MAPK

[63]

Guo et al 

(2018)

MPC5 Male C57BL/6 mice 1.PA 

2.PA+GLP-I

1.HFD 

2.HFD+GLP-1

PI3K/AKT [64]

Wang 

et al 

(2016)

Human podocytes 8-week-old C57BL/6J mice 1. High glucose 

2. High glucose 

+INT-777

1.LFD 

2.HFD 

3.HFD+ INT-777

TGR5 [65]

Mouse podocytes (line AI) 8-week-old TGR5 KO Mice

Human proximal tubules 8-week-old FXR KO Mice

(Continued)
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trials and experimental studies have shown that CHMs 
have a great beneficial effect on the reduction of protei
nuria and improvement of renal function. Several studies 

on the treatment of ORG with CHMs have been taken out 
to clarify the possible mechanisms of CHMs. (Table 2) 
However, most of these studies are animal experiments or 

Table 1 (Continued). 

Author 
(Year)

Study Material Intervention Signal 
Pathway

Ref.

Cell Culture Animal Model In vitro In vivo

Luo et al 

(2016)

HK-II cells In the first study: 4-week- old 

C57BL/6J male mice

PA In the first study: 

1. ND+ Zn(10 mg 

/30 mg/ 90 mg) 

2.HFD+ Zn(10 mg 

/30 mg/ 90 mg)

P38 MAPK [66]

In the second study: 28-week- 

old C57BL/6J male mice

In the second study: 

HFD+ Zn(10 mg /30 mg/ 

90 mg)+SB203580

Fang et al 

(2015)

MPMs Male C57BL/6 mice PA 1. HFD 

2. HFD+ Curcumin 

(50 mg/kg) 

3. HFD+ L2H17 (20 mg/ 

kg)

NF-κ B / 

MAPK

[67]

Renal tubular epithelial SV40 cells

Yan et al 

(2013)

Glomerular mesangial cell strain HBZY-1 2-month-old male Wistar rats 1.GSK 0660 

2.GSK 0660 + 

SB239603

HFD ad libitum P38 MAPK [68]

Murine 3T3-L1 preadipocytes

Solini 

et al 

(2013)

MPC transfected with P2X7R silenced 

siRNA

6 -week-old male P2X7R−/− 
C57BL/6 mice

Lipopolysaccharide 

+ BzATP

1. HFD 

2. NFD

P2X7R/ 

NLRP3

[69]

Control group: MPC transfected with 

a non-specific, scrambled sequence

6-week-old male wild-type 

C57BL/6 mice

8-week-old C57BL/Ksj db/db 

diabetic mice

Abbreviations: MPC5, immortalized murine podocyte clone 5 cell line; MCC950, an NLRP3 inhibitor; PDTC, pyrrolidine di-thiocarbamate, an inhibitor of NF-κ B; PA, 
palmitic acid; HFD, high-fat diet; PKA, protein kinase A; PTEN, phosphatase and tensin homolog; PPKO, podocyte-specific PTEN knockout; AMPK, AMP-activated protein 
kinase; PPAR γ, peroxisome proliferator-activated receptor-γ; DKK1, Dickkopf-related protein 1; LXA4, lipoxin A4 (an endogenous lipid mediator); GLP-1, Glucagon-like 
peptide-1; TGR5, G protein-coupled bile acid receptor; INT-777, TGR5 agonist; LFD, low-fat diet; SB203580, P38 MAPK inhibitor; MPMs, mouse peritoneal macrophages; 
GSK 0660, a PPAR δ inhibitor; SB239603, a p38 MAPK inhibitor.

Table 2 The Possible Mechanisms of CHMs in ORG

Year CHM Effects Mechanisms Ref.

2021 Emodin Reverse the down-regulation of PPAR-γ and GLP-1R PPAR-γ /GLP-IR [80]

2021 Curcumin 

analogue C66

Inhibit HFD-induced TGF-β, JNK or MMP-9 NF-κ B/JNK [81]

2018 Tribulus 

terrestris

Decrease energy consumption and the hemorrhagic tendency, and improve the response 

to acute phase reactants and immunity

PYC↓, C1QBP ↑, 

KNT1↑
[82]

2018 Coptidis 

Rhizoma

Decrease the levels of proinflammatory cytokines, down-regulated gene expression of 

NLRP3 inflammasome and NF-κB activity

NF-κ B/NLRP3 [83]

2012 Rhein Antagonize LXR and regulating the expression of UCP1 in BAT LXR/UCP1 [84]

Abbreviations: PPAR-γ, peroxisome proliferator-activated receptor γ; GLP-1R, Glucagon-Like Peptide-1 Receptor; MMP-9, matrix metalloproteinase-9; PYC, pyruvate 
carboxylase; C1QBP, Complement Component 1 Q Subcomponent-Binding Protein; KNT1, T-kininogen 1; LXR, Liver X receptor; UCP1, uncoupling protein 1; BAT, brown 
adipose tissue; ↓, decreased; ↑, increased.
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in vitro cell studies, and there are no reports on clinical 
applications. Therefore, its actual clinical efficacy and 
safety need to be verified by large-scale randomized con
trolled trial (RCT).

Conclusion
ORG is a manifestation of early metabolic disorders, as the 
course progresses, patients are likely to suffer from the 
metabolic syndrome. Treatment should be intervened as 
early as possible in obesity to avoid further damage to 
renal function which eventually lead to irreversible 
lesions. With in-depth research on obesity behavior, 
genetic background, and pathophysiological factors, as 
well as the complex pathological mechanisms of metabo
lism and podocyte damage in ORG, it is hoped that there 
will be more effective treatments for obesity and its related 
complications. CHMs are a potential treatment for ORG. 
There is an urgent need to further study the mechanism 
and conduct good randomized controlled trials to evaluate 
the effectiveness and safety of TCM.
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