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Purpose: This study aimed to identify the COPD molecular subtypes reflecting pulmonary 
function damage on the basis of metabolism-related gene expression, which provided the 
opportunity to study the metabolic heterogeneity and the association of metabolic pathways 
with pulmonary function damage.
Methods: Univariate linear regression and the Boruta algorithm were used to select 
metabolism-related genes associated with forced expiratory volume in the first second 
(FEV1) and FEV1/forced vital capacity (FVC) in the Evaluation of COPD to 
Longitudinally Identify Predictive Surrogate Endpoints (ECLIPSE) cohort. COPD subtypes 
were further identified by consensus clustering with best-fit. Then, we analyzed the differ
ences in the clinical characteristics, metabolic pathways, immune cell characteristics, and 
transcription features among the subtypes.
Results: This study identified two subtypes (C1 and C2). C1 exhibited higher levels of lower 
pulmonary function and innate immunity than C2. Ten metabolic pathways were confirmed 
as key metabolic pathways. The pathways related to N-glycan, hexosamine, purine, alanine, 
aspartate and glutamate tended to be positively associated with the abundance of adaptive 
immune cells and negatively associated with the abundance of innate immune cells. In 
addition, other pathways had opposite trends. All results were verified in Genetic 
Epidemiology of COPD (COPDGene) datasets.
Conclusion: The two subtypes reflect the pulmonary function damage and help to further 
understand the metabolic mechanism of pulmonary function in COPD. Further studies are 
needed to prove the prognostic and therapeutic value of the subtypes.
Keywords: chronic obstructive pulmonary disease, molecular subtype, metabolic pathway, 
pulmonary function

Introduction
Chronic obstructive pulmonary disease (COPD) is characterized by persistent air
flow limitation, and is the third leading cause of death worldwide in 2017.1 It is 
widely accepted that COPD is an inflammatory lung disease that is associated with 
not only airway and lung tissue inflammation but also systemic inflammation.2 

Extensive clinical studies have shown that systemic inflammation in COPD patients 
is related to an increased risk of comorbidities,3 reduced pulmonary function,4 and 
increased mortality and exacerbations.5

Smoking remains the major risk factor leading to morbidity and death in COPD 
patients,6 in which persistent systemic inflammation caused by smoking plays a key 
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role.7,8 Clinical studies showed that patients with COPD 
caused by smoking had a higher level of systemic 
inflammation,9,10 which was associated with the severity 
of disease.11 Systemic inflammation also exists for smo
kers without airflow limitation on spirometry.12 Though 
airflow limitation on spirometry is a traditional gold stan
dard for the diagnosis of COPD, the smoke-induced lung 
damage characteristic of COPD occurs across the full 
spectrum of smokers, including those who do not meet 
the spirometric criteria for COPD.13,14 The long “preclini
cal” period often delays the diagnosis and treatment of 
COPD.15 Conventionally, the smokers as “pre-COPD” 
patients were included to identify the COPD subtypes.16

Dynamic changes in cellular metabolism diversify the 
effector functions of immune cells.17,18 Circulating mono
nuclear cells of COPD subjects were impaired in utilizing 
glucose, pyruvate and fatty acids.19,20 Preserved fatty acid 
metabolism in smokers could augment inflammatory cyto
kine response.19 Suppressed engagement of glycolysis 
leading to reduced inducible regulatory T (iTreg) cells 
could cause progressive loss of pulmonary function.22,23 

Glycine, creatine, threonine and histidine concentrations 
were inversely associated with interleukin-6 levels in 
COPD patients and non-COPD smokers.23 Following 
from this, we speculated that additional metabolic path
ways could have an important effect on immune response 
and consequently pulmonary function damage. Therefore, 
a study on metabolism-relevant molecular heterogeneity is 
necessary to refine our understanding of smoking- 
associated pulmonary function damage.

Multiple large prospective studies have generated 
a large amount of gene expression data, which have pro
vided rich resources and opportunities to understand the 
molecular heterogeneity of COPD, such as the Evaluation 
of COPD to Longitudinally Identify Predictive Surrogate 
Endpoints (ECLIPSE) study5 and the Genetic 
Epidemiology of COPD (COPDGene) study.24 Using 
machine learning methods to identify molecular subtypes 
may ultimately allow for accurate diagnosis and targeted 
therapy in COPD.25 The aim of this study was to identify 
the COPD subtypes on the basis of metabolism-related 
gene expression by a consensus clustering method, which 
can reflect the pulmonary function damage. The COPD 
subtypes provided the opportunity to study the metabolic 
heterogeneity and the association of metabolic pathways 
with pulmonary function. Two distinct subtypes were iden
tified, named C1 and C2. Then, we revealed the metabolic 

pathways, transcription features, clinical characteristics, 
and immune cell characteristics among the two subtypes.

Materials and Methods
Data Source and Processing
Raw gene expression and phenotype datasets (GSE76705, 
GSE42057) were obtained from the Gene Expression 
Omnibus database (http://www.ncbi.nlm.nih.gov/geo/), 
including the ECLIPSE5 (N=229, white) and 
COPDGene24,26 (N=135, non-Hispanic white) cohorts, which 
were downloaded using the GEOquery R package (version 
2.56.0). All the subjects were former or current smokers. All 
CEL files were under the same chip platform (Affymetrix 
GeneChip Human Genome U133 Plus 2.0 arrays). Gene 
expression data were corrected for background, RMA normal
ized, and log2-transformed using the oligo R package (version 
1.52.1).

Identification of Metabolism-Associated 
Gene Signatures
A total of 2752 metabolism-associated genes were obtained 
from previous studies, involving 114 metabolic pathways.27 

Univariate linear regression was performed to screen prelimi
narily metabolism-related genes associated with forced expira
tory volume in the first second (FEV1, % predicted) and FEV1/ 
forced vital capacity (FVC) ratio (%) in the ECLIPSE cohort. 
The Boruta algorithm28,29 with default parameters was per
formed to further screen selected genes for associations with 
FEV1 or FEV1/FVC using the Boruta R package (version 
7.0.0), which is a wrapper approach built around a random 
forest algorithm. The genes were sorted by importance and 
classified into three categories (“confirmed”, “tentative” and 
“rejected”) according to the z-scores computed by the Boruta 
algorithm. The genes classified as “confirmed” were used for 
further clustering.

Consensus Clustering
Based on the selected genes, consensus clustering was 
carried out by the cola R package (version 1.6.0) on 229 
samples of the ECLIPSE cohort.30,31 We fitted a consensus 
clustering model to identify the COPD subtypes. In gen
eral, the basic workflow of consensus clustering algorithm 
was as follows. First, the top n features were selected by 
a certain method (top-value method). Then, the matrix 
scaled by selected rows was randomly sampled, and 
these samples were partitioned by a certain partitioning 
method. Next, the process of sampling and partitioning 
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was repeated 50 times to obtain a list of partitions. Finally, 
labels of clusters were inferred from the partition list.

We used various combinations of the top-value method 
and the partitioning method to fit consensus clustering 
models with classes ranging from 2 to 6 classes.31 Top- 
value methods were used to assign scores to matrix rows, 
including the standard deviation (SD), coefficient of var
iance (CV), median absolute deviation (MAD) and ability 
to correlate to other rows (ATC) methods.31 Partitioning 
methods were used to separate samples into subgroups 
ranging from 2 to 6 classes, including hierarchical cluster
ing, k-means clustering and partitioning around medoids.

The models were assessed to determine optimal fit using 
the mean silhouette score, the proportion of ambiguous clus
tering (PAC) score, concordance, and the Jaccard index. 
Under each combination of top-value method and the parti
tioning method, the best number of subgroups was deter
mined on the basis of the following three rules. The first rule 
required that all consensus clustering models with a Jaccard 
index larger than 0.95 be removed. The second rule required 
that the maximal number of subgroups be taken as the best 
number, for consensus clustering models with 1-PAC scores 
larger than 0.9. The third rule required that the best number 
of the subgroup was identified by the majority vote among 
the highest 1-PAC score, the highest mean silhouette, and the 
highest concordance, if the second rule was not fulfilled.

To assess the generalizability of the subtypes learned 
from the ECLIPSE dataset, we transferred these selected 
gene signatures to the COPDGene dataset for clustering 
using the same top-value and partitioning methods as the 
best fit used in the ECLIPSE dataset.

Single Sample Gene Set Enrichment 
Analysis
Single-sample gene set enrichment analysis (ssGSEA)32 

was used to calculate the enrichment score (metabolism 
score) of each metabolic pathway gene set for each sample 
in the ECLIPSE dataset. The relationship between meta
bolic score and FEV1/FVC was evaluated by univariate 
linear regression, and the differences in metabolic scores 
among different subtypes were evaluated using the limma 
R package (version 3.44.1).

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was performed 
using the clusterProfiler R package (version 3.16.0)33 and 
the ReactomePA R package (version 1.32.0)34 for GO-BP 

(Gene Ontology - Biological Process), KEGG (Kyoto 
Encyclopedia of Genes and Genomes) pathways and 
Reactome pathways. P-values were corrected with the 
Benjamini-Hochberg (BH) method. A BH-adjusted P < 
0.05 was considered to be significant.

Differential Expression Analysis
Differentially expressed genes (DEGs) were assessed using the 
limma R package (version 3.44.1) on RMA normalized 
expression values. The Benjamini-Hochberg (BH) method 
was applied to correct the p-values. All genes were divided 
into two gene lists, upregulated genes (log2-fold change>0, 
BH-adjusted p < 0.05) and downregulated genes (log2-fold 
change<0, BH-adjusted p < 0.05), and were sorted in reverse 
order according to the absolute value of log2-fold change 
(logFC). The gene lists in the ECLIPSE and COPDGene 
datasets were combined into a single ranking prioritized gene 
list using the robust rank aggregation (RRA) method via the 
RobustRankAggreg R package (version 1.1).35 Genes with an 
RRA score <0.05 were considered robust and important.

Abundance Analysis of Immune Cells
The abundance levels of 24 types of immune cells (18 T cell 
subsets) in blood were estimated via Immune Cell 
Abundance Identifier (ImmuCellAI), which is a tool to esti
mate the abundance of immune cells from the whole gene 
expression profile of blood based on ssGSEA and compensa
tion matrix.36 The abundance difference was tested using the 
limma R package (version 3.44.1). The Pearson product 
moment correlation coefficient was used to determine the 
correlation between the key metabolic pathways and immune 
cell abundance by the Hmisc R package (version 4.4–1).

Other Statistical Analyses
All analyses and data plotting were performed using 
R software (version 4.0.2) and RStudio for Windows. 
T-tests were used to test for differences between two 
groups using the ggpubr R package (version 0.4.0). 
A p-value <0.05 was considered statistically significant.

Results
Nineteen Metabolism-Related Genes 
Associated with Pulmonary Function 
Were Identified to Be the Basis for 
Clustering
We applied a method with two steps inspired by the ideas 
of a hybrid approach to select genes associated with FEV1 
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or FEV1/FVC. First, 442 FEV1-related genes (168 genes 
met “p-value <0.05” adjusted by BH method) and 1638 
FEV1/FVC-related genes (292 genes met “p-value <0.05” 
adjusted by BH method) were preliminarily identified 
from 2752 metabolism-related genes by univariate linear 
regression. Then, the Boruta algorithm was used to iden
tify 13 genes related to FEV1 and 13 genes related to 
FEV1/FVC. Finally, the 19 union set genes were selected 
as the metabolism-associated gene signatures used to per
form consensus clustering analysis (Supplementary 
Table 1). The detailed performance profiles of 19 genes 
in different selection processes are shown in Figure 1.

Consensus Clustering Identified Two 
Metabolism Subtypes in COPD
Because the 1-PAC scores generated were all less than 0.9, 
we actually came to the conclusion by following the third 
rule, namely, that the best parameter combination is consid
ered to be k-means and ATC (Supplementary Table 2, 
Supplementary Figure 1). Consensus clustering based on 
19 selected metabolism-related genes identified two optimal 
subtypes that we refer to herein as C1 and C2. There were 
124 samples in the C1 and 105 in the C2. To reproduce and 
verify ECLIPSE clusters in COPDGene, two clusters based 
on 19 identical genes were identified using consensus 

Gene
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PIK3C2B
GPX7
SCLY
AHCYL2
ENPP1
ST8SIA1
B3GALT2
HDC
HSD3B7
CA8
UPB1
ADCY4
ETFA
UPP1
PFKFB4
GLA
ATP6AP1
ACAA1

ß(95%CI)
40.91 (26.34, 55.48)
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Figure 1 Selected metabolism-associated gene signatures. (A) Forest plot of the association between the selected gene and forced expiratory volume in the first second 
(FEV1). (B) Attribute importance of selected genes related to FEV1 based on Boruta feature selection. (C) Forest plot of the association between the selected gene and 
FEV1/forced vital capacity (FVC) ratio. (D) Boxplot showing the attribute importance of selected genes related to the FEV1/FVC ratio based on Boruta feature selection.
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clustering with the parameter combination of k-means and 
ATC in the same manner as the ECLIPSE clustering. There 
were 64 samples in the C1 and 71 in the C2.

To assess the assignments of subtypes, we performed 
PCA showing that the two subtypes were distributed in 
different corners of the two-dimensional coordinate sys
tems (Figure 2A and B, Supplementary Figure 2A and B). 
In addition, a consensus matrix with a clear border 
(Figure 2C, Supplementary Figure 2C) displayed the sta
bility of the two subtypes.

We tested the differences in FEV1 and FEV1/FVC 
between the two subtypes to validate whether the two 
subtypes were significantly associated with pulmonary 
function. The results in the training set (ECLIPSE dataset) 
demonstrated that the proportion of samples in FEV1 (% 
predicted), GOLD grade and the FEV1/FVC ratio were 

significantly different within the 2 subtypes (Figure 2D, 
Supplementary Table 3). Consistently, the difference in 
FEV1, GOLD grade and FEV1/FVC within 2 subtypes 
of the validation set also had significance (Figure 2D, 
Supplementary Table 4). From the above analysis, C1 
showed a more severe degree of airflow limitation than 
C2. After correcting for age and sex, the subtypes (C1 vs 
C2) were also significantly associated with FEV1 
(ECLIPSE, β = 18.20, 95% CI = 9.55 to 26.86, p = 
4.84e-05; COPDGene, β = 11.40, 95% CI = 1.96 to 
20.84, p = 0.0183) or FEV1/FVC (ECLIPSE, β = 11.49, 
95% CI = 6.30 to 16.67, p = 1.95e-05; COPDGene, β = 
9.87, 95% CI = 4.25 to 15.48, p = 6.88e-04) in the 
ECLIPSE and COPDGene datasets. C1 accounted for 
a more portion of the COPD patients than C2 
(Supplementary Table 5). The results were the same 

BA D

-5

0

-5 0 5
Dim1 (31.8%)

C1

C2

D
im

2 
(1

1%
)

Class

C

p1 p2

S
ilh

ou
et

te

C
la

ss

F
E

V
1

F
E

V
1

F
V

C
A

ge
G

en
de

r
P

ac
ks

Prob

0

0.5

1

Silhouette

0

0.5

1

Class
C1
C2

Consensus

0

0.5

1

FEV1

0
50
100
150

FEV1 FVC

20
40
60
80
100

Age

40
50
60
70
80

Gender

Female

Male

Packs

0
50
100
150
200

B3GALT2

ENPP1

CA8

ST8SIA1

HSD3B7

UPB1

HDC

ADCY4

GPX7

AHCYL2

SCLY

PIK3C2B

ETFA

GLA

ACAA1

PFKFB4

UPP1

ATP6AP1

ST6GAL1

2.5 5.0 7.5 10.0
Gene Expression

G
en

e

C1

C2

0.0086

0.00017

0.083

0.93

C1 C2

C1 C2

C1 C2

C1 C2

50

100

0.2

0.4

0.6

0.8

50

60

70

80

40

80

120

COPDGene

2.4e-06

1.9e-07

3.4e-05

0.06
Packs-years

Age (years)

FEV1/FVC (%)

FEV1 (%predicted)

C1 C2

C1 C2

C1 C2

C1 C2

40

80

120

160

25

50

75

100

40

50

60

70

50

100

150

200

ECLIPSE

Figure 2 Identification of two metabolism related-subtypes. (A) Principal component analysis displaying the distribution of two subtypes in the ECLIPSE dataset. (B) Multiple 
density plot showing the distribution of 19 selected genes on two subtypes in the ECLIPSE dataset. (C) Consensus matrix visualizing the stability of the two subtypes in the 
ECLIPSE dataset. The labels “p1” and “p2” refer to the probability of the sample staying in C1 and C2, respectively. The label “Prob” refers to the probability of the sample 
staying in the corresponding subgroup. The label “Packs” refers to the pack-years of cigarette smoking. (D) Differences in clinical characteristics between the two subtypes in 
the ECLIPSE and COPDGene datasets.
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when correcting for age, sex, BMI and current smoking 
status (Supplementary Table 6). In addition, we found that 
six-minute-walk distance, emphysema and gas trapping 
were significantly different within the 2 subtypes in the 
COPDGene datasets (Supplementary Table 4).

To assess the association between subtypes and exacer
bation risk, we collected the three gene signatures asso
ciated with exacerbation risk from previous studies 
(Supplementary Table 7).37,38 In a comparison, the 
ssGSEA scores of the three gene signatures suggested 
that C1 tended to be associated with a higher exacerbation 
risk (Supplementary Figures 3 and 4). Similarly, we could 
infer indirectly that C1 tended to be associated with 
a faster pulmonary function decline, according to the 
higher expression of CCR1 and TLR5 (Supplementary 
Figure 5).39

Correlation of the COPD Subtypes with 
Metabolic Pathways
The matrices of gene expression profiles (20,174 genes) in 
the ECLIPSE and COPDGene datasets were transformed 
separately into the matrices of ssGSEA scores based on 
the gene sets collected from previous literature,27 of which 
the rows consisted of 114 metabolism pathways and the 
columns consisted of the 229 and 135 patient samples in 
the ECLIPSE and COPDGene datasets.

We have provided a flow diagram depicting the pro
cesses of identifying the key pathways for the two sub
types and pulmonary function (Supplementary Figure 6). 
Univariate linear regression analysis was performed sepa
rately for the ECLIPSE and COPDGene datasets to iden
tify the metabolic pathways associated with FEV1/FVC, 
which identified 61 metabolic pathways in the ECLIPSE 
dataset and 35 in the COPDGene dataset (Supplementary 
Figure 8). There were significant differences in metabolic 
pathways between these two subtypes, including 85 path
ways in the ECLIPSE dataset and 68 pathways in the 
COPDGene dataset. The intersection of the above four 
results revealed that the 17 pathways overlapped. As 
shown in Figure 3A and B, the direction of the correlation 
and ssGSEA score difference displayed excellent consis
tency between the two datasets, except for “arginine 
biosynthesis”.

Then, the importance of 16 metabolic pathways (except 
for “arginine biosynthesis”) was estimated by the Boruta 
algorithm, which showed that 8 pathways were confirmed 
as key pathways, namely, “N-glycan biosynthesis”, 

“thromboxane biosynthesis”, “hexosamine biosynthesis”, 
“estradiol biosynthesis”, “purine biosynthesis”, “glycosa
minoglycan degradation”, “sulfur metabolism” and “ala
nine, aspartate and glutamate metabolism” (Figure 3D).

An identical data analysis workflow was used to iden
tify the key pathways for the two subtypes and FEV1 
values. This result showed that 6 pathways were confirmed 
as key metabolic pathways, namely, “thromboxane bio
synthesis”, “purine biosynthesis”, “sulfur metabolism”, 
“testosterone biosynthesis”, “alanine, aspartate and gluta
mate metabolism” and “retinoic acid metabolism” 
(Supplementary Figures 7 and 9). While there were only 
4 key pathways as overlapping metabolic pathways related 
to FEV1 and FEV1/FVC in the two datasets, all of 10 key 
pathways were simultaneously associated with FEV1 and 
FEV1/FVC in the ECLIPSE dataset (Supplementary 
Figure 10). As seen above, all of 10 key pathways were 
seen as pathways reflecting the pulmonary function 
damage to perform the subsequent analyses.

Correlations of the COPD Subtypes with 
Immune Cell Abundance
Immune cell abundance in peripheral blood was estimated 
based on all genes in the gene expression profile, which 
reflected the systemic inflammatory state. Difference in 
abundance levels of 14 immune cells was significant and 
stable between the two subtypes in the two datasets 
(Figure 4A and C). C1 had higher abundance levels of 
neutrophils, monocytes, macrophages, dendritic cells 
(DCs), natural killer T (NKT) cells and follicular 
B helper T (Tfh) cells, and lower abundance levels of 
central memory T (Tcm), naive CD4+ T cells, T helper 2 
(Th2) cells, naive CD8+ T cells, CD8+ T cells, type 1 
regulatory T (Tr1) cells, B cells, and γδT cells (Tgd) 
than C2.

In addition, the relationship between key pathways and 
immune cells was also analyzed, and the correlation 
matrix of the ECLIPSE and COPDGene datasets showed 
similar clustering trends (Figure 4B and D). Metabolic 
pathways clustered into two groups based on the correla
tion with immune cells. The first group tended to be 
positively associated with the abundance of adaptive 
immune cells (eg, CD8+ Tn, CD4+ Tn, Tr1) and negatively 
associated with the abundance of innate immune cells (eg, 
neutrophils, monocytes, and macrophages), including 
“N-glycan biosynthesis”, “hexosamine biosynthesis”, 
“purine biosynthesis” and “alanine, aspartate and 
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glutamate metabolism”. The second group displayed oppo
site tendencies to group 1, including “thromboxane bio
synthesis”, “estradiol biosynthesis”, “glycosaminoglycan 
degradation” and “sulfur metabolism”.

Correlations of the COPD Subtypes with 
Transcription Features
To identify the DEGs common to the two datasets, we per
formed differential expression analysis between C1 and C2 in 
the two datasets, and the results were integrated into a list of 
upregulated and downregulated genes by the RRA method. 
The top 5 downregulated genes sorted by RRA score were 
ENPP5, CENPK, SLAIN1, THEMIS, and PLEKHG1, and the 
top 5 upregulated genes sorted by RRA score were LRG1, 
IL1R2, CA1, ADAMTSL4 and AHSP (Supplementary Table 8). 
By mapping gene expression data to the pathway, the heatmap 
displayed DEGs (C1 vs C2) with overlapping of two datasets 
in the 10 key metabolic pathways (Figure 5C and D).

To identify metabolism-related DEGs between healthy 
smokers and COPD patients in the two datasets, we 
applied a similar approach, as described in the previous 
section. The 13 DEGs sorted by RRA score from small to 
large (Supplementary Figure 11, Supplementary Table 9), 
including 5 upregulated genes (ADCY4, PFKFB4, 
TBXAS1, GAA and OPLAH) and 8 downregulated genes 
(B3GALT2, ST8SIA1, HS3ST3B1, PDE7A, B3GLCT, 
NT5E, AGL and INPP4B).

Besides, GSEA results of two datasets (C1 vs C2) 
supported the results of the immune cell abundance ana
lysis (Supplementary Figure 12, Supplementary Tables 10 
and 11).

Discussion
Clustering algorithms are most useful and commonly used 
method in exploratory analyses of COPD subtypes; how
ever, they also face a challenge, which is whether the 
subtypes are reproducible.40 To address this challenge, 
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two metabolism-related subtypes were identified by con
sistent clustering, of which robustness and repeatability 
were confirmed by verification across datasets. Previous 
studies have screened 328 probes related to FEV1 or 
FEV1/FVC from the COPDGene dataset and identified 4 
subtypes based on systemic inflammation state by non- 
negative matrix factorization (NMF) and network-based 

stratification (NBS).16 In this study, we identified two 
highly robust and repeatable subtypes by consensus clus
tering based on 19 selected metabolism-related genes, 
which underwent rigorous validation across datasets.

Systemic inflammatory network pattern is known as 
“inflammome”, categorized into 6 categories (innate-TNF 
dominant, innate-IFN dominant, innate-inflammasome 
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dominant, adaptive-T cell centric, adaptive-B cell centric, 
reverse-phase immunity).41 Taking all the above results 
together, C1 had a higher level of innate immunity asso
ciated with TNF, IFN and inflammasome, and a lower 
level of adaptive immunity associated with T and B cells. 
The proportion of neutrophils increases and lymphocytes 
decreases were regarded as a marker of increased COPD 
severity and pulmonary function damage.42

What we were greatly interested in was the differences 
in the exacerbation risk and pulmonary function decline 

between the two subtypes of patients. Because of the lack 
of relevant clinical phenotype data, we could only infer 
indirectly. The differences in the ssGSEA scores from 
three gene signatures suggested that C1 had a higher 
exacerbation risk than C2. And, previous studies have 
found that lower adaptive systemic immunity might be 
associated with exacerbation susceptibility,43 which is con
sistent with our result. Furthermore, two lines of evidence 
suggested that C1 had a faster pulmonary function decline 
than C2. First, more severe emphysema,44 higher 
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Figure 5 Correlations of the COPD subtypes with transcription features in the ECLIPSE dataset. (A) Volcano plot showing all differentially expressed genes (DEGs) with an 
RRA score<0.05 between two subtypes in the ECLIPSE dataset. The top 10 upregulated and downregulated genes ranked by RRA score are labelled in the figure. (B) 
Volcano plot showing all differentially expressed genes with an RRA score<0.05 between the two subtypes in the COPDGene dataset. (C) Heatmap displaying DEGs from 10 
metabolic pathways in the ECLIPSE dataset. (D) Heatmap displaying DEGs from 10 metabolic pathways in the COPDGene dataset. The genes with overlapping of two 
datasets are highlighted by black border.
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neutrophil proportions,42,45 lower lymphocyte 
proportions42 were associated with a rapid pulmonary 
function decline in COPD. Second, the higher gene 
expression of genes in the pathogen recognition pathways 
was related to faster pulmonary function decline, such as 
TLR5 and CCR1.39

What is curious about our results is that other metabo
lites in immune cells could play a prominent role in 
COPD, including N-glycan, hexosamine, glycosaminogly
can, sulfur, thromboxane, retinoic acid, estradiol, purine, 
alanine, aspartate and glutamate. In particular, N-glycan 
biosynthesis was seen to be the most critical pathway 
positively associated with FEV1/FVC by Boruta, which 
showed significant positive correlation with FEV1 in the 
ECLIPSE dataset. By mapping gene expression data to the 
N-glycan biosynthesis pathway, FUT8, ST6GAL1 and 
STT3B was found to be the downregulated gene with 
overlapping of two datasets, which can directly modify 
the N-glycan core and drive the N-glycosylation.46 

N-glycosylation is important for the function of cell sur
face receptors. Several studies have reported that 
decreased FUT8 expression is associated with a decline 
in airflow limitation and frequent exacerbations in COPD 
patients and results in copious amounts of MMP-9 
secretion.47,48 In addition, there is an argument that the 
cell surface expression of glycoproteins with a few 
N-glycans exhibits high association with hexosamine con
centration, such as TGFBR2.49

In addition, we observed a contrary tendency to the 
N-glycan biosynthesis pathway that in which the throm
boxane biosynthesis pathway was negatively associated 
with the FEV1/FVC ratio and FEV1. It is known that the 
biosynthesis of thromboxane is enhanced in COPD.50 The 
high expression of TBXAS1 in C1 suggested that the level 
of thromboxane A2 might be upregulated in peripheral 
blood of C1 patients, which could result in increased 
inflammatory response.51 This interpretation was sup
ported by the relationship between the ssGSEA score of 
the thromboxane biosynthesis pathway and innate immune 
cell abundance (neutrophils, monocytes and 
macrophages).

We continued to explore the expression difference in 
metabolic genes between COPD patients and healthy smo
kers. Searching the GWAS Catalog (https://www.ebi.ac. 
uk/gwas/), we found that there were significant associa
tions between FEV1/FVC and two SNPs at the ST8SIA1.52 

ST8SIA1 is the enzyme regulating the biosynthesis of 
Gangliosides GD3 and GT3. Same as ST6GAL1, 

ST8SIA1 encodes the enzyme with sialyltransferases 
activity, which was downregulated in COPD patients and 
positively associated with FEV1 and FEV1/FVC. 
Interestingly, in both human and mouse autoimmune dis
ease studies, hyposialylation is considered to be responsi
ble for chronic inflammation.53 The hyposialylation may 
represent a novel mechanism of systemic inflammation 
and pulmonary function damage.

In this study, four limitations must be considered. 
Firstly, clinical samples of larger size are urgently needed 
to verify our subtypes. Secondly, this is a gene expression 
study with annotation to metabolic pathways and not 
a metabolomic study. An integrative approach of metabo
lomics and transcriptomics is important to understand the 
mechanism differences among the two metabolism-related 
subtypes in COPD. Thirdly, the lack of clinical data limits 
our understanding of the clinical characteristics of the 
subgroups. We can only infer the differences between 
subtypes indirectly through bioinformatics methods, such 
as exacerbation frequency and pulmonary function 
decline. But there is still some clinical information that 
we cannot infer, such as the inhaled medication regimens. 
Fourth, the ECLIPSE dataset excluded asthma patients, 
while the COPDGene dataset included asthma patients. 
This might be the reason why the results of the two 
datasets were slightly different.

Conclusion
In summary, our work identified the two subtypes reflect
ing pulmonary function damage, which furthered the 
understanding of the metabolic mechanism of pulmonary 
function damage in COPD. Future work is needed to 
further performed population genetics analyses, pre- 
clinical and clinical study to address the question of 
whether COPD subtypes may provide valuable insights 
of accurate diagnosis, and whether the key pathways may 
serve as potentially druggable targets.

Data Sharing Statement
Publicly available datasets were analyzed in this study. 
This data can be found here: GEO (https://www.ncbi. 
nlm.nih.gov/geo). ECLIPSE and COPDGene datasets 
were from GSE76705, which was from the GPL570 plat
form (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE76705). The code of this study is available from 
GitHub at https://github.com/YuanlongHu/COPDSubtype.
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