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Purpose: Chronic obstructive pulmonary disease (COPD) is a worldwide problem because 
of its high prevalence and mortality. However, there is no fundamental treatment to amelio-
rate their pathological change in COPD lung. Recently, adipose-derived mesenchymal stem 
cells (ADSCs) have attracted attention in the field of regenerative medicine to repair 
damaged organs. Moreover, their utility in treating respiratory diseases has been reported 
in some animal models. However, the detailed mechanism by which ADSCs improve chronic 
respiratory diseases, including COPD, remains to be elucidated. We examined whether 
human ADSCs (hADSCs) ameliorated elastase-induced emphysema and whether hADSCs 
differentiated into alveolar epithelial cells in a murine model of COPD.
Methods: Female SCID-beige mice (6 weeks old) were divided into the following four 
groups according to whether they received an intratracheal injection of phosphate-buffered 
saline or porcine pancreatic elastase, and whether they received an intravenous injection of 
saline or hADSCs 3 days after intratracheal injection; Control group, hADSC group, Elastase 
group, and Elastase-hADSC group. We evaluated the lung function, assessed histological 
changes, and compared gene expression between hADSCs isolated from the lung of Elastase- 
hADSC group and naïve hADSCs 28 days after saline or elastase administration.
Results: hADSCs improved the pathogenesis of COPD, including the mean linear intercept 
and forced expiratory volume, in an elastase-induced emphysema model in mice. 
Furthermore, hADSCs were observed in the lungs of elastase-treated mice at 25 days after 
administration. These cells expressed genes related to mesenchymal–epithelial transition and 
surface markers of alveolar epithelial cells, such as TTF-1, β-catenin, and E-cadherin.
Conclusion: hADSCs have the potential to improve the pathogenesis of COPD by differ-
entiating into alveolar epithelial cells by mesenchymal–epithelial transition.
Keywords: chronic obstructive pulmonary disease, mesenchymal–epithelial transition, 
adipose derived mesenchymal stem cell, pulmonary function test

Introduction
Chronic obstructive pulmonary disease (COPD) induces respiratory symptoms such 
as dyspnea, coughing, and sputum because of abnormalities in airways and alveoli 
caused by smoking, exposure to biomass fuels, and air pollution.1 It has been 
reported that about 3.2 million people died of COPD in 2015 and COPD ranked 
third among the global age-standardized death rates for both sexes.2,3 In particular, 
advanced COPD causes pathological changes such as emphysema in the lungs, 
which is a major pathological change. Current treatments for COPD, such as 
bronchodilators, theophylline, and corticosteroids, are effective to reduce dyspnea 
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and prevent exacerbations, which have succeeded in 
improving quality of life to reduce mortality. However, 
there is no treatment that reduces or normalizes the patho-
logical changes in the lungs of COPD patients, because 
these treatments cannot prevent disease progression.4

Recently, the efficacy of mesenchymal stem cells 
(MSCs) has been reported in rodent models of lung 
disease.5–10 Moreover, therapeutic efficacy has been 
shown in models of emphysema established by cigarette 
smoke exposure and elastase administration.11–16 It has 
been suggested that the therapeutic effect of MSCs is 
mediated by their ability to differentiate into tissues,17 

immunomodulatory functions,18 paracrine effects,14 and 
anti-apoptotic effects.19 Since bone marrow-derived 
MSCs (BM-MSCs) were first discovered, bone marrow 
has been considered to be the main source of MSCs for 
clinical applications. Subsequently, MSCs have been iso-
lated from adipose tissue that is attracting attention as an 
alternative to bone marrow. Adipose-derived MSCs 
(ADSCs) can be isolated more easily and at considerably 
larger amounts than bone marrow.20 It has been reported 
that MSCs derived from mouse adipose tissue differenti-
ate into alveolar epithelial cells and ameliorate lung 
parenchymal destruction caused by elastase-induced 
emphysema in mice.21 Moreover, it has been reported 
that systemic administration of non-HLA-matched allo-
geneic human MSCs is safe in patients with moderate-to- 
severe COPD,22 which suggests the potential of MSC 
therapy in COPD patients.

In this study, we investigated whether human ADSCs 
(hADSCs) improved lung functional and histological 
changes in an elastase-induced mouse model of emphy-
sema. We also examined whether hADSCs migrated into 
emphysematous lungs and their differentiation 
characteristics.

Methods
Ethics Statement
All animal experiments were approved by The Animal 
Care and Use Committee at Nara Medical University 
(Nara, Japan). All methods were performed in accordance 
with the Policy on the Care and Use of Laboratory 
Animals, Nara Medical University. The experimental pro-
tocols were approved by the Ethics Review Committee for 
Animal Experimentation of Nara Medical University 
(approval number 12582).

Elastase-Induced Emphysema Mice Model
Female SCID-beige mice (6 weeks old) were purchased 
from Oriental Bio Service (Kyoto, Japan) and kept under 
specific pathogen-free conditions in the animal care facil-
ity of Nara Medical University. To establish the COPD 
model, mice were injected intratracheally (i.t.) with 1.25 
U porcine pancreatic elastase (EC134, Elastase-High 
Purity, porcine, Elastin Products Company, Inc., 
Owensville, MO) in 50 μL saline (Otsuka Pharmaceutical 
Co., Ltd., Tokushima, Japan) following anesthesia induced 
by pentobarbital (Nacalai Tesque Inc., Kyoto, Japan). 
Control mice were i.t. injected with 50 μL saline. Three 
days after injection, 1×106 hADSCs (Lonza, Basel, 
Switzerland) in 200 μL phosphate-buffered saline (PBS; 
Wako, Osaka, Japan) were administered intravenously 
(i.v.). Control mice were i.v. administered 200 μL PBS. 
In some experiments, 1×106 hADSCs were labeled with 
PKH26 (Sigma-Aldrich Inc., St. Louis, MO) in accordance 
with manufacturer’s protocol. Mice were divided into four 
groups as follows: (i) Control group (Saline i.t. + PBS 
i.v.), (ii) hADSC group (Saline i.t. + hADSCs i.v.), 
(iii) Elastase group (Elastase i.t. + PBS i.v.), and (iv) 
Elastase-hADSC group (Elastase i.t. + hADSCs i.v.).

Evaluation of Lung Functions
After the mice were anesthetized with 0.1 mg/g pentobar-
bital by intraperitoneal injection, tracheal intubation was 
performed with a 19-G catheter, followed by measurement 
of lung functions, such as forced vital capacity (FVC), 
forced expiratory volume and flow at 0.1 s (FEV0.1, 
FEF0.1), static compliance (Cst), peak expiratory flow 
(PEF), Newtonian resistance (Rn), tissue damping (G), 
tissue elastance (H), inspiratory capacity (IC), and respira-
tory system resistance (Rrs) using a flexiVent® ventilation 
system (SCIREQ Inc., Montreal, Canada) as described 
previously.23

Histology
After evaluating lung functions, mice were euthanized by 
blood collection from the left ventricle of the heart and 
then their lungs were collected for analysis. The left lobe 
of the lung was inflated by injecting 4% paraformaldehyde 
into the trachea at a constant pressure of 25 cm H2O for 20 
min and fixed overnight at room temperature. Fixed lungs 
were embedded in paraffin, cut into 2-μm-thick sections, 
and then stained with Mayer haematoxylin (Sakura 
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Finetek Japan Co. Ltd., Tokyo, Japan) and eosin (Nacalai 
Tesque, Inc.).

Immunofluorescence Staining of the Lung
Left lungs were removed, embedded in optimum cutting 
temperature compound (Sakura Finetek Japan Co. Ltd.), 
and frozen in liquid nitrogen. Sections were cut at 5 μm 
thicknesses and fixed in PBS with 4% paraformaldehyde 
for 10 min at room temperature. After washing with PBS, 
the sections were placed in blocking solution that con-
tained 10% normal goat serum in PBS at room tempera-
ture, incubated in PBS for 1 hr, and then incubated 
overnight at 4°C in a primary antibody solution. After 
washing three times with PBS, the sections were incubated 
with the secondary antibody for 1 hr at room temperature. 
Nuclei were counterstained with DAPI (2 μg/mL, Dojindo 
Laboratories, Kumamoto, Japan). We used the following 
primary antibodies: rabbit anti-TTF-1 antibody (1:200; 
Abcam, Cambridge, UK; ab76013), rabbit anti-β-Catenin 
antibody (1:100; Cell Signaling Technology Inc., MA; 
#8480), rabbit anti-pro-SP-C antibody (1:100; Abcam; 
ab170699), and rabbit anti-CDH1 (E-cadherin) antibody 
(1:100; Thermo Fisher Scientific, Waltham, MA; #14- 
3249). Staining was visualized by Alexa Fluor 488 goat 
anti-rabbit IgG (1:400; Thermo Fisher Scientific; A32731) 
as the secondary antibody. Finally, the sections were ana-
lyzed under an FV1000 confocal microscope (Olympus, 
Tokyo, Japan).

Lung PKH26-Labeled Cell Isolation
To prepare a single cell suspension from the right lung, the 
lungs were dissociated using a Lung Dissociation Kit 
(Miltenyi Biotec, Cologne, Germany) with a gentle MACS 
Dissociator. The suspension was filtered through a 70 μm 
cell strainer and the cells were collected by centrifugation 
following the manufacturer’s instructions. After red blood 
cells were lysed with BD Pharm Lyse™ (BD Biosciences, 
Franklin Lakes, NJ), the cells were centrifuged (400 ×g) and 
collected. PBS containing 0.5% bovine serum albumin 
(Wako) and 2 mM EDTA (Wako) was added to the cells 
and PKH26-labeled cells were sorted using a FACSAria™ 
IIu Cell Sorter (BD Biosciences). Sorted PKH26-positive 
cells were collected in RLT buffer (Qiagen, Hilden, 
Germany) for RNA extraction.

RNA Extraction and PCR Array
Total RNA was extracted using a RNeasy Micro Kit 
(Qiagen) following the manufacturer’s instructions. The 

amount of extracted RNA was measured using 
a NanoDrop™ (Thermo Fisher Scientific). The gene 
expression of hADSCs and sorted PKH26-positive cells 
from mouse lungs were analyzed using a RT2 ProfilerTM 

PCR Array Human Epithelial to Mesenchymal Transition 
(Qiagen). RNA was reverse transcribed into cDNA by 
incubation with reverse transcriptase at 42°C for 15 min, 
followed by incubation at 95°C for 5 min using an RT2 

First Strand Kit (Qiagen). cDNA was amplified with RT2 

SYBR Green ROX qPCR Mastermix (Qiagen) in accor-
dance with the manufacturer’s instructions. Gene expres-
sion was normalized to multiple housekeeping genes. The 
results were analyzed using RT2 Profiler PCR Array Data 
Analysis v3.5 (Qiagen) by comparing gene expression 
between hADSCs and sorted hADSCs from the lungs of 
the Elastase-hADSC group.

Statistical Analysis
Statistical differences were analyzed by one-way analysis 
of variance with Tukey’s multiple comparison test and the 
Student’s t-test. A P-value of <0.05 was considered sig-
nificant. Graphs and statistical tests were made using 
GraphPad Prism version 7.00 (GraphPad Software, San 
Diego, CA).

Results
hADSC Administration Improves the 
Pathogenesis of Lung Emphysema in Mice
We administered elastase or saline intratracheally to 
SCID-beige mice, followed 3 days later by intravenous 
administration of PBS or hADSCs. At 28 days after 
elastase administration, mice were euthanized after pul-
monary function tests and their lungs were collected 
(Figure 1A). Lung histology in the Control group 
(Saline i.t. + PBS i.v.) did not show histological changes 
and damages, and that in the Elastase group (Elastase i.t. 
+ PBS i.v.) showed air space enlargement and destruc-
tion of the alveolar walls compared with the Control 
group. However, in the Elastase-hADSC group (Elastase 
i.t. + hADSCs i.v.), the destruction of alveolar walls and 
the enlargement of alveolar spaces were milder than in 
the Elastase group (Figure 1B). The mean linear inter-
cept (Lm) method, which was used to evaluate the 
emphysematous change,24 showed a significant change 
in the Elastase group (Lm: 20.5–34.5 μm) compared 
with the Control group (Lm: 14.5–19.0 μm) and signifi-
cant reduction in the Elastase-hADSC group (Lm: 17.1– 
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32.1 μm) compared with the Elastase group. However, 
Lm showed no significant change between the hADSC 
group (Saline i.t. + hADSCs i.v.) (Lm: 12.4–14.2 μm) 
and the Control group (Figure 1C).

hADSC Administration Improves the 
Lung Functions of Emphysema in Mice
To evaluate the effect of hADSC administration, we per-
formed a pulmonary function test. FEV0.1 was 

Figure 1 hADSCs suppress elastase-mediated lung histological changes in SCID-beige mice. 
Notes: (A) Schematic representation of the experimental protocol. SCID-beige mice were intratracheally injected with saline or 1.25 Uelastase and then intravenously 
injected with PBS or 1×106 hADSCs onday 3. Onday 28, lungs were collected for analyses. (B) Lung histopathological analysis by hematoxylin and eosin staining (×200). Scale 
bar = 50 μm. (C) Mean linear intercept of the four groups. Values are means ± SEM. (i) Control group (Saline i.t. + PBS i.v.) (n=5), (ii) hADSC group (Saline i.t. + hADSCs i.v.) 
(n=3), (iii) Elastase group (Elastase i.t. + PBS i.v.) (n=7), and (iv) Elastase-hADSC group (Elastase i.t. + hADSCs i.v.) (n=10). **P < 0.01. 
Abbreviations: hADSCs, human adipose-derived mesenchymal stem cells; SEM, standard error of the mean; PBS, phosphate-buffered saline; i.t., intratracheally; i.v., 
intravenously.
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significantly lower in the Elastase group than in the 
Control group and FEV0.1 was markedly improved in the 
Elastase-hADSC group (0.8534 ± 0.0148 mL) compared 
with the Elastase group (0.7682 ± 0.0226 mL) (Figure 2). 
However, there were no significant differences in other 
pulmonary function parameters including FVC, FEV0.1 

/FVC, Cst, FEF0.1, PEF, Rn, G, H, IC, and Rrs (Figure S1).

hADSCs That Migrate to the 
Emphysematous Lung Express Genes 
Related to Mesenchymal-to-Epithelial 
Transition
Next, we investigated how hADSCs had changed their 
phenotype after migration into emphysematous lungs. 
PKH26-labeled hADSCs were identified at around 1% of 
whole lung cells in the Elastase-hADSC group at day 28 
(Figure 3A). We sorted PKH26-labeled hADSCs and com-
pared gene expression between naïve hADSCs directly 
thawed from frozen stock and hADSCs sorted from the 
lungs of the Elastase-hADSC group using a RT2 profilerTM 

PCR array Human Epithelial to Mesenchymal Transition. 
Gene expression of epithelial markers, such as Cdh1, 
Ctnnb1, Dsc2, Krt19, and Spp1, was higher in hADSCs 
from emphysematous lungs compared with naïve 
hADSCs. However, gene expression of mesenchymal 

markers, such as Cdh2, Col1a2, Col3a1, Fn1, Snai2, 
Twist1, Vim, Wnt5a, Wnt5b, and Zeb1, was lower in 
hADSCs from emphysematous lungs compared with 
naïve hADSCs (Figure 3B). These results suggest that 
hADSCs migrated into the emphysematous lungs and 
changed their phenotype by mesenchymal-to-epithelial 
transition.

hADSCs That Migrate to the 
Emphysematous Lung Express Pulmonary 
Epithelial Surface Markers
To define where hADSCs had migrated into the lungs, we 
next performed immunofluorescence staining of the lungs. 
We found very few PKH26-positive cells in the hADSC 
group, whereas PKH26-positive cells were sufficiently 
found in the Elastase-hADSC group (Figure 4A). Next, 
lung sections were stained with several alveolar epithelial 
markers, including TTF-1, Pro SP-C, β-Catenin, and 
CDH1 (E-cadherin) to investigate the characteristics of 
PKH-positive hADSCs in the lungs of the Elastase- 
hADSC group. PKH-positive hADSCs were merged with 
TTF-1, β-Catenin, and CDH1, but negative for Pro SP-C, 
a type II epithelial marker (Figures 4B, S2 and S3).25 

These data indicate that hADSCs might differentiate into 
type I alveolar epithelial cells in emphysematous lungs.

Discussion
In this study, we demonstrated that administration of 
hADSCs, which were migrated into emphysematous 
lungs, improved the pathogenesis and pulmonary function 
of emphysematous lungs in mice. Moreover, hADSCs 
attracted to the emphysematous lungs showed increased 
epithelial gene expression and decreased mesenchymal 
gene expression compared with naïve hADSCs, which 
indicated that hADSCs may have acquired the character-
istics of type I alveolar epithelial cells by mesenchymal– 
epithelial transition.

ADSCs are less invasive to collect than BM-MSCs,26 

collected at larger numbers,27,28 and more effective sup-
pressors of immune responses.20 Furthermore, hADSCs 
have been reported to be genetically and morphologically 
more stable in long-term culture, exhibit lower senescence 
rates and higher proliferative capacity, and retain differen-
tiation potential for longer periods in culture than human 
BM-MSCs,29 suggesting that hADSCs are more suitable 
for clinical application among the MSC types. In fact, 
many preclinical studies using rodent models of 

Figure 2 Lung function of emphysema mice treated with hADSCs. 
Notes: The lung function FEV0.1 was measured using the flexiVent® ventilation 
system. Control group (Saline i.t. + PBS i.v.) (n=5), hADSC group (Saline i.t. + 
hADSCs i.v.) (n=3), Elastase group (Elastase i.t. + PBS i.v.) (n=7), and Elastase- 
hADSC group (Elastase i.t. + hADSCs i.v.) (n=10). Values are presented as means ± 
SEM. *P < 0.05, **P < 0.01. 
Abbreviations: hADSCs, human adipose-derived mesenchymal stem cells; FEV0.1, 
forced expiratory volume at 0.1 s; SEM, standard error of the mean.
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A

B

Figure 3 Gene expression of epithelial and mesenchymal genes in hADSCs isolated from lungs. 
Notes: SCID-beige mice were intratracheally injected with 1.25 Uelastase and then intravenously injected with 1×106 PKH26-labeled hADSCs onday 3. Onday 28, lungs 
were collected for analyses. (A) PKH26-labeled hADSCs were identified and sorted from the lungs of the Elastase-hADSC group (Elastase i.t. + hADSCs i.v.). (B) Gene 
expression changes in hADSCs isolated from the lungs of the Elastase-hADSC group (n=4) compared with naïve hADSCs (n=4) using RT2® profilerTM PCR array human 
epithelial-to-mesenchymal transition. Relative values to the average of naïve hADSCs are presented as means ± SEM with individual plots. 
Abbreviations: hADSCs, human adipose-derived mesenchymal stem cells; SEM, standard error of the mean.
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pulmonary diseases including COPD have reported the 
effects of MSCs including BM-MSCs and ADSCs.11– 

16,21,30–36 Several clinical trials in COPD patients have 
shown that administration of BM-MSCs or ADSCs is 
safe, but there is no report showing therapeutic effects 
such as improved the pathogenesis and lung functions 

using human ADSCs. Therefore, we here focused on the 
effects of hADSCs for COPD. And it has been reported 
that human non-autologous stem cells may be immuno-
genic in animal models, so we used SCID-beige mice as 
the recipient experimental animals in this study.37 

Emphysema is a characteristic histological change in 

A

B

Figure 4 Fluorescence staining of epithelial markers in the lungs. 
Notes: Lung sections from SCID-beige mice administered intravenously with PKH26-labeled hADSCs were observed under aconfocal laser microscope. (A) Fluorescence 
of PKH-26 (red) was observed with nuclear counterstaining by DAPI (blue) (×200). (B) Expression of epithelial cells markers TTF-1, Pro SP-C, β-Catenin, and CDH1 
visualized by Alexa Fluor 488 (green) in PKH26-labeled hADSCs (red) (×400). Arrow shows Alexa Flour 488 and PKH-26 merged cells. Scale bar shows 50 μm. Data are 
representative of more than three independent experiments. 
Abbreviations: hADSCs, human adipose-derived mesenchymal stem cells; DAPI, 4ʹ,6-diamidino-2-phenylindole; TTF-1, thyroid transcription factor-1; SP-C, surfactant 
protein C; CDH1, cadherin-1.
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COPD, and one widely used animal model of emphysema 
is the elastase treatment. In this study, systemic adminis-
tration of hADSCs resulted in histological changes in an 
elastase-induced lung emphysema model mouse. Also, 
COPD causes not only emphysematous changes in the 
lungs but also airflow obstruction. In humans, in respira-
tory function tests, the ratio of forced expiratory volume in 
one second (FEV1) to forced vital capacity (FVC) of less 
than 0.7 after administration of bronchodilators in respira-
tory function tests is essential for diagnosis of COPD.38 

Recently, it has become possible to evaluate respiratory 
function in mice using the Forced Oscillation Technique,39 

and its usefulness has been reported in mouse models of 
respiratory diseases.23,40–43 So we evaluated the effects of 
hADSCs on respiratory function using flexiVent® in 
a mouse model of elastase-induced emphysema. It has 
been reported that forced expiratory volume at 0.1s 
(FEV0.1), forced vital capacity (FVC), forced expiratory 
flow at 0.1s (FEF0.1), inspiratory capacity (IC), Newtonian 
resistance (Rn), and tissue hysteresivity (G/H) increase 
and FEV0.1/FVC, peak expiratory flow (PEF), tissue 
damping (G), and tissue elastance (H) decrease in lung 
functions of a mouse model of emphysema established by 
intranasal administration of porcine pancreatic elastase 
three times a week to male BALB/c mice.23 In another 
model of emphysema induced by intratracheal administra-
tion of porcine pancreatic elastase to BALB/c mice, it has 
been reported that IC and Rrs (respiratory system resis-
tance) increased and H decreased.44 We found that FEV0.1 

was significantly decreased in the mice of elastase-induced 
emphysema as reported previously,23 and that systemic 
administration of hADSCs to the mice of elastase- 
induced emphysema significantly improved the decrease in 
FEV0.1. This indicates that hADSCs not only improve 
COPD histologically, but also improve pulmonary func-
tion. On the other hand, systemic administration of 
hADSCs to elastase-induced COPD model mice did not 
improve FVC, FEV0.1/FVC, Cst, FEF0.1, PEF, Rn, G, H, 
IC, and Rrs in this study. Compared with a previous 
report,23,44 the difference of elastase administered to 
induce emphysema and that of respiratory function mea-
surement method, flexiVent® and Buxco lung function 
analysis, might result in no significant difference in lung 
compliance or resistance.

In addition, hADSCs were detected in the lung par-
enchyma 25 days after systemic administration of 
hADSCs in elastase-induced emphysema mice. Previous 
reports have shown that systemically administered ADSCs 

were detected in the lung parenchyma and airways 
from day 1 to 21 after administration.15 Intravenously 
administered hADSCs migrated into the lungs of the 
Elastase-hADSC group, while very few hADSCs could 
be detected in the lungs of the hADSC group (Saline i.t. 
+ hADSCs i.v.), which suggests that intravenously admi-
nistered hADSCs are recruited to the site of lung injury. It 
has been proposed that various chemokines and cytokines 
are involved in the mechanism of stem cell recruitment to 
the site of injury.45 However, there are no reports on stem 
cell homing to emphysematous lungs, which requires 
further investigation.

We found that hADSCs attracted to emphysematous 
lungs led to downregulate mesenchymal-related gene 
expression, while epithelial-related gene expression was 
upregulated, which suggests induction of mesenchymal– 
epithelial transition. Setiawan et al reported that inhibition 
of GSK3 and TGF-β signaling causes human ADSCs to 
differentiate into epithelial cells through mesenchymal– 
epithelial transition with downregulation of mesenchymal 
genes (Snail, Zeb1, and Cdh2) and upregulation of epithe-
lial progenitor genes (E-cadherin, δNp63, Cytokeratins, 
and Occludin).46 Additionally, it has been reported that 
Wnt/β-catenin signaling is inactivated by COPD and its 
reactivation restores the structure and function of the 
alveolar epithelium and improves bronchial expansion in 
an emphysema model. In addition, Wnt5A, which is 
a ligand that mediates β-catenin-independent Wnt 
signaling,47 exacerbates bronchial enlargement in elastase 
and smoking-induced emphysema models, whereas inhibi-
tion of Wnt5A reduces destruction of lung tissue and 
improves lung functions. This leads to re-epithelialization 
of alveoli and reactivation of Wnt/β-catenin,48 which sug-
gests that it might be a potential target for COPD 
treatment.49 Similarly, in this study, gene expression of β- 
catenin was up-regulated and that of Wnt5A was down- 
regulated in hADSCs migrated to the emphysematous 
lungs, suggesting that hADSCs may have ameliorated 
emphysema by reactivating Wnt/β-catenin signaling and 
inhibiting Wnt5A signaling.

Moreover, hADSCs attracted to emphysematous lungs 
expressed cell surface markers of type I alveolar epithelial 
cells, suggesting that hADSCs improved COPD by differ-
entiating into type I alveolar epithelial cells. Previous 
studies reported that mouse BM-MSCs also differentiated 
into type I alveolar epithelial cells in elastase-induced 
emphysema,14 while mouse ADSCs differentiated into 
type II alveolar epithelial cells.21 As type II alveolar 
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epithelial cells are progenitors of type I alveolar epithelial 
cells,50–52 it is possible that human ADSCs differentiated 
into type II alveolar epithelial cells and then into type 
I alveolar epithelial cells. The long time between admin-
istration of ADSCs and the analysis of ADSCs might have 
influenced the results of this study, and further investiga-
tion for the time points of analysis following ADSC 
administration is required.

Finally, we demonstrated the therapeutic effect of 
human-derived ADSCs on COPD using a COPD model 
established by administering elastase to SCID-beige 
mice, which suggests that hADSCs may be a valuable 
candidate for COPD medical therapy. But, the present 
study has still some limitations. For example, SCID- 
beige mice were used in this study to exclude the effect 
of graft-versus-host disease, while we should consider 
the role of immunity in allograft hADSC administration 
for clinical trial. Second, because COPD in humans is 
mainly caused by smoking, our approach might also be 
valuable in other models of COPD, that have additional 
features of disease including airway/tissue inflammation 
such as cigarette smoke-induced models. Further studies 
are required to investigate whether the similar effects can 
be obtained from other models of COPD.

Conclusion
We found that hADSCs ameliorated emphysema both his-
tologically and functionally, and migrated into the emphy-
sematous lung in an elastase-induced COPD model in 
SCID-beige mice. The administered hADSCs into lungs 
underwent mesenchymal–epithelial transition in the 
emphysematous lungs and differentiated into type 
I alveolar epithelial cells. The results of this study may 
provide a mechanism for the treatment of COPD by 
ADSCs. Human ADSCs not only improved pulmonary 
function, but also had the potential to differentiate into 
alveolar epithelial cells in elastase-induced emphysema, 
which might be a source of fundamental therapy for 
COPD.
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