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Abstract: It is known that respiratory muscles undergo adaptation in response to overload 

stimuli during exercise training in stable COPD patients, thus resulting in significant increase 

of respiratory muscle function as well as the individual’s improvements. The present article 

reviews the most updated evidence with regard to the use of respiratory muscle training 

(RMT) methods in COPD patients. Basically, three types of RMT (resistive training, pressure 

threshold loading, and normocapnic hyperpnea) have been reported. Frequency, duration, 

and intensity of exercise must be carefully considered for a training effect. In contrast with 

the plentitude of existing data inherent to inspiratory muscle training (IMT), literature is still 

lacking in showing clinical and physiological studies related to expiratory muscle training 

(EMT). In particular, while it seems that IMT is slightly superior to EMT in providing ad-

ditional benefits other than respiratory muscle function such as a reduction in dyspnea, both 

the effects and the safety of EMT is still to be definitively elucidated in patients with COPD. 
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Rationale 
Systemic inflammation is now known to be an important aspect of chronic obstructive 

pulmonary disease (COPD) which is able to extend its effects to the skeletal muscular 

structure. Even if this muscular dysfunction does not similarly involve all the periph-

eral muscles, available evidence suggests that respiratory muscles are almost always 

involved (Gosselink et al 2000).

The weakness of the respiratory musculature (with reduced strength and muscular 

resistance) “has significant clinical consequences for COPD” (Decramer 2001) and 

this reason may partially explain the appearance of common symptoms like the effort 

dyspnea, hypercapnia, and reduced tolerance to physical exercise.

So far, a clinical study has demonstrated that respiratory muscle weakness is 

likely to increase health care resources and is correlated to reduced survival in COPD 

(Gray-Donald et al 1996). 

Respiratory muscle dysfunction is attributed to multiple factors related to the 

presence and severity of COPD. Indeed, intrinsic (muscular and metabolism mass) 

as well as extrinsic factors (changes in chest wall geometry and diaphragm position, 

and systemic metabolic factors) may alter respiratory muscle function (Gosselink et al 

2000). The mismatch between the demand for respiratory muscle work and the capacity 

to meet that demand is mainly caused by dynamic hyperinflation (DH) produced by 

the incomplete emptying of the lungs during expiration. Hence, one of the most criti-

cal factors able to impair respiratory muscle function is the pulmonary hyperinflation 

which induces the so-called intrinsic positive end expiratory pressure (PEEPi) generat-

ing an inspiratory threshold load which accounts for a higher ventilatory demand and 

a reduced tolerance during exercise. While inspiratory muscle weakness is at least 
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partially attributed to hyperinflation (placing the inspiratory 

muscles at a mechanical disadvantage), expiratory muscle 

weakness is a feature of the generalized myopathy observed 

in patients with COPD (Decramer 2001) including very low 

lactate threshold (Gallagher 1994) which in turn reduces 

muscle oxidative enzyme activities (Whittom et al 1998).

The most common forms of respiratory muscle training 

(RMT) generally include both inspiratory muscle training 

(IMT) and expiratory muscle training (EMT) component to a 

various extent. IMT assumes a prominent role in this type of 

training and the definitive role of EMT is still under debate. 

The positive influence of inspiratory muscle strengthen-

ing upon dyspnea is supported by observations on healthy 

young individuals (Volianitis et al 2001; Romer et al 2002) 

where pressure threshold IMT has also been associated 

with improved athletic performance. Two exhaustive meta-

analyses (Smith et al 1992; Lotters et al 2002) have collected 

available data from randomized trials focused on the effec-

tiveness of IMT in patients with COPD: results have shown 

a compelling body of evidence in favour of such training, 

so far included by the joint statement from the American 

College of Chest Physicians and American Association of 

Cardiovascular and Pulmonary Rehabilitation Committee 

(ACCP/AACVPR) among the recommended activities in 

the pulmonary rehabilitation programs (ACCP/AACVPR 

1997). In particular, it has also been demonstrated that plac-

ing a load on the respiratory muscle during contraction is 

sufficient in increasing strength, thus causing a meaningful 

reduction of breathlessness and an increase of physical exer-

cise ability (Lotters et al 2002). Additionally, a more recent 

trial that evaluated the 1-year effects of IMT (Beckerman 

et al 2005) provides evidence that IMT also decreases the use 

of healthcare services, which may translate into economic 

benefits as well. 

There is still debate in regards to which is the mechanism 

responsible for the enhanced inspiratory muscle force output 

(strength) following IMT. Some authors argue that inspira-

tory muscles of COPD patients are already well adapted 

to chronic loading and do not express any adaptation in 

response to training. Nonetheless, a substantial increase in 

the proportion of type I fibers (by 38%) and in the size of 

type II fibers (by 21%) of the external intercostal muscles 

have been found after IMT (Ramirez-Sarmiento et al 2002). 

These structural changes presumably represent adaptive 

effects with the genuine remodeling of inspiratory muscle 

structure during IMT.

In contrast with the plentitude of existing data inherent 

to IMT, the literature is still lacking in showing clinical and 

physiological studies related to EMT. The first and complete 

study that explored the efficacy of EMT has shown that the 

change in expiratory muscle strength and endurance and 

the six-minute walk distance were significantly greater after 

EMT compared with controls; however, this advantage did 

not translate into any significant change in the sensation 

of dyspnea during daily activities (Weiner et al 2003a). In 

another study EMT has been compared with both IMT and 

combined IMT+EMT, showing that there is no additional 

benefit in including EMT to the training of the respiratory 

muscles (Weiner et al 2003b).

Overall, the inclusion of a specific RMT in a typical 

program focused on rehabilitation of symptomatic COPD 

is recommended. 

Patient selection
So far, the general guideline consensus (ACCP/AACVPR 

1997) indicated that RMT should be considered in “selected 

patients with inspiratory muscle weakness or with ventilatory 

limitation during physical activity, who remain symptomatic 

despite optimal therapy”. 

It appears obvious that providing IMT in a patient with 

maximal inspiratory pressure (MIP) below 60 cmH
2
O, can 

allow optimal benefits for that patient. However, adding 

IMT might also benefit those patients with preserved and 

higher inspiratory muscular abilities. Similarly, highly 

trained athletes with MIP values above 120 cmH
2
O have also 

shown improvements in dyspnea and exercise performance 

(Volianitis et al 2001; Romer et al 2002). These data sup-

port the notion that since there are no known side-effects 

of IMT, this modality of training attenuates respiratory 

effort sensation irrespectively of the functional status of the 

inspiratory muscle. 

Thus it is likely that all the patients with symptomatic 

COPD (well-motivated patients with low response to other 

treatments) can benefit from RMT. To confirm this assump-

tion, the most recent consensus on pulmonary rehabilitation 

considers IMT as an “adjunctive therapy in pulmonary  

rehabilitation, primarily in patients with suspected or proven 

respiratory muscle weakness” (ATS/ERS 2006).

Although, RMT is associated with intra-thoracic decom-

pression, there are almost no side-effects associated with 

the training itself (Pardy et al 1988). Furthermore, patients 

with heart failure experience no deterioration of their cardiac 
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output during training. Hence, with the exception of patients 

with unstable asthma and low perception of dyspnea, a history 

of spontaneous pneumothorax or emphysema bubbles near 

pleura, there are no contraindications for IMT.

RMT can be delivered as an in-patient, out-patient, or 

domiciliary program setting, and it is typically administered 

and supervised by suitably trained physiotherapists. It may 

be implemented as a stand-alone intervention or as part 

of a comprehensive program of pulmonary rehabilitation. 

The domiciliary setting is generally the most convenient 

for the patient and it usually follows a period during which 

patients’ RMT is closely supervised in an in-patient or out-

patient clinic. Involvement of family members may also be 

beneficial as they can provide encouragement and sustain 

patient’s motivation. 

Techniques
The three most common used modalities of RMT in patients 

with COPD are based on breathing against resistive loading 

(RL), breathing against pressure threshold loading (PTL) and 

voluntary normocapnic hyperpnea (NH). 

Resistive loading
This method requires individuals to inspire or expire via a 

variable-diameter orifice, whereby, for a given airflow, the 

smaller the orifice the greater the load achieved. Although RL 

may improve respiratory muscle function (Aldrich and Kar-

pel 1985; Clanton et al 1985) conclusions from these studies 

should be interpreted with caution. A reasonable limitation of 

inspiratory RL is that inspiratory pressure, and consequently 

the training load, varies with flow rate according to a power 

function and not just to the orifice size (Pardy et al 1988). 

Therefore, it is crucial that the individual’s breathing pattern 

is monitored during training, thus allowing for the provision 

of a quantifiable training stimulus.

In their meta-analysis on IMT delivered on patients with 

COPD, Smith and coworkers (1992) concluded that the use 

of inspiratory RL without controlling the inspiratory flow 

rate fails to elicit significant improvement in inspiratory 

muscle function. On the other hand, several studies which 

provided feedback control of flow rate during RL resulted in 

effective benefits, with particular regard to strength, dyspnea 

and physical exercise tolerance (Harver et al 1989; Belman 

and Mittman 1991; Sanchez Riera et al 2001). Nonetheless, 

such modifications require additional hardware, because of 

the increasing cost and complexity of this type of IMT.

Pressure threshold loading
This technique requires individuals to produce a negative pres-

sure sufficient to overcome the load of the device and thereby 

initiate inspiration. Threshold loading allows variable loading 

at a detectable intensity by providing near flow independent 

resistance to inspiration. It has been achieved in several ways, 

by way of a weighted plunger (Nickerson and Keens 1982), 

a solenoid valve (Bardsley et al 1993), a constant negative 

pressure system (Chen et al 1998), or a spring-loaded poppet 

valve (Larson et al 1988; Gosselink et al 1996; Caine and 

McConnell 2000). The spring characteristics are linear such 

that a given change in spring length results in the same change 

in valve opening pressure at each spring length. The valve 

only opens when the inspiratory pressure generated by the 

patient exceeds the spring tension. Expiration is unimpeded 

and occurs via the expiratory flap valve. 

Threshold loading has been shown to induce improve-

ments in strength (Larson et al 1988; Lotters et al 2002), 

maximum rate of muscle shortening (Romer et al 2002; 

Villafranca et al 1998; Romer and McConnell 2003), maxi-

mum power output (Lisboa et al 1994; Villafranca et al 1998; 

Romer and McConnell 2003), and muscle endurance (Lisboa 

et al 1994; Weiner et al 2004). Due to its flow indepen-

dence, PTL training can be undertaken without monitoring 

the individual’s breathing pattern. In addition, PTL using a 

device with a mechanical poppet valve is both portable and 

easy to use, with evidence of efficacy when implemented in 

a domiciliary setting, as well as in long-term use (see also 

Figure 1). To cut short, although it appears to be as effective 

as RL, PTL (probably due to its simplicity, reliability and 

“user-friendliness”) has been implemented most widely, 

especially using the poppet valve method. 

Voluntary normocapnic hyperpnea
To the best of our knowledge, the NH technique has been 

applied in very few studies (Belman and Mittman 1980; 

Levine et al 1986). This method requires individuals to 

maintain high target levels of ventilation up to 30 minutes. 

To prevent hypocapnia, subjects simply rebreathe through a 

dead space. Training sessions are typically conducted 3 to 5 

times per week at about 70%–90% of maximal sustainable 

voluntary ventilation and the training effect is evaluated by 

monitoring the change in the time to exhaustion during either 

sustained or incremental isocapnic ventilation. Because the 

complicated equipment needed to prevent hypocapnia this 

technique has usually been carried on in hospital facilities 
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or research laboratory, and it has not been available for 

domiciliary purposes. 

Outcomes
Interpretation of the data relating to RMT in patients with 

COPD has been hampered by some studies with inadequate 

experimental designs; flaws have often included a failure to 

apply basic training theories. The negative outcomes of most 

studies contributed to early scepticism about the value of 

RMT. However, in the overall assessment of the respiratory 

muscle training it is also important to consider both physi-

ological (eg, respiratory muscle strength and lung function) 

and clinical responses (eg, individual’s dyspnea, exercise 

tolerance, and even quality of life). 

From the individual’s functional ability, the efficacy 

of RMT needs to be assessed in terms of inspiratory and 

expiratory muscle function. The most straight-forward non-

invasive assessment of respiratory muscle function are MIP 

and maximal expiratory pressure (MEP). These measures 

are indicative for weakness of the respiratory muscles and 

are indirectly assessed through the maximal and voluntary 

pressure generated during inspiration or expiration. To 

confirm the importance of the appraisal of the respiratory 

muscle function measurements there are updated documents 

Figure 1 A threshold loading device practically adopted for inspiratory muscle training. 
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in recent literature clarifying these aspects (ATS/ERS 2002; 

Troosters et al 2005). An argument favoring the use of MIP 

is that this functional improvement is linked to changes in 

dyspnea; additionally, it has been clearly defined that changes 

in dyspnea only occur when training results in improved 

muscle strength. This has been so far recognized in clinical 

trials (Harver et al 1989; Lisboa et al 1994). Regular monitor-

ing of MIP also provides both reassurance that patients are 

adhering to the prescribed training regimen, and the basis 

for resetting training loads: ideally, monitoring should be 

undertaken once per week. 

It is notable that a significant positive relationship exists 

between the percentage increase in MIP and the relative 

magnitude of the IMT load (Pardy and Rochester 1992), thus 

suggesting that the higher the load relative to the subject’s 

inspiratory muscle strength, the greater is the increase in 

strength achieved. The existing data suggest that to achieve 

a 20% increase in MIP, a load of ≥30% MIP is then required 

(Lotters et al 2002). The lack of effectiveness of training at 

a load <30% of MIP is supported by previous observation 

(Presseur et al 1994) showing that MIP failed to improve 

significantly after 12 weeks of IMT at a load equal to 22% 

of MIP. Reid has recommended the following parameters 

for IMT in COPD: an initial training interval as short as 3–5 

min, progressing to two 15 min or one 30 min session per 

day, 4–6 days per week at a training intensity of 40%–70% 

MIP indefinitely (Reid et al 2004). Finally, more recent stud-

ies (Sturdy et al 2003; Hill et al 2006) have examined the 

feasibility of using high-intensity, interval-based threshold 

loading IMT (a total of about 20 minutes alternating cycles 

of 2-minutes of breathing at the maximum load tolerable, 

followed by 1 minute of rest). 

The results regarding duration of MIP’s improvements 

have been studied in only one randomized trial of IMT 

(Weiner et al 2004): in this study the largest improvement 

of MIP has been recorded during the first 3 months of their 

study (32%), then followed by a smaller increase (~6%) 

in the four subsequent 3-month blocks of IMT. The early 

plateau effect of IMT has been observed so far in pathology 

(Larson et al 1988; Lisboa et al 1997) as well as in healthy 

individuals. The development of a plateau cannot be ascribed 

to a lack of load progression (increasing the training load to 

accommodate increases in MIP), since it occurs regardless 

of this measure. Instead, it is a reflection of a basic property 

of muscle adaptation to strength training stimuli, which ne-

cessitates periodic changes in the training stimulus in order 

to maintain the adaptation process. Despite the now over-

whelming evidence that RMT, and particularly IMT using 

threshold loading, produces improvements in inspiratory 

muscle function, which in turn result in functional benefits to 

COPD patients, some researchers still ascribe these improve-

ments to mechanisms other than an adaptation to a training 

stimulus. Ramirez-Sarmiento and coworkers (2002) observed 

a significant increase in the size of type 2 muscle fibres 

taking biopsies from the external intercostals muscles fol-

lowing 5-week IMT; this is very strong evidence that IMT 

induces genuine remodeling of inspiratory muscles. 

Assessments of individual’s functional capacity (in terms 

of 6-minute or 12-minute walked distance) and dyspnea 

(BDI, TDI) are measures often associated with respiratory 

muscle strength recording. The effect of RMT by isocapnic 

hyperpnea in COPD patients has been translated into benefits 

of both respiratory muscle endurance and exercise tolerance, 

concluding that “respiratory muscle endurance training … 

improves health-related quality of life” (Scherer et al 2000). 

Similar findings have been obtained using a target-flow incen-

tive spirometry system to train the inspiratory muscles, thus 

showing a significant increase of the distance walked at 6 

months with respect to controls (Sanchez Riera et al 2001).

Significant improvements are also evident in dyspnea and 

health-related quality of life. The benefits of RMT to respira-

tory breathlessness, exercise tolerance and quality of life were 

confirmed in a recent published study of RMT by threshold 

loading method in severely impaired COPD patients (Covey 

et al 2001). The improvements in inspiratory muscle strength 

and endurance, paralleled the reduction in the sense of respira-

tory effort experienced during a loaded breathing task and in 

the respiratory symptoms associated with activities of daily 

living. These respiratory muscle function benefits have also 

been recently confirmed in terms of 6-minute walked distance 

and quality of life by using a high-intensity, interval-based 

threshold loading IMT (Hill et al 2006).

Conclusions and clinical 
implications
Like other skeletal muscles, respiratory muscles undergo 

adaptation in response to stimuli overload during exercise 

training in stable COPD patients, thus resulting in signifi-

cant increases of strength and endurance and in a clinically 

significant change of dyspnea sensation at rest and during 

exercise. Three types of RMT have been reported, (resis-

tive training, pressure threshold loading, and normocapnic 

hyperpnea) with no data, at present, to support one method 

over the other.
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For a training effect, the frequency, duration, and inten-

sity of exercise must be considered. A number of factors are 

associated with successful outcomes after RMT; a training 

frequency of 1–2 times per day for a total amount of 30 

minutes, with a frequency of 3–5 days per week for a dura-

tion of 6 weeks has been suggested and may induce desired 

changes. With concern to the inspiratory load, the evidence 

supports the use of training loads that exceed 30% of MIP 

with a repetition duration dependent upon the load, as higher 

loads cannot be sustained as long as lower loads.  

While it seems that IMT is slightly superior to EMT 

in providing additional benefit other than respiratory 

muscle function such as a reduction in dyspnea, the  

effects and the safety of EMT in patients with COPD is yet 

to be elucidated. 

Therefore, actual evidence for RMT, in addition to 

regular exercise training in stable COPD patients with or 

without respiratory muscle weakness, needs to be further 

implemented. 
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