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Purpose: To develop, characterize, and validate a prototype digital aqueous humor outflow 

tonographer (DAHOM).

Material and methods: The DAHOM was developed, characterized, and validated in three 

phases. Phase 1 involved construction of the sensor. This was broadly based on the fundamental 

design of a typical Schiotz tonographer with a series of improvements, including corneal inden-

tation, which was converted to an electrical signal via a linear variable differential transducer, 

an analog signal which was converted to digital via ADC circuitry, and digital data acquisition 

and processing which was made possible by a serial port interface. Phase 2 comprised develop-

ment of software for automated assessment of the outflow facility. Automated outflow facility 

assessment incorporated a series of fundamental improvements in comparison with traditional 

techniques, including software-based filtering of ripple noise and extreme variations, rigidity 

impact analysis, and evaluation of the impact of patient age, central corneal thickness, and 

ocular axial length. Phase 3 comprised characterization and validation of DAHOM, for which 

we developed an experimental setup using porcine cadaver eyes. DAHOM’s repeatability was 

evaluated by means of Cronbach’s alpha and intraclass correlation coefficient. The level of 

agreement with a standard Schiotz tonographer was evaluated by means of paired t-tests and 

Bland-Altman analysis in human eyes.

Results: The experimental setup provided the necessary data for the characterization of DAHOM. 

A fourth order polynomial equation provided excellent fit (R square .0.999). DAHOM demon-

strated high repeatability (Cronbach’s alpha $0.997; intraclass correlation coefficient $0.987) 

and an adequate level of agreement with a standard Schiotz tonographer.

Conclusions: This study presents the development, characterization, and validation of a pro-

totype digital tonographer. DAHOM demonstrates high repeatability and a sufficient level of 

agreement with a typical Schiotz tonographer, while its digital design remedies known vulner-

abilities of conventional tonographers.

Keywords: glaucoma, tonography, pressure, outflow facility, aqueous humor

Introduction
The importance of aqueous humor tonography in research settings has been high-

lighted over many years.1–3 Tonography outcomes provide essential information 

for a series of ophthalmic diseases, eg, the glaucomas, and facilitate exploration 

of the ocular manifestations of systemic diseases. However, tonography in daily 

clinical settings has yet to be applied, mainly due to time constraints in hospital 

departments. Moreover, prevalent tonographic settings suffer from poor repeatabil-

ity which limits their clinical usefulness. Among the primary causes of variability 

is the fact that reliable measurements require continuous eye alignment, which is 
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difficult to achieve in practice. On the other hand, data 

collection and processing using traditional tonographers 

is difficult, because they do not provide digital output, 

automated assessment of the outflow facility, or evaluation 

of the impact of a series of known modifiers of the outflow 

facility. Within this context, we demonstrate here the 

development, characterization, and validation of a novel 

digital aqueous humor outflow topographer (DAHOM) 

that addresses the series of vulnerabilities of traditional 

tonographers.

Materials and methods
Setting
The study adhered to the tenets of the Declaration of Helsinki 

and written informed consent was given by all participants. 

This was a prospective study conducted in the Department of 

Ophthalmology at the University Hospital of Alexandroupo-

lis in Greece between 2004 and 2007.

Development of DAHOM
The digital outflow meter was designed at the Eye Institute 

of Thrace, in collaboration with the Electrical Engineering 

Department of the Technical University of Thrace. The 

development of the system was done in three phases.

Phase 1
Phase 1 included construction of the electromechani-

cal system with the sensor and the electronic circuitry 

(Figure 1). The sensor design was broadly based on the 

fundamental design of a typical Schiotz tonographer. The 

sensor converted corneal indentation to electrical signal 

with high sensitivity (1.719 mV/volt/0.0254 mm) using a 

linear variable differential transducer. All elements were 

connected to an aluminum alloy frame capable of retraction 

and sterilization. Analog to digital signal conversion was 

accomplished using ADC electronic circuitry providing 

interface via a serial port (RS232, Figure 2).

Figure 1 Digital outflow meter, including linear variable differential transducer and signal conditioner circuit. 
The digital outflow transducer with the contact tip (indentation piston), the base (center), and the linear variable differential transducer sensor (right). Connector cables 
are used for power supply and data transfer to the DAQ board. The signal conditioning board is responsible for sinusoidal wave generation, signal rectification, and phase-
sensitive demodulation processing.
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Figure 2 Data acquisition board with analog to digital converter and serial communication with a PC. 
Electronic circuitry with data acquisition, analog to digital converter, and RS 232 communication interface.

Phase 2
Phase 2 involved development of the software and the 

conversion algorithm for the evaluation of the outflow 

facility. A software-based percentile filter was used to 

cut out ripple noise and random measurement variations 

(Figure 3). Observed differences in intraocular pressure 

(IOP) measurements between the DAHOM and Goldmann 

applanation tonometer (GAT) were used for assessment of 

ocular rigidity.

The outflow facility was calculated according to the fol-

lowing formula:
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C4 

– V
C
 
0
 is the corneal volume displacement during 

the tonography study, K is the sclera rigidity factor or ocular 

rigidity factor, P
t0
/P

t4
 is the hydrostatic pressure difference 

between the points of flow resistance, P
applanation

 is the IOP 

measured by GAT, ∆P is the mechanical increase of IOP 

from the weight of the tonographer, and 4 is duration of the 

study in minutes.4

A software program was developed in Java language, 

capable of calculating the outflow facility (Figure 4). 

Rigidity impact analysis was incorporated in the software 

algorithm using GAT IOP measurement, as suggested by 

Friedenwald.4

The following formula was used to calculate rigidity:

Rigidity = 4.5282E−5 + 6.7443E−4X + 6.165E−6X 2 

          − 2.18104E−7X 3 − 2.07212E−8X 4 + 2.7598E−9X 5 

          − 1.1391E−10X 6 + 2.26627E−12X 7 

          − 2.20326E−14X 8 + 8.45107E−17X 9

where X is the mathematical arc tangent operator of the dif-

ference between the applanation and the indentation IOP, 

while the following three formulas (F1–F3) were used to 

define the indentational versus IOP measurement for 5.5, 

7.5, and 10 g weight of the digital outflow meter:

	

IOP x x

x E x

indent
g5 5 2

3 4 4

51 081 5 887 0 479

0 0215 3 832

. . . .

. .

= − +

− + −
� (F1)
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IOP x x

x E x

indent
g7 5 2

3 4 4

69 668 8 045 0 655

0 029 5 204

. . . .

. .

= − +

− + −
� (F2)

	

IOP x x

x E x

indent
g10 2

3 4 4

92 89 10 717 0 872

0 039 6 937

= − +

− + −

. . .

. .
� (F3)

where x is the magnitude of indentation for the digital tonog-

rapher in mm.

A series of optional parameters were also incorporated in 

the algorithm in order to correct the rigidity measurements 

based on the influence of several biomechanical factors, 

including central cornea thickness, age of patient, and ocular 

axial length (Figure 4). These formulae were derived from 

previously published studies on ocular rigidity variation.5,6

	 K
age

 = 0.00526 + 1.09285E−4 × Age

	 K
cct

 = −0.02055 + 6.33781E−5 ⋅ CCT

K
refraction

 = 0.02056 + 6.6158E−4L + 2.0559E−5L2 

    + 9.70044E−7L3 + 1.6981E−8L4
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Figure 3 Data filtering and tonographic polynomial fit. 
Data as recorded in real time by the data acquisition system (left graph) and data post-study analysis with digital filtering (red line) and polynomial fit (green line, right 
graph).

Figure 4 Outflow facility windows software based on Java language. 
Outflow facility calculation software, designed in Java programming language with Windows® interface environment. Mandatory “inputs” are designed to measure the outflow 
facility, while “optional” inputs are designed to measure the ocular rigidity factor. “Corrected” outputs represent the outflow facility and rigidity measurements, corrected 
by the “optional” inputs. Correlation is a predictive algorithm of the severity of the condition from 0 to 3 for normal to acute angle closure, respectively.
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where K
age

 is the rigidity variation based on the age of the 

patient;5 K
cct

 is the rigidity variation based on central cornea 

thickness;4 K
refraction

 is the rigidity variation based on the ocular 

axial length;4 age is patient age in years; CCT is the central cor-

neal thickness (µm); and L is the ocular axial length (mm).

Phase 3
Phase 3 involved characterization and validation of the 

DAHOM. Characterization of the tonometer was accom-

plished using porcine cadaver eyes according to the following 

procedure. A microelectronic pressure sensor was implanted 

into the anterior chamber using a fine needle. A second needle 

was injected into the eye, connecting a water tank of balanced 

solution for IOP regulation, which was accomplished by alter-

ing the water tank height and thus affecting the hydrostatic 

pressure difference in the eye (Figures 5 and 6). Experimental 

IOP measurements were obtained in the range 5–90 mmHg, 

with a 1 mmHg increment.

Validation of the system was accomplished by comparing 

the measurement outcomes of the DAHOM with the cor-

responding ones of a Schiotz tonographer in a population of 

30 volunteers according to the following procedure. Outflow 

facility measurements were obtained in one eye using a 

Schiotz tonographer and in the fellow eye by the DAHOM. 

Within one week, the procedure was repeated in a crossover 

manner. All tonography measurements were obtained by the 

same experienced operator (NF) who ensured proper eye 

fixation. Before each measurement, the Schiotz tonographer 

was calibrated according to the manufacturer’s instructions. 

GAT IOP measurements determined the indentation weight 

for both systems. For IOPs less than 30 mmHg, a 5.5 g 

weight was used, while a 7.5 g weight was used for IOP 

between 30 and 45 mmHg. For IOPs higher than 45 mmHg, 

a 10 g weight was used. The level of agreement between the 

two systems was evaluated by means of paired t-test and by 

Bland-Altman analysis. DAHOM repeatability was evaluated 

Digital outflow meter

Pressure reading

Pressure sensor

Eyeball

Data analysis

Pressure stabilizer

BSS inflow

BSS container

Figure 5 Laboratory setup for the characterization of the digital outflow meter. 
Laboratory setup for the calibration of the system. The balanced solution (BSS) container is used for intraocular pressure regulation, the micropressure sensor is used for 
intracameral real-time intraocular pressure measurements, while the digital outflow meter performs tonography. All data are collected by the PC and analyzed.
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by both Cronbach’s alpha test and the intraclass correlation 

coefficient (ICC) from three consecutive measurements prior 

to the tonography study.

Statistical analysis
Results were analyzed with the SPSS Version 17.0 (Statisti-

cal Package for the Social Sciences Inc., Chicago, IL). The 

normality of continuous variables was assessed using the 

Kolmogorov-Smirnov test. Quantitative variables expressed 

as mean ± standard deviation (SD) and qualitative variables 

were expressed as frequencies and percentages. The Mann-

Whitney test was used to assess outflow facility variations 

between the Schiotz and digital outflow meters. All tests 

were two-tailed, and statistical significance was considered 

as P  ,  0.05. Intrasession repeatability was tested using 

Cronbach’s alpha test and the ICC. Agreement of the out-

flow facility measurements between the digital and Schiotz 

outflow meters was assessed with Bland-Altman plots and 

95% limits of agreement. MedCalc version 9.0 software was 

used for the Bland-Altman plots.

Results
The experimental setup with the porcine eyes provided 

the necessary data for the characterization of the system’s 

response, according to the following formulae:

IOP
MEMS

 = 51.081 − 117.735x + 191.649x2  

	     − 171.753x3 + 61.131x4�
(F4)

IOP
MEMS

 = 69.668 − 160.908x + 262.05x2

	     − 234.266x3 + 83.266x4�
(F5)

IOP
MEMS

 = 92.89 − 214.339x + 348.911x2

	     − 312.038x + 111x4�
(F6)

where x is the magnitude of indentation for the DAHOM 

in mm.

In fact, the characterization of the DAHOM was accom-

plished using a fourth order polynomial equation (adjusted 

R-square .0.999 in all polynomial fittings, Figure 7). Three 

different polynomial equations were derived, each one 

Figure 6 Experimental setup. 
Experimental setup in porcine cadaver eyes using a microelectromechanic intracameral pressure sensor.
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corresponding to a different plunger weight. Systems transfer 

functions are shown below. Equation F7 was used for a 5.5 g 

plunger weight, F8 for 7.5 g, and F9 for 10 g:

y(x) = 51.081 − 117.735x + 191.649x2 

	 − 171.753x3 + 61.131x4
� (F7)

y(x) = 69.668 − 160.908x + 262.05x2

	 − 234.266x3 + 83.266x4�
(F8)

y(x) = 92.89 − 214.339x + 348.911x2

	 − 312.0.8x3 + 111x4�
(F9)

It should be mentioned that all polynomials were derived 

by assessment of the best fitting of the experimental results in 

a Cartesian plot, with one axis representing the experimental 

measurements of interest and the second axis representing the 

values obtained by the DAHOM. The order of polynomial 

fitting was selected in a way to provide R-Square adjustment 

higher than 0.98, ensuring minimum calculation error.

DAHOM demonstrated a sufficient level of agreement with 

the Schiotz tonographer. Specifically, the results for DAHOM 

were: C
Digital

 ± SD
Digital

 = 0.168 ± 0.08 µL × min−1 × mmHg−1 

and for the Schiotz tonometer were: C
schiotz

  ±  SD
s-

chiotz
 = 0.163 ± 0.09 µL × min−1 × mmHg−1; Paired sample 

t-test validated measurements conformity (P  .  0.12). 

Sufficient level of agreement was also confirmed by Bland-

Altman analysis. According to the plot in Figure 8, with 

the exception of two outlying values, the plot points are 

distributed in a symmetric manner about the “zero differ-

ence” line.

Regarding DAHOM’s measurement repeatability, the 

Cronbach’s alpha was 0.997 and the ICC was 0.987, both 

tests suggesting high intrasession reliability.

Discussion
The objective of this study was to develop a digital aqueous 

humor tonographer that could provide valid information 

about the outflow facility and address a series of technical 

and design limitations of the conventional tonographers.

Various tonographers have been introduced during the 

past 60 years. First, Schiotz,7 then Bock et al8 and others9,10 

introduced tonographers for measuring the outflow coef-

ficient, and in 1951, Gant reported the use of an electronic 

tonographer connected to a paper strip.11
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Objective intraocular pressure versus indentation measurements in an experimental setup using extracted porcine cadaver eyes. Intraocular pressure measurements attained 
by a micropressure sensor, connected to the anterior chamber of the eye, while the indentation measurements attained by the digital outflow meter.
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Among the difficulties in the development of a reliable 

tonographer is its characterization. For characterization of 

the DAHOM, we developed an experimental setup intro-

ducing an intracameral pressure sensor in porcine cadaver 

eyes. Although cadaver porcine eyes have biomechanical 

properties similar to those of human eyes, a number of dif-

ferences should be taken into consideration, ie, cadaver eyes 

may introduce measuring errors due to lack of blood volume 

displacement during the tonography study, and despite similar 

stress-strain patterns, human and porcine corneas demon-

strate different stress relaxation properties.12 However, neither 

of these differences interfered with the characterization or the 

validation process. In fact, both the Schiotz tonographer and 

DAHOM demonstrated very similar results in the majority 

of cases. The observed nonsignificant differences may well 

be attributable to the known Schiotz vulnerabilities regarding 

ocular rigidity assessment rather than to the design and/or 

implementation of the DAHOM project.13 Specifically, the 

average indentation values obtained by both systems (Schiotz 

and DAHOM) did not reveal any significant differences. 

However, the outcomes of the DAHOM are corrected by a 

series of rigidity impact algorithms (which is not the case 

for the Schiotz tonographer). Regarding outflow facility, the 

DAHOM demonstrated similar results in a series of former 

studies that used different tonographers.14–20

Regarding DAHOM’s intrasession variability, both 

Cronbach’s alpha and ICC tests suggested excellent repeat-

ability. Specifically, the ICC value of 0.987 is well above the 

minimal ICC value of 0.90 that the literature suggests to be 

adequate.21 It is known that in tonography studies the intrases-

sion variability is exacerbated mainly due to the loss of eye 

alignment when retracting and placing the tonographer. In 

the software development of the DAHOM, we incorporated 

a software-based filter for automatic rejection of tracing 

irregularities that result in outlying values (Figure 3). How-

ever, hysteresis of the DAHOM was mainly attributed to the 

nonlinear semielastic properties of the eye, as shown in the 

report by Luce.22

Following the introduction of a reliable and valid tonog-

rapher like the DAHOM, its enhancements over the tradi-

tional tonographers should be underscored. The capability to 

provide raw data and outcomes measured in a digital format 

facilitates the processing and reprocessing of the data (both 

real-time and at a later time), allows introduction of differ-

ent filters for cutting off measurement irregularities, and 

facilitates tonographic follow-up of patients because point-to-

point comparisons can be made over time. The capability to 

calculate ocular rigidity and incorporate its impact on every 

single measurement on final measured outcome is a major 

advance over traditional designs that assume a mean ocular 

rigidity value for their calculations. Moreover, there is the 

capability to correct the measured outcome of the DAHOM 

by estimation of the impact of a series of optional ocular 

biomechanical factors and patient age.

In summary, in this report we present a characterization 

and validation of the DAHOM, a novel digital aqueous humor 

tonographer that attempts to address the known inherent 

vulnerabilities of the traditional tonographers. Addressing 

these vulnerabilities will allow the implementation of future 

relevant studies with high clinical significance in diseases 

with disrupted aqueous humor outflow, eg, the glaucomas. 

Among them are the qualitative outflow profile analysis that 

could provide detail information of the dynamic regulation of 

the outflow facility,23–26 and the development of a glaucoma 

risk assessment algorithm, capable of identifying preclinical 

patterns of glaucoma development.
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