ORIGINAL RESEARCH Cinobufagin Suppresses The Characteristics Of Osteosarcoma Cancer Cells By Inhibiting The IL-6-OPN-STAT3 Pathway

This article was published in the following Dove Press journal: Drug Design, Development and Therapy

Chuan Zhang* Wu-Yin Li

Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China

*These authors contributed equally to this work

Correspondence: Kun Ma; Wu-Yin Li Luoyang Orthopaedic-Traumatological Hospital, 82 QiMing Road, Luoyang, Henan 471002, People's Republic of China Email makun@lyzhenggu.cn; lyzg090915@hotmail.com

Background: Current clinical treatments for ost sarcoma e limit disease recurrence like cells have been proposed to and primary or secondary chemoresistance. Can r ste rence a chemor stance of osteosarcoma. facilitate the initiation, progression, re-Furthermore, previous studies have rethat IL-6pathway is overexpressed in proliferation, apoptosis, invasion/migration, various types of cancer and contributes to c chemoresistance and modulation stemness fe. res

Aim: To examined the effect of cinobufagin on cancer progression and modulation of stemness investigated e molecular mechanisms underlying such effects. features in osteosarcoma, an ma cell line U2OS/MG-63 were recruited in this study. Cell Methods: Human osteosat proliferation, mi ntion, and sion ere determined by MTT assay, colony formation g as, and cell invasion assay respectively. Its effect on stemness was assay, wound heal assessed by flow d y and nammosphere formation. The protein expression levels of om etected by Western blot. The xenograft model, immunofluorescence related ns wer ing and mmuno tochemistry were used to determine the effect of cinobufagin on experiment. origen

We found that cinobufagin suppressed the viability of U2OS/MG-63 spheroids/ Rest in a time-and dose-dependent manner. Notably, cinobufagin had no effect on the parent c viability of AFOB 1.19 cells. Moreover, cinobufagin induced apoptosis, increased the width younds, reduced invasive osteosarcoma spheroids/parent cell numbers and reduced EMT phenotype and OPN levels in U2OS/MG-63 spheroids as well as U2OS/MG-63 parent cells lines. Noticeablely, we found that OPN levels were higher in spheroids group than that in parent cells. In addition, cinobufagin ameliorated the proportion of CD133-positive cells, the size of spheroids and Nanog, Sox-2 and Oct3/4 protein levels. Our in vivo experiments showed that cinobufagin consistently reduced tumor volume, the expressions of OPN, Sox-2, Oct3/4, Nanog and p-STAT3 by the immuno histochemistry staining as well as CD133 expression in tumor tissues by immunofluorescence analysis. From a mechanistic point of view, cinobufagin was shown to inhibit IL-6-OPN-STAT3 signaling pathway. Exogenous IL-6/OE-OPN/overexpression STAT3 attenuated the induction of cinobufagin-mediated apoptosis and the suppression of stemness properties respectively.

Conclusion: Collectively, our data demonstrated that cinobufagin inhibited the viability and tumorigenesis capability of osteosarcoma cells by blocking IL-6- OPN-STAT3 signaling pathway. Cinobufagin may therefore represent a promising therapeutic agent for osteosarcoma management.

Keywords: osteosarcoma, cancer stem cells, cinobufagin, OPN, IL-6-STAT3 signaling pathway

CC 0 S Colly Zhang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Introduction

Osteosarcoma is one of the most common malignant bone tumors worldwide, occurs primarily in children and adolescents, and affects 1-3 individuals per million.¹ The best form of treatment to improve the 5-year survival rate of patients with osteosarcoma is adjuvant chemotherapy, including cisplatin (cis-dichlorodiammine platinum), adriamycin, and localized surgery. Nevertheless, the most significant limitations to the current forms of clinical management for osteosarcoma are disease recurrence and either primary or secondary chemoresistance.² Consequently, there is an urgent need to identify new therapeutic options for the treatment of osteosarcoma. The existing literature shows considerable acceptance of the fact that cancer stem cells (CSCs) play a key role in the development and progression of cancer. It is evident that these cell types are the source of increasing attention amongst researchers with regards to their potential as a novel therapeutic option.

CSCs are small subpopulations of cells with several key properties, including self-renewal, differentiation, increased rates of tumorigenesis, and sustained tumor growth. These are properties that traditional cancer therapies are not able to fully eradicate.³ Consequently, the development of CSC-targeted therapies has the potenth to prevent tumor recurrence and increase the survival rate of patients with osteosarcoma.

Osteopontin (OPN), a phosphorylate glycopotein, binds to cell surface components, such as chegrins. CD44, growth factor/receptors and proteases OPN is involved in many biological protesses such as the otivation of regulatory and structural proteins, we regulation of metastatic spread, as we as the manipulation of tumor phenotype.^{5,6} Elevated OPN 10 els participated in many cancers, including breast, constate, live, cervical, lung and osteosarcoma⁷ Houever, constate, live, cervical, lung and and cancers em cello of osteosarcoma is still obscure.

Signal the sciecer and activator of transcription, (STAT)3, is a cycenlasmic transcription factor that can be activated by a number of different cytokines and growth factors, including interleukin (IL)-6, EGF, insulin-like growth factor, hepatocyte growth factor, colony-stimulating factor-1, and platelet derived growth factor.¹⁴ Previous research has demonstrated that while overexpression of the IL-6-STAT3 pathway contributes to cell survival, apoptosis, invasiveness/migration and angiogenesis, it also enhances the stemness features and chemoresistance of breast cancer, non-small cell lung cancer, colorectal

cancer, and ovarian cancer.^{15–19} Further research has demonstrated that the attenuation of STAT3 phosphorylation promotes apoptosis and chemosensitivity in MG-63, U2OS and HOS cells.²⁰ However, the precise role of the IL- 6/STAT3 pathway in modulating the stemness properties of osteosarcoma has yet to be elucidated.

"Chan su" is an established form of traditional Chinese medicine (TCM) in China and other countries in the Asia-Pacific region, containing bufalin, resibufogenin, and cinobufagin.²¹ Chan Su, and its derivatives, are widely utilized for the treatment prious types of cancer, including leukemia, hepercellular ncer, lung cancer, prostate cancer, colon, cancer, and cervical cancer.^{22–27} Previous research, including work-erformed in our own laboratory, a vealed that chebragin and its analogues induce apoposis in osteosarcoma cells by modulating the POS/JNK, 8 path ay, the Notch pathway and the $\int \beta A^{\beta} \beta NF - \kappa B = 1$ (ay in a mitochondrialdependent manner. In addition, a study conducted by Chueb revealed the bufalin inhibited migration and inverton in human osteosarcoma U-2OS cells by suppressing the MMP-2 and ERK/JNK signaling pathways.³²

In pother st dy, Chang et al highlighted the fact that inobufagm, repressed the stemness features of osteosarcolar the via mir-148.³³ Data also shows that the elevation of OPN expression plays a role in osteosarcoma and therefore represents a potential biomarker for osteosarcoma.^{5,6} dowever, the role of OPN in modulating the traits of osteosarcoma spheroids has yet to be investigated. In the present study, we showed that cinobufagin suppressed cell viability, induced apoptosis, suppressed invasion/migration, and inhibited stemness features in osteosarcoma U2OS/ MG-63 cells, both in vitro and in vivo. In addition, we revealed, for the first time, that the overexpression of OPN, and the hyperactivation of the IL-6-STAT3 pathway may be crucial for the cinobufagin-mediated suppression of stemness features and the induction of apoptosis.

Materials And Methods Cell Culture And Reagents

U2OS and MG-63 cells were purchased from Shanghai Institute of Biochemistry and Cell Biology (Chinese Academy of Sciences, Shanghai, China) and cultured in DMEM containing 10% fetal bovine serum (FBS), 100 µg/mL of penicillin and 100 µg/mL of streptomycin at 37°C in a 5% CO2 incubator. The human normal osteoblastic cell line, hFOB 1.19, was maintained in DMEM/F-12 (Gibco) supplemented with 10% FBS (Gibco) and 0.3 mg/ mL of geneticin (G418; Gibco) at 37°C in a humidified atmosphere containing 5% CO2.

MTT Assay

Cells were maintained in 96-well flat-bottom microtiter plates overnight at a density of 1×104 cells/well and treated with cinobufagin at concentrations of 0, 10, 20, 40, and 80 nM for 24, 48, and 72 h. Subsequently, 20 µl of MTT solution (5 g/L) was added to the cells, followed by incubation for 4 h at 37°C. An automatic multi-well spectrophotometer was then used to calculate the absorbance value of each well at 570 nm. The rates of inhibition on U2OS/MG-63 adherent cells and U2OS/MG-63-derived spheroids, as well as the proliferative rate of hFOB1.19 cells, were then calculated according to the following formula: (1 - experimental absorbance value/control absorbance value) × 100%.

Sphere For Mation Assay

Sphere formation assays were carried out on cells from the third and fourth passages of cell culture. Osteosarcoma spheroids were cultured in a specialized growth medium (Celprogen, Inc, Torrance, CA, USA) containing supplement (Invitrogen), 2% B27 supplement (Invitro en), 20 ng/mL of human platelet growth factor (Signa-Aldri 100 ng/mL of epidermal growth factor (J troge and 1 antibiotic-antimycotic (Invitrogen). Ostasarcor onheroid and hFOB 1.19 cells were cultured at 37 a humidified atmosphere of 95% air and 5% O2. Sphere were subsequently counted by inverse micro, ppy and cer colonies with a diameter > 50 μ were measured

FACS Analys

Osteosarcome cells we charvest a with fresh 0.25% trypsin solution (Sign)-Aldne) and suspended in phosphatebufferer saline (PPS). Cells were blocked on ice for 15 min a Nasubsequently labelled with PE anti-human CD133 antibuly (BioLegend) for 60 min. The cells were then washed twice with PBS and maintained on ice until analysis. Expression levels were determined by flow cytometry (FACS Calibur, BD Bioscience, USA) and data were analyzed using WinMDI software (Scripps Research Institute, La Jolla, CA,USA).

Western Blotting

Cells were washed in PBS and resuspended at room temperature. After incubation on ice for 30 min, cell lysates were centrifuged at 14,0009 ×g at 4°C. Protein concentrations were then measured using the Bradford protein assay using bovine serum albumin as a standard. Subsequently, membranes were incubated overnight at 4°C with a range of primary antibodies (all at a dilution of 1:1000) raised against the following molecules: phosphorylated- (p-) STAT3 or caspase 3 (Abcam, Cambridge, MA, USA); STAT3, GAPDH, α -SMA, E- cadherin (E-cad), vimentin, Nanog, OCT4 and SOX2 (Cell Signaling Technology, Danvers, MA, USA). Finally, membranes were incubated with secondary antibodies (1:5000) to room temperature for 2 h. GAPDH was used as coading optrol.

Transwell Assay

Cells were seeded in J-mm diameter tresswell plates with polycarbonate filte. (with pore size of 8-μm). The upper and lower compartment of the places were separated by a filter coat th 25 mg V rigel that formed a reconstituted vasement membrane at 37°C. After treatment with of cinoble gin for 48 h, cells were seeded into 0-90 e upper well, while the lower well was filled with MEM contining 10% FCS. After incubation in the prece of 5% CO2, cells were fixed for 30 min in 4% de and stained for 15 min. Non-migrating form were then removed from the upper surface of the transwell using a wet cotton swab, and the number of cells that had migrated or invaded the bottom surface of the filter was determined. For each well, six evenly spaced fields of cells were counted using an inverted phase-contrast microscope.

Wound Healing Assay

Cells were seeded in six-well plates at a density of 5×105 cells/well in DMEM supplemented with 10% FBS. Twelve hours after seeding, cells were treated with IL-6 (20 μ M) or an equivalent volume of DMSO for 48 h. A scratch was subsequently made in the cell monolayer, and the rate of wound closure was observed at 24 h and 48 h. The resultant data were analyzed using Image J software.

Immunofluorescence Staining

Tumor tissues were fixed in 4% paraformaldehyde at 4 °C, and then frozen sections were permeabilized with 0.5% Triton X-100 for 10 min at room temperature, washed with PBS, and incubated with primary antibodies against CD133 (1:500, Proteintech Group, Chicago, USA) overnight, followed by fluorescence-tagged secondary antibodies against rabbit IgG (1:500).

4077

Dovepress

Plasmid Transfection And Knockdown

The plasmid was transiently transfected into U2OS/MG-63 spheroids using Lipofectamine 3000 in accordance with the manufacturer's instructions. Twenty-four hours after transfection, we added cinobufagin and incubated the cells for 48 h.

Tumor Xenografts

All the studies were approved by the medical ethical committee of Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital. Animal care and experiments were carried out according to the guidelines of the Institutional Animal Care and Use of Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital (The interests of animals should be fully considering; The experimental animals should be treated kindly; To prevent or reduce the stress, suffering and injury of the animals; To respect the animal life, stop the barbaric act and take the least painful method to dispose of the animal). Twenty 4-6 week-old female BALB/c mice were purchased from the Shanghai Laboratory Animal Center (Shanghai, China). Osteosarcoma cells $(2 \times 106 \text{ cel})$ in 200 µl of PBS) were subcutaneously injected in each mouse. After 2 weeks, the mice were randomly divided into four groups (three treatment Jou and one control group; n = 5 per group). The three reatment groups received 10, 20, and 40 mg r of AMOUN fagin every 3 days for 4 weeks thereas control group received an equal volume is saline. Lary 3 days, we determined the body weight f each mouse, and measured the length and width of tuners. In addition, we calculated the nor volume using the following formula: volume = 11dth2 ength). After 4 re sa ifice weeks, the m Tumors were then 5 excised and weighe

Immunohiste hemistry

Immunohistochemical staining was performed to investigate OPN, Nanog, Sox-2, Oct3/4 and p-STAT3 protein levels. The tumor tissue was embedded in paraffin and then cut into 4 μ m sections which were then heated overnight at 60°C. Next, the sections were dewaxed in xylene and sequentially rehydrated with100, 95, 80 and 75% alcohol baths. The slides were then incubated overnight with primary antibodies to CD133 and p-STAT3 at 4°C. The following morning, the sections were incubated with appropriate secondary antibodies for 1 h at 37°C. Data were then analyzed using a light microscope (Olympus Corporation).

Statistical Analysis

Data are presented as means \pm standard deviation (SD). Differences between groups were analyzed using the Student's *t*-test. Statistical analyses were performed using SPSS software version 16.0 (SPSS, Inc.). P < 0.05 was considered to indicate statistical significance.

Results

Cinobufagin Suppressed Coll Prolier Ation In Osteosa coma Cellovines And Had No Effect Co. Normal Human Osteoblastic nFOB 19 Cells

To investige the fect of cincufagin on the viability of MG-63/U2OS cells, treated cells with 0-80 nM of cinob agin for 0-72 h and tested their viability using 3-(4,5)limethyl-2-thiazolyl)-2,5-diphenyl- 2H-tetrazolium bron de (MTT) says. As shown in Figure 1A and B, and as pected cinobufagin gradually reduced the growth both parent cells and spheroids in a dose- and time-Jenus, manner (P < 0.05). The suppressive effect of cinobufagin was generally higher in the U2OS/MG-63 therent group of cells than in the corresponding group of U2OS/MG-63 spheroids. However, there was no significant effect on the viability of hFOB 1.19 cells (Figure 1C).

Cinobufagin Induced Apoptosis In Osteosarcoma Spheroids And Parent Cells

Hyperactivated proliferation and chemoresistance are the hallmarks of CSCs. As shown in Figure 2A and B, we observed that cinobufagin increased the apoptotic ratio of spheroids and parent cells in a dose-dependent manner. Chang et al previously revealed that bufalin induced the expression of cleaved caspase-3 in CIOS-CSCs in a time-dependent manner.³³ In our research, compared with the untreated group, the group of cells treated with 20 nM cinobufagin showed significant upregulation of caspase-3, cleaved PARP and Bax (P < 0.05). As shown in Figure 2C, The expression of Bax, caspase-3 and cleaved PARP was highest in the 80 nM cinobufagin group, indicating that cinobufagin induced mitochondrial-dependent cell death in U2OS/MG-63 derived spheroids/parent cells. In the 80nm

Α

Figure 1, hobufaging the trend proliferation in osteosarcoma cell lines. (A) Cell viability of U2OS CSCs/parent cells treated with 0–80 nM of cinobufagin for 24, 48 and 72 h, as determined by the analysis. *P < 0.05 vs. control group. (B) Cell viability of MG-63 spheroids/parent cells treated with 0–80 nM of cinobufagin for 24, 48 and 72 h, as determined by the analysis. *P < 0.05 vs. control group. (C) Cell viability of osteoblastic hFOB 1.19 cells treated with 0–80 nM of cinobufagin for 24, 48 and 72 h, as determined by MT valysis. *P < 0.05 vs. control group.

cinobufagin treatment group, the levels of Bax, caspase-3, and cleaved PARP, were all significantly higher in the parent cells than in spheroids (P<0.05). Furthermore, cinobufagin reduced the levels of Bcl-2 in osteosarcoma CSCs and parent cell lines in a dose-dependent manner (P<0.05). These findings agreed partly with Dass' opinion (P<0.05), at least in part.

Cinobufagin Inhibited The Migration/ Invasion Capacity And EMT Phenotype Of Cells

Previous research reported that CSCs can facilitate the migration and invasion of tumor cells. As shown in Figure 3A and B, the invasive ability of osteosarcoma cells generally decreased in a concentration-dependent

Figure 2 Cinobufagin induced apoptosis in osteosarcoma spheroids. (A, B) Apoptosis was measured by Annexin V-Figure (AV-FITC)/propidium iodide (PI) staining following the administration of 20 nM, 40 nM, and 80 nM of cinobufagin for 48 h. *P < 0.05 vs. controls (0 pterception). The levels of B Bcl-2, OPN, caspase-3 and cleaved PARP were determined by Western blotting analysis following the incubation of U2OS/MG-63 spheroids vg 20 nM, 40 nM, and 80 nM of cinobufagin for 48 h. GAPDH served as the loading control. *P<0.05 vs control group; *P<0.05 vs 80 nM.

manner. Moreover, we observed fewer invasive cells osteosarcoma parent cells than in corresponding CSCs. Furthermore, the administration of cinobufag ased the width of wounds in osteosarcoma c s (Figu . 3C and D). In the context of oncogenicity **b** JIOUY has been linked to the acquisition of tem cell-the properties via the downregulation of E-2 a a the upregution of vimentin.³⁴ As demonstrated in Figure 31, and F, the administration of cinobufagin definegulated the expression of α -SMA and vimentin in steosary na CSCs/parent cells but E-cad a dose-dependent upregulated the expression indical the cinobufagin has the manner. These adla suppress the mig. invasion capacity of potential to osteosarcom SC and the fore inhibit EMT (P<0.05).

Cinobufagin Attenuated Stemness Features In CSCs Derived From MG-63/ U2os In Vitro

As shown in Figure 4A and B, compared with the control group, the administration of cinobufagin resulted in a reduction in the number and size of spheroids in a dosedependent manner. CD133 has been proven to represent a reliable marker for stem-like properties in SAOS2, MG63, and U2OS cells.³⁵ In a previous study, Qu et al revealed exposure to melatonin may downregulate the proport of 133+ cells.³⁶

Peng et al also reported that treatment with 40 μ M of sveratrol reduced the expression of CD133, a surface marker of CSCs, in the spherical tumor colonies of MG-63 and MNNG/HOS cells.³⁷ As expected, the administration of cinobufagin reduced the proportion of CD133-positive osteosarcoma cells in a dose-dependent manner (Figure 4C and D). Similarly, the protein levels of genes related to self-renewal (Nanog, Sox-2 and Oct3/4) were decreased (Figure 4E and F). Collectively, these results indicated that cinobufagin suppressed the stemness properties of MG-63/U2OS spheroids in vitro.

IL-6 Rescued The Cinobufagin-Induced Repression Of Stem-Like Properties In Osteosarcoma CSCs

Dass and Choong³⁸ found that the reduced expression of OPN might cause a reduction in cell proliferation, tumor growth and the inhibition of osteosarcoma metastasis, thus suggesting that OPN plays a positive role in the development of osteosarcoma. Remarkably, we also observed that the expression of OPN (Figure 5A) was significantly

Figure 3 Cinobufagin inhibited the invasion/migration and EMT phenotype 205 1-6. ed spheroids/parent cells. (A. B) Transwell assays were used to detect the rate of invasion in U2OS/MG-63-derived spheroids/parent cell ndependent experiments were compared. *P < 0.05 vs. the corresponding parent cell a from i group. (C, D) Wound healing analysis was used to measure migratio U2OS/MG-63-derived spheroids/parent cells. Data from three independent experiments : rate were compared. *P < 0.05 vs. the corresponding pare ell group. **F**)The is of E-cadherin, vimentin, α -SMA, and OPN proteins. GAPDH was used as a loading e indepe control. Results are expressed as the mean ± SD of *P < 0.05 vs the corresponding parent cell group.

higher in the spheroid group the the parent sell group (P<0.05).

Next, we found the the administration of cinobufagin led to a reduction of the levels of IL-6, p-STAT3 (Tyr727) and p-STAT3 (Ser7e), one expression of OPN was also reduced into dosidepen ont promer (Figure 5B), indicating that we over expression of OPN, and the constitutive activation of the IL-0-0. AT3 pathway, may participate in the cinobufacin-induced regulation of stemness in osteosarcoma cells.

To further verify our hypothesis, we treated MG-63/U2OS spheroids with different concentrations of cinobufagin in the presence or absence of 20 μ g/mL IL-6. We found that cinobufagin-treated MG- 63/U2OS spheres were larger in size (Figure 5C and D) and had an increased proportion of CD133-positive cells in the presence of IL-6 (Figure 5E and F) than that in the absence of IL-6. Interestingly, the administration of cinobufagin also downregulated the levels of IL-6-stored OPN, p-STAT3 (Tyr727) and p-STAT3 (Ser705) in U2OS/MG-63 spheroids (Figure 5F). Furthermore, the addition of IL-6 attenuated the cinobufagin-induced restoration of the levels of Bax, caspase-3 and cleaved PARP, and restored the EMT phenotype. In contrast, pretreatment with si-IL-6 reduced the size of the U2OS/MG-63 spheroids (Figure 5H and I) and attenuated the number of CD133-positive cells (Figure 5J and K). As expected, si-IL-6 downregulated the expression of CD133, vim, a-SMA, and OPN. In the si-IL-6+cinobufagin group, we observed increased levels of Bax, Bcl- 2, caspase-3, E-cad and cleaved PARP, thus indicating that OPN was the downstream target of IL-6 in our experiments. Moreover, the overexpression of IL-6 was partly responsible for the retention of stemness features in osteosarcoma spheroids (P<0.05).

Figure 4 Cinobufagin suppressed stem-like properties in osteosarcoma spheroids in vitro. (A, B) The size of MC 1/U2OS spheroids. Light microscopy was used to measure the diameter of all spheroids > 50 μ m. Error bars represent the mean ± SD of three independence experiments. 0.05 vs. control group. (C, D) The proportion of CD133-positive cells was determined by flow cytometry analysis. Error bars represent the mean ± SD of three independence experiments. *P < 0.05 vs. control group. (E, F) The protein expression of genes related to self-renewal (CD133, Oct 3/4, Nanog, and Soc.) were determined in MG-63/U2OS spheroids by Western blotting analysis and densitometry. Data are expressed as the mean ± SD of three independent experiments. $^{\circ}$ < 0.05 vs. control group.

Overexpression Of OPN Contributed To The Maintenance Of Osteosarcoma CSCs

In the above experiments, we detected that JPN vels was higher in U2OS/MG-63 spheroid (Figure 5A). And cinobufagin treatment indeed d OPN dec levels(Figure 5B) and IL-6-elev d OPN ex ressions (Figure 5G). So, we suspected that we ther OPN could participate in cinobufact-modulated osteosarcoma CSCs features. As shown in Figure 6A and B, OE-OPN obviously upres lated spheroids were larger in in-treed MC 3/U2OS spheroids size than cinob in the absen OPN() *1*5). of O

Furtheneure, Or CDN attenuated the cinobufaginincreased the trans of Bax, caspase-3 and cleaved PARP, EMT phenotype (Figure 6C). Significantly, CD133, p-STAT3(Tyr705), p-STAT3(Ser727) expressions were also promoted by OE-OPN treatment. Equally, si-OPN aggravated the inhibitive effect of cinobufagin on the size of MG-63/U2OS spheroids (Figure 6D and E). Moreover, si-OPN offsetted cinobufagin-increased the levels of Bax, caspase-3,cleaved PARP,CD133, EMT phenotype (Figure 6F).

Apperactivation Of The STAT3 Pathway Facilitated The Maintenance Of Osteosarcoma CSCs

TAT3 and its downstream signaling cascades are considered to be critical regulators of tumorigenesis. Research has shown that STAT3 promotes the growth of tumors through a multi-step process by interacting with tumor cells and surrounding tumor-associated cells.¹⁴ In order to verify whether activation of the STAT3 pathway is involved in cinobufagin/IL-6 crosstalk and the modulation of stem-like properties in MG-63/U2OS CSCs, we performed rescue therapy. As shown in Figure 7A and B, the overexpression of STAT3 rescued the cinobufagin-reduced size of MG-63/U2OS spheroids (P < 0.05). However, the overexpression of STAT3 clearly increased the ratio of CD133-positive cells (Figure 7C and D). We also detected lower expression levels of Bax, caspase-3 and cleaved PARP, along with higher expression levels of CD133, Nanog, Sox-2 and Oct3/4, in the cinobufagin plus STAT3-overexpression group (Figure 7E). Combined with the above results (Figures 5 and 6), we suspected that IL-6 was the upstream modulator of OPN expression

Figure 5 The overexpression of IL-6 partly neutralized the effect of cinobufagin-diminished stem cell-like properties. (**A**) OPN levels in U2OS/MG-63 spheroids/parent cells as determined by Western blotting. GAPDH served as the loading control. *P < 0.05 vs. the corresponding parent cell group. (**B**) The expression of IL-6, p-STAT3 Tyr705 and p-JAK2 Tyr1007/1008 proteins in U2OS/MG-63 spheroids treated with cinobufagin. GAPDH was used as a loading control. Results are expressed as the mean \pm SD of three independent experiments; *P < 0.05 vs. control group. (**C**, **D**) The size of MG-63/U2OS spheroids in the presence of IL-6. Spheroids were only measured when the diameter was > 50 µm. Error bars represent the mean \pm SD of three independent experiments. *P < 0.05 vs. control group; &P < 0.05 vs. cinobufagin group. (**E**, **F**) Flow cytometry was used to measure the proportion of CD133-positive cells in the presence of IL-6. *P < 0.05 vs. control group; &P < 0.05 vs. cinobufagin group. (**G**) Western blotting was used to determine the protein levels of p-STAT3 Tyr705, p-JAK2 Tyr1007/1008, Bax, Bd-2, caspase-3 and cleaved PARP, OPN, and CD133, in MG-63/U2OS spheroids with or without 20 µg/mL of IL-6. GAPDH was used as a loading control. Results are expressed as the mean \pm SD of three independent experiments; *P < 0.05 vs. control group; &P < 0.05 vs. contr

Figure 6 Overexpress of OPN contributed to the maintenance of osteosarcoma CSCs. (**A** and **B**)The size of MG-63/U2OS spheroids in the presence of OE-OPN. Spheroids were measured on the diameter was > 50 μ m. Error bars represent the mean \pm SD of three independent experiments. *P < 0.05, vs. control group; &P < 0.05, vs. cinobufagin group. (**C**) We tern blotting was used to determine the protein levels of p-STAT3 Tyr705, p-JAK2 Tyr1007/1008, Bax, Bcl-2, caspase-3 and cleaved PARP, CD133 in MG-63/U2OS spheroids with or without OE-OPN. GAPDH was used as a loading control. Results are expressed as the mean \pm SD of three independent experiments; *P < 0.05, vs. control group; &P < 0.05, vs. cinobufagin group. (**D** and **E**) The size of MG-63/U2OS spheroids in the presence of si-OPN. Spheroids were measured when the diameter was > 50 μ m. Error bars represent the mean \pm SD of three independent experiments; *P < 0.05, vs. control group; &P < 0.05, vs. cinobufagin group. (**F**) Western blotting was used to determine the protein levels of p-STAT3 Tyr705, p-JAK2 Tyr1007/1008, Bax, Bcl-2, caspase-3 and cleaved PARP, CD133 in MG-63/U2OS spheroids with or without si-OPN. Spheroids were measured when the diameter was > 50 μ m. Error bars represent the mean \pm SD of three independent experiments. *P < 0.05, vs. control group; &P < 0.05, vs. cinobufagin group. (**F**) Western blotting was used to determine the protein levels of p-STAT3 Tyr705, p-JAK2 Tyr1007/1008, Bax, Bcl-2, caspase-3 and cleaved PARP,CD133 in MG-63/U2OS spheroids with or without si-OPN. GAPDH was used as a loading control. Results are expressed as the mean \pm SD of three independent experiments; *P < 0.05, vs. cinobufagin group. (**B** or 0.5, vs. cinobufagin group.) (**B** or 0.5, vs. cinobufagin group.)

and that STAT3 was the downstream modulator of OPN. Overall, the toxic effect of cinobufagin on MG-63/U2OS

spheroids was attributed to down-regulation of the IL-6-OPN-STAT3 pathway.

Figure 7 Hyper TAT3 path facilitated the maintenance of stemness features in MG-63/U2OS spheroids. (A, B) The size of MG-63/U2OS spheroids of th essed. Sp when STAT3 overe ere measured when the diameter was > 50 μ m. Error bars represent the mean \pm SD of three independent experiments. *P < 0.05 vs. co a group; & < 0.05 vs. c afagin group. (C, D) Flow cytometry was used to determine the proportion of CD133-positive cells in the presence or absence of *P < 0.05 vs. control group; &P < 0.05 vs. cinobufagin group. (E) Western blotting was used to determine the protein levels of p-STAT3 STAT3-0 pressin Tyr705 and 12 1007/1000, 🗤 🛪, Bcl-2, caspase-3, cleaved PARP, CD133, Nanog, Sox-2, and Oct3/4 in MG-63/U2OS spheroids with or without STAT3-overexpressing plasmids. GAPL vas used as a loading control. Results are expressed as the mean \pm SD of three independent experiments; *P < 0.05 vs. control group; &P < 0.05 vs. cinobufagin group.

Cinobufagin Suppressed The Tumor Igenesis Of MG-63/U2OS Spheroids, Along With Stemness, Apoptosis And Protein Expression Via The IL-6-OPN-STAT3 Pathway In Vivo

Finally, we investigated whether cinobufagin could prevent osteosarcoma-derived CSC progression in vivo. Tumor-bearing animals were randomly divided into four groups, followed by the administration of 10, 20, and 40 mg/kg of cinobufagin. As shown in Figure 8A, cinobufagin suppressed tumor growth in mice bearing osteosarcoma-derived CSCs. In addition, tumor volume (Figure 8B) in cinobufagin-treated mice was significantly reduced compared with those observed in the control group, particularly at doses of 20 and 40 mg/kg. The

Figure 8 Cinobufagin inhibited the growth of osteosarcoma xenografts in vivo. (A, B) Changes in tumor volumes in response to different treatments (vehicle, 10, 20, and 40 mg/kg of cinobufagin) in U2OS cells in a xenograft model. Cinobufagin was administered at doses of 10, 20, and 40 mg/kg every 3 days for 4 weeks. Data represent the mean \pm SD of the tumor volume and weight of five mice per group. (C, D) TUNEL staining assays were used to estimate the proportion of apoptotic cells in tumor tissues derived from nude mice bearing cinobufagin-treated osteosarcoma-derived CSCs. *P < 0.05. (E) Immunofluorescence staining of CD133 levels in tumor tissues derived from mice bearing cinobufagin-treated osteosarcoma-derived CSCs. *P < 0.05. (E) Immunofluorescence staining of cD133 levels in tumor tissues derived from nude mice bearing cinobufagin-treated osteosarcoma-derived CSCs. *P < 0.05. (G) Immunofluorescence staining active from nude mice bearing cinobufagin-treated osteosarcoma-derived CSCs. *P < 0.05. (G) Immunofluorescence staining of CD133 levels of OPN, Nanog, Sox-2, Oct3/4 and p-STAT3.Magnification, x400.

TUNEL assay demonstrated that cinobufagin caused a significant increase in the proportion of apoptotic cells in tumor tissues and that this effect occurred in a dosedependent manner (Figure 8C and D). These observations were further confirmed by Qrt-PCR analysis (Figure 8E) and immunofluorescence revealed markedly decreased CD133 expression in tumor tissues treated with cinobufagin (Figure 8F). Moreover, immunohistochemistry analysis showed that the protein levels of OPN, Nanog, Sox-2, Oct3/4, and p-STAT3 were downregulated (Figure 8G).

Discussion

Cancer is a multifactorial disease associated with hyperactivated patterns of cell growth. The common consensus of opinion is that cancer stem cells play a crucial role in the uncontrolled proliferation of tumor cells and chemoresistance.³⁹ Previous research conducted in our laboratory, and by other groups, showed that cinobufagin suppressed cell proliferation and induced apoptosis in osteosarcoma cells by inactivating Notch signaling and by downregulating MicroRNA-221 and the ROS/JNK/ p38 signaling pathway.^{28–30} However, prior to this study, evidence regarding the role of cinobufagin in modulating the differentiation and stemness features of osteosarcom CSCs was limited.

In a previous study, Chang et al reported that burels inhibited the differentiation and proliference of hMG66 derived CSCs and induced cleaved respase-7 en CLOs CSCs, respectively.^{33,40} In the ressent *any*, we found that cinobufagin efficiently interited the preliferation of U2OS/MG-63 spheroids and parent cells (Mgure 1A and B). Furthermore, mobufagin hanced apoptosis in U2OS/MG-63 spheroids and parent cells and elevated the protein levels of conase-7 cleaved PARP, Bax and Bcl-2 (Figure 2A–C)

Chuebe cal reported that by a in inhibited the invasion and migratics of hum re-esteosarcoma U2OS parent cells.³² We detected a upper number of invasive cells (Figure 3A and B) and increased the width of wounds(Figure 3C and D) in osteosarcoma parent cells than in corresponding CSCs which implied that cinobufagin possessed the ability to suppress the invasion/migration of osteosarcoma spheroids/parent cells. Moreover, we observed that levels of vim and a-SMA were gradually reduced as the expression of E-cad increased (Fg3EF); this was indicative of stem cell-like properties. The dimensions of spheroids(Figure 4A and B), the proportion of CD133-positive cells(Figure 4C and D), as well as stemness marker protein levels(Figure 4E and F) were also

downregulated in response to cinobufagin-treatment. Collectively, these results suggested that cinobufagin induced apoptosis, repressed EMT and reduced the stemness properties of spheroids derived from U2OS/MG-63 cells.

Previously, Ouyang et al found that osteopontin promoted cancer cell drug resistance and that invasion was associated with a poor outcome in patients with advanced non-small-cell lung cancer.⁴¹ We therefore hypothesize that OPN may participate in the regulation of stemness features in U2OS/MG-63 spheroids as well as the progression of cinobufagin-suppressed stempess in osteosarcoma spheroids.

Numerous environmental inditions and nulti-step processes are associated with the innution and evelopment of tumors.^{42,43} Previou research has been that levels of IL-6 were increased in the serum of patients with osteosarcoma Qin e. further ported that IL-6 acts as a major v am molecu, that triggers the induction of neoplastic OPN. In another study, Uchibori et al showed the upstream mediator responsible for pregulating OPN.⁴⁶ Remarkably, we observed that OPN xpression ves higher in spheroids than in parent cells gure 5A. e also found that cinobufagin also reduced on of IL-6, p-STAT3 Tyr705, p-STAT3 Ser727 the en OPN levels in spheroids/parent cells (Figure 5B). Figure 5C-F show that the addition of IL-6 impaired the cinobufagin-mediated suppression of spheroid size, the proportion of CD133-positive cells, and reduced the expression of stemness markers. However, si-IL-6 and cinobufagin treatment synergistically inhibited spheroid size, the proportion of CD133-positive cells, as well as the expression of stemness markers (Figure 5G-L), thus proving that IL-6 plays a role in the mechanism by which cinobufagin modulates the stemness of osteosarcoma spheroids.

However, exogenous IL-6 and si-IL-6 up/downregulated OPN levels in a similar manner (Figure 5F and K) which indicated that IL-6 acts as an upstream molecule to trigger an elevation in OPN levels. In contrast, Wang et al observed that IL-6 enhanced cancer stemness and promoted the metastasis of hepatocellular carcinoma by upregulating the expression of osteopontin. It is possible that the mechanisms of mutual adjustment between IL-6 and OPN differs in different cell types.

OPN has been shown to exert a positive effect on the modulation of stemness traits in hepatocellular carcinoma, lung cancer, colorectal cancer, and pancreatic cancer.^{47–50} Figure 6 shows that OE-OPN neutralized the cinobufagininduced reduction in spheroid size and p-STAT3(Tyr727) along with p-STAT3(Ser705), Bax, Bcl-2, caspase-3, cleaved PARP, Nanog, Sox-2 and Oct3/4 levels. We also found that si-OPN plus cinobufagin treatment synergistically downregulated the expression of these indicators which suggested that OPN participates in the cinobufagin-induced suppression of stemness features in osteosarcoma spheriods. Our results also indicated that STAT3 acts as a downstream target for OPN in osteosarcoma spheroids/parent cells (Figure 6C and F). In a previous study, Behera et al reported that activation of JAK2/STAT3 signaling by OPN promoted tumor growth in human breast cancer cells; these previous data were in accord with our present data.

Generally, IL-6 is known to modulate the self-renewal of stem cells by phosphorylating the STAT3, MAPK and Akt signaling pathways.^{51–54} Other research has shown that both constitutive and IL-6-inducible activation of STAT3 (Tyr705) and JAK2 can occur in osteosarcoma.55 In agreement with the opinion of Peng et al,²⁷ Figure 7 shows that the overexpression of STAT3 offset the cinobufagin-induced reduction in CD133-positive cell ratios and the dimension of spheroids as well as the cinobufagin-induced increase in the expression of Bax, caspase-3, cleaved PARP, vimentin and α -SMA, and the lower levels of Bcl-2 and E-cad. Our studies in nude mice furth confirmed the effect of cinobufagin in vivo: the reduce tumore volume(Figure 8A and B), the increased optotic ratio(Figure 8C and D), the CD133 fluresce . expr sion (Figure 8E and F), the downregulated immunohist istry levels of OPN, Nanog, Sox-2, 2, 3/4, o-STAT3 (Figure 8G). Our data suggest that obufagin a ved the progression of cancer and reduced steepess properties in osteosarcoma by downreg ating the N-OPN-STAT3 pathway.

ch J a some limits. No data However, our res en OPV expression and the showed the cross ¹k bei clinicopathol steosarcoma patients. c fe ures CAT3 pathway exerted the positive Whether K 5-OPN effect on mod on of osteosarcoma spheroids stemness comfirmation. More efforts are still features need me needed to elucidate the possible mechanisms in the future.

In conclusion, we observed that levels of OPN were higher in osteosarcoma spheroids than in parent cells. We also found that cinobufagin downregulated the stem-like properties of osteosarcoma cells, thus inhibiting the process of tumorigenesis by inhibiting the IL-6-OPN-STAT3 pathway. Therefore, the present findings define potential new mechanisms and identify novel molecular targets for the prevention and treatment of osteosarcoma.

Disclosure

The authors report no conflicts of interest in this work.

References

- Isakoff MS, Bielack SS, Meltzer P, et al. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33(27):3029–3035. doi:10.1200/JCO.2014.59.4895
- Li S, Sun W, Wang H, et al. Research progress on the multidrug resistance mechanisms of osteosarcoma chemotherapy and reversal. *Tumor Biol.* 2015;36(3):1329–1338. doi:10.1007/s13277-015-3181-0
- Timp W, Feinberg AP. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the best. *Nat Rev Cancer*. 2013;13:497–510. doi:10.1038/nrc3486
- Sodek J, Ganss B, McKee MD. Osteon atin. Crit Rev pal Biol Med. 2000;11(3):279–303. doi:10.1177/104. 11000110030
- Mackie PS, Fisher JL, Zhound, Choung PF. Biscrosphonates regulate cell growth and once expression in the OMR 106-01 clonal rat osteosarcomatedl line. *J. J. Cane* 02001;84(7):951– 958
- Luo X, Chen J, Song WX, Song OSteoger BMPs promote tumor growth of human osteosarcon, what he nor differentiation defects. *Lab Invest.* 2008, 12):1264–12.
- 7. Gao YL, Xing LQ, TJ, et al. The expression of osteopontin in breast cancer tissue and its relationship with p21ras and CD44V6 expression. *Eur J Gynaeco Oncol.* 2016;37(1):41–47.
- Y kamura KD, Tilli TM, Wanderley JL, et al. Osteopontin splice riants expression is involved on docetaxel resistance in PC3 prostancancer cells. *Junour Biol.* 2016;37(2):2655–2663. doi:10.1007/ s13. 2-015-409. 6
- 9. Ding K, C, Chen S, et al. Overexpression of osteopontin protes resistance to cisplatin treatment in HCC. *Oncol Rep.* 2015;34 (6):32, -3303. doi:10.3892/or.2015.4306
- Cho H, Hong SW, Oh YJ, et al. Clinical significance of osteopontin expression in cervical cancer. J Cancer Res Clin Oncol. 2008;134 (8):909–917. doi:10.1007/s00432-007-0351-5
- Zhang J, Yamada O, Kida S, et al. Identification of brefelamide as a novel inhibitor of osteopontin that suppresses invasion of A549 lung cancer cells. *Oncol Rep.* 2016;36(4):2357–2364. doi:10.3892/ or.2016.5006
- Velupillai P, Sung CK, Tian Y, et al. Polyoma virus-induced osteosarcomas in inbred strains of mice: host determinants of metastasis. *PLoS Pathog.* 2010;6(1):e1000733. doi:10.1371/journal.ppat.1000733
- Philip S, Bulbule A, Kundu GC. Osteopontin stimulates tumor growthand activation of promatrix metalloproteinase-2 through NF-kappa B-mediated induction of membrane type 1 matrix metalloproteinase inmurine melanoma cells. J Biol Chem. 2001;276:44926–44935. doi:10.1074/jbc.M103334200
- Carpenter RL, Lo HW. STAT3 Target Genes Relevant to Human Cancers. *Cancers (Basel)*. 2014;6:897–925.
- 15. Liu C, Dong L, Sun Z, et al. Esculentoside A suppresses breast cancer stem cell growth through stemness attenuation and apoptosis induction by blocking IL-6/STAT3 signaling pathway. *Phytother Res.* 2018;32(11):2299–2311. doi:10.1002/ptr.v32.11
- Chung SY, Chen YH, Lin PR, et al. Two novel SHP-1 agonists, SC-43 and SC-78, are more potent than regorafenib in suppressing the in vitro stemness of human colorectal cancer cells. *Cell Death Discov.* 2018;4:25. doi:10.1038/s41420-018-0084-z
- Lee SO, Yang X, Duan S, et al. IL-6 promotes growth and epithelialmesenchymal transition of CD133+cells of non-small cell lung cancer. *Oncotarget*. 2016;7(6):6626–6638. doi:10.18632/oncotarget.6570
- Wang Y, Zong X, Mitra S, et al. IL-6 mediates platinum-induced enrichment of ovarian cancer stem cells. *JCI Insight*. 2018;3. doi:10. 1172/jci.insight.122360

- Chang MT, Lee SP, Fang CY, et al. Chemosensitizing effect of honokiol in oral carcinoma stem cells via regulation of IL-6/ Stat3signaling. *Environ Toxicol.* 2018;33(11):1105–1112. doi:10.10 02/tox.22587
- Wang ZY, Wang CR, Zuo DQ, et al. Attenuation of STAT3 phosphorylation promotes apoptosis and chemosensitivity in human osteosarcoma induced by Raddeanin A. *Int J Biol Sci.* 2019;15 (3):668–679. doi:10.7150/ijbs.30168
- 21. Qi F, Li A, Inagaki Y, et al. Antitumor activity of extracts and compounds from the skin of the toad Bufo bufo gargarizans Cantor. *Int Immunopharmacol.* 2011;11:342–349. doi:10.1016/j.intimp.2010. 12.007
- 22. Zhu Z, Li E, Liu Y, et al. Bufalin induces the apoptosis of acute promyelocytic leukemia cells via the downregulation of survivin expression. *Acta Haematol.* 2012;128:144–150. doi:10.1159/ 000339424
- Xie RF, Li ZC, Chen PP, et al. Bufothionine induced the mitochondria-mediated apoptosis in H22 liver tumor and acute liver injury. *Chin Med.* 2015;10:5. doi:10.1186/s13020-015-0033-1
- 24. Wang J, Jin Y, Xu Z, et al. Involvement of caspase-3 activity and surviving downregulation in cinobufocini-induced apoptosis in A 549 cells. *Exp Biol Med (Maywood)*. 2009;234:566–572. doi:10.3181/ 0811-RM-326
- 25. Yu CH, Kan SF, Pu HF, et al. Apoptotic signaling in bufalin- and cinobufagin-treated androgen-dependent and -independent human prostate cancer cells. *Cancer Sci.* 2008;99:2467–2476. doi:10.1111/ j.1349-7006.2008.00966.x
- 26. Li C, Hashimi SM, Cao S, et al. The mechanisms of chansu in inducing efficient apoptosis in colon cancer cells. *Evid Based Complement Alternat Med.* 2013;849054.
- Cao-Hong, Shibayama-Imazu T, Masuda Y, et al. Involvement of Tiam1 in apoptosis induced by bufalin in HeLa cells. *Antisancer Res.* 2007;27:245–249.
- Dai G, Zheng D, Guo W, et al. Cinobufagin induces apopt is in osteosarcoma cells via the mitochondria-mediated apoptotic path ay *Cell Physiol Biochem*. 2018;46(3):1134–1147. 1159/0015 8842
- 29. Ma K, Zhang C, Huang MY, et al. Cinobp en induce autophagy mediated cell death in human osteosarcoma UOS of as uncertainter ROS/JNK/p38 signaling pathway. *J col Rep.* 916;36(1):90–98. doi:10.3892/or.2016.4782
- 30. Cao Y, Yu L, Dai G, et al. Circoufa, prinduces apopulis of osteosarcoma cells through inactivation of Notch signaling. *Eur J Pharmacol.* 2017;794:774–4. doi:10.1016/j.p. har.2016.11.016
- Yin JQ, Wen L, Wur C, et al. The glycoge, synthase kinase-3β/ nuclear factor-kape B pathwer is involved in cinobufagin-induced apoptosis in culture oster arcoma cells. *Toxicol Lett.* 2013;218 (2):129–136 doi:10.10. ptoxlet.2014.1006
- 32. Chueh Eferchen Y, Huan ACurt al. Bufalin-inhibited migration and intestion in b man osteos from U-2 OS cells is carried out by supplying of the energy metalloproteinase-2, ERK, and JNK signaling patheory. *Environ Toxicol.* 2014;29(1):21–29. doi:10.1002/ tox.20769
- 33. Chang Y, Zhao, Gu W, et al. Bufalin inhibits the differentiation and proliferation of cancer stem cells derived from primary osteosarcoma cells through Mir-148a. *Cell Physiol Biochem*. 2015;36(3):1186– 1196. doi:10.1159/000430289
- 34. Ishiwata T. Cancer stem cells and epithelial-mesenchymal transition: novel therapeutic targets for cancer. *Pathol Int.* 2016;66(11):601– 608. doi:10.1111/pin.2016.66.issue-11
- 35. Yang M, Yan M, Zhang R, et al. Side population cells isolated from human osteosarcoma are enriched with tumor-initiating cells. *Cancer Sci.* 2011;102:1774–1781. doi:10.1111/j.1349-7006.2011.02028.x
- 36. Qu H, Xue Y, Lian W, et al. Melatonin inhibits osteosarcoma stem cells by suppressing SOX9-mediated signaling. *Life Sci.* 2018;207:253–264. doi:10.1016/j.lfs.2018.04.030

- Peng L, Jiang D. Resveratrol eliminates cancer stem cells of osteosarcoma by STAT3 pathway inhibition. *PLoS One*. 2018;13(10): e0205918. doi:10.1371/journal.pone.0205918
- Dass CR, Choong PF. Zoledronic acid inhibits osteosarcoma growth in an orthotopic model. *Mol Cancer Ther.* 2007;6(12 Pt 1):3263– 3270. doi:10.1158/1535-7163.MCT-07-0546
- Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. *J Cell Physiol*. 2019;234(6):8381–8395.
- Chang Y, Zhao Y, Zhan H, et al. Bufalin inhibits the differentiation and proliferation of human osteosarcoma cell line hMG63-derived cancer stem cells. *Tumour Biol.* 2014;35(2):1075–1082. doi:10.1007/ s13277-013-1143-y
- 41. Ouyang X, Huang Y, Jin X, et al. Osteopontin promotes cancer cell drug resistance, invasion, and lactate production and is associated with poor outcome of patients with the poor one of mail-cell lung cancer. *Onco Targets Ther.* 2018;14:933–59-40:10.2147/OTT
- Salvatore V, Teti G, Focaroli S, et al. The tumo microenvironment promotes cancer progression and cell migration. *Ontarget.* 2017;8 (6):9608–9616.
- Yadav AK, Desai NS, and er stem cells of the microenvironment: biology and therapenet implications. *Stem Cont. Rev.* 2019;15(3):331– 355. doi:10.1007/s12.15-010.09887-2
- 44. Xiao H, Chor J, Luo C, al. Effect of the cytokine levels in serum on osteos p.ma. *Tumor* 1, 201,35(2):1023–1028. doi:10.1007/ s13277.03-06-x
- 45. Qin X, Yan M, Yang X, et al. Cancer-associated fibroblast-derived U foromotes heat and neck cancer progression via the osteopontin-NF-kappa B signaling pathway. *Theranostics*. 2018;8(4):921-940-949. doi:10.2150/thno.22182
- 6. Uchibori T, hatsuda K, Shimodaira T, et al. IL-6 trans-signaling is another path by to upregulate osteopontin. *Cytokine*. 2017;90:88–95. i:10.1016/j.cyto.2016.11.006
- Bennard, Kumar V, Lohite K, et al. Activation of JAK2/STAT3 signaling by osteopontin promotes tumor growth in human breast ender cells. *Carcinogenesis*. 2010;31(2):192–200. doi:10.1093/carcin/bgp289
- 48. Ng L, Wan T, Chow A, et al. osteopontin overexpression induced tumor progression and chemoresistance to oxaliplatin through induction of stem like properties in human colorectal cancer. *Stem Cells Int.* 2015;2015:247892. doi:10.1155/2015/247892
- 49. Yang M-C, Wang H-C, Hou Y-C, et al. Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. *Mol Cancer*. 2015;14:179. doi:10.1186/s12943-015-0449-3
- 50. Cao. L, Fan. X, Jing W, et al. Osteopontin promotes a cancer stem cell-like phenotype in hepatocellular carcinoma cells via an integrin-NF-κB-HIF-1α pathway. *Oncotarget*. 2015;6(9):6627–6640. doi:10.18632/oncotarget.3113
- Hideshima T, Nakamura N, Chauhan D, et al. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. *Oncogene*. 2001;20(42):5991–6000. doi:10.1038/sj.onc.1204833
- 52. Zhang Y, Wang L, Deng Y, et al. Fraxetin suppresses proliferation of non-small-cell lung cancer cells via preventing activation of signal transducer and activator of transcription 3. *Tohoku J Exp Med.* 2019;248(1):3–12. doi:10.1620/tjem.248.3
- Zhuo D, Wu Y, Luo J, et al. CSTP1 inhibits IL-6 expression through targeting Akt/FoxO3a signaling pathway in bladder cancer cells. *Exp Cell Res.* 2019;380(1):80–89. doi:10.1016/j.yexcr.2019.04.019
- 54. Balachander GM, Talukdar PM, Debnath M, et al. Inflammatory role of cancer-associated fibroblasts in invasive breast tumors revealed using a fibrous polymer scaffold. ACS Appl Mater Interfaces. 2018;10(40):33814–33826. doi:10.1021/acsami.8b07609
- 55. Zhang Y, Cheng H, Li W, et al. Highly-expressed P2X7 receptor promotes growth and metastasis ofhuman HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3-catenin and mTOR/HIF-1a/VEGF signaling. Int J Cancer. 2019. doi:10.1002/ijc.32207

Ć	

Drug Design, Development and Therapy

Dovepress

Publish your work in this journal

Drug Design, Development and Therapy is an international, peerreviewed open-access journal that spans the spectrum of drug design and development through to clinical applications. Clinical outcomes, patient safety, and programs for the development and effective, safe, and sustained use of medicines are a feature of the journal, which has also been accepted for indexing on PubMed Central. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www. dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/drug-design-development-and-therapy-journal