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Abstract: There is a rise in the number of people who have vision loss due to retinal 
diseases, and conventional therapies for treating retinal degeneration fail to repair and 
regenerate the damaged retina. Several studies in animal models and human trials have 
explored the use of stem cells to repair the retinal tissue to improve visual acuity. In addition 
to the treatment of age-related macular degeneration (AMD) and diabetic retinopathy (DR), 
stem cell therapies were used to treat genetic diseases such as retinitis pigmentosa (RP) and 
Stargardt’s disease, characterized by gradual loss of photoreceptor cells in the retina. 
Transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem 
cells (ESCs) and induced pluripotent stem cells (iPSCs) have shown promising results in 
improving retinal function in various preclinical models of retinal degeneration and clinical 
studies without any severe side effects. Mesenchymal stem cells (MSCs) were utilized to 
treat optic neuropathy, RP, DR, and glaucoma with positive clinical outcomes. This review 
summarizes the preclinical and clinical evidence of stem cell therapy and current limitations 
in utilizing stem cells for retinal degeneration. 
Keywords: retinal degeneration, retinal pigment epithelial cells, mesenchymal stem cells, 
embryonic stem cells, induced pluripotent stem cells, retinitis pigmentosa

Introduction
Retinal degeneration is one of the major reasons for vision loss, and stem cell 
therapy has been extensively investigated to repair and regenerate damaged retinal 
cells. Several types of stem cells have been tested in preclinical and clinical trials to 
understand their efficiency in reversing retinal degeneration. To date, human 
embryonic stem cells (hESCs)-, induced pluripotent stem cells (iPSCs)-derived 
RPE cells, mesenchymal stem cells (MSCs) and retinal progenitor cells (RPCs) 
have been tested in addition to paracrine factors and exosomes derived from MSCs.

Conventional therapies for retinal diseases slow the progression of the diseases; 
however, the long-term benefit is achieved by repairing and regenerating the damaged 
retinal tissue. Moreover, since the retina does not have intrinsic regenerative properties, 
stem cell therapies have been sought to repair and regenerate the damaged retina.1 

Several preclinical and clinical studies have demonstrated that transplantation of stem 
cells and factors derived from stem cells produce clinically measurable improvement. 
This review will discuss the different stem cells utilized to treat retinal diseases and the 
clinical benefits and challenges in utilizing stem cells to treat retinal degeneration.

The etiology of retinal degenerative diseases includes genetic and non-genetic 
factors leading to the loss of photoreceptor cells and eventually the RPE cells. Age- 
related macular degeneration (AMD) is one of the most common forms of vision loss, 
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which might either be due to degradation of RPE cells (dry 
AMD) or choroidal neovascularization (wet AMD). Wet 
AMD is treated with anti-VEGF therapy, which can lead to 
clinical improvement in vision.2,3 In contrast, fewer thera-
peutic options are available to improve the vision in patients 
with dry AMD. Retinitis pigmentosa (RP) occurs due to 
autosomal4 or X-linked mutations, which contribute to the 
degeneration of photoreceptors leading to vision loss. FDA- 
approved therapeutic interventions for RP include gene ther-
apy for patients with a biallelic mutation in RPE655 and 
retinal prosthesis for late-stage RP.6 Diabetic retinopathy 
(DR) is caused due to chronic hyperglycemia and is treated 
with anti-VEGF to limit the neovascularization at the pro-
liferative stage or late-stage DR.7 Although these conven-
tional therapies have improved the disease prognosis, 
repeated administration is required to diminish the disease 
progression, and gene therapy is applicable only for those 
patients with vision loss due to specific mutations.

Stem Cells for Retinal Diseases
Stem cells were tested in several clinical trials, and the 
approaches include transplantation of undifferentiated 
stem cells, pre-differentiated stem cells, or stem cell- 
derived factors. Several studies and clinical trials have 

utilized RPE cells derived from hESCs or iPSCs, and 
MSCs derived from various tissue sources and tested 
their retinal regenerative potential. Here, we have summar-
ized and analyzed the potential of each cell type for the 
treatment of retinal disorders.

Preclinical Studies with Stem Cells
ESCs
ESCs, due to their extensive proliferative and differentia-
tion potential, have been used as a cell source to treat 
various degenerative diseases, including retinal degenera-
tion. Subretinal transplantation of hESC-derived RPE cells 
in a preclinical mouse model of AMD showed no tumor 
growth with the transplanted cells detected at the injection 
site seven months after injection,8 and some injected cells 
formed an RPE monolayer above the native layer.9 In 
a similar study, RPCs derived from hESCs integrated 
into the mouse ganglion cell layer (GCL), expressed ret-
inal ganglion cells (RGCs) marker Brn3a,10 and outer 
nuclear layer (ONL) thickness increased in the injected 
animals.11 In a study involving non-human primates, sub-
retinal transplantation of hESC-derived retinal organoids 
was well tolerated and the transplanted cells integrated 
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into the retinal layer in the injury site created by laser 
ablation.12

iPSCs
iPSCs, similar to ESCs, have pluripotent differentiation ability 
but without ethical concerns. The human iPSC-derived retina 
was transplanted into the subretinal space of monkeys with 
laser-induced retinal injury and immune-deficient rats with RP. 
The transplanted cells integrated into the rat retina and formed 
synaptic connections with the host bipolar cells. In the monkey 
model, the transplanted cells integrated into the host retinal 
layer and improved electroretinogram (ERG) and visual 
guided saccade (VGS) scores were observed.13 Similarly, in 
an RP mouse model, subretinal transplantation of iPSC- 
derived RPE spheroids delayed thinning of retinal ONL, 
increased pigment epithelium-derived factor (PEDF) levels, 
reduced the number of apoptotic cells as well as microglial 
infiltration in the retina.14 In Royal College of Surgeons (RCS) 
rats with an inherited mutation of MER proto-oncogene tyr-
osine kinase (MERTK) gene as a model of retinal degenera-
tion, subretinal transplantation of iPSC-derived RPE cells 
significantly rescued visual function as measured by optoki-
netic tracking thresholds (OKT). None of the animals showed 
abnormal proliferation or teratoma formation; however, the 
graft was compromised in two animals due to inflammatory 
response.15 Interestingly, co-transplantation of RPCs and RPE 
cells derived from iPSCs was superior to transplanting indivi-
dual cell types, it resulted in better visual response and pre-
servation of ONL in a rat model of retinal degeneration.16

Further, in an animal model of RP, subretinally transplanted 
iPSC-derived CRX-expressing photoreceptor precursors 
engrafted at the inner nuclear layer (INL). The transplanted 
cells expressed the pan cone marker, Arrestin 3, indicating 
further maturation.17 In a preclinical study with rats and pigs, 
iPSCs obtained from AMD patient CD34+ cells, when differ-
entiated into RPE cells, integrated and rescued the retinal 
degeneration. In this study, the authors found that, compared 
to suspension cells, ten times fewer RPE cells were required to 
achieve the same therapeutic effect when transplanted as 
a monolayer. Whereas RPE cells transplanted as cell suspen-
sion failed to integrate into the rat RPE layer, poly (lactic-co- 
glycolic acid) (PLGA) based scaffold facilitated the integration 
of transplanted RPE patch into the rat Bruch’s membrane.18 

Stem cell-based therapies have also been explored as an option 
to treat retinal ischemic injuries with abnormal endothelial 
progenitor cells (EPCs) prevalent in diabetic patients. hiPSC- 
derived endothelial cells alleviated oxygen-induced retinal 

injury in mouse models and reduced pathological vaso- 
obliteration and neovascular tufts.19

MSCs
MSCs have been studied extensively for their potential in the 
treatment of several retinal disorders. Here, we have discussed 
some recent reports that utilized MSCs in the preclinical mod-
els of retinal degeneration. Human dental-pulp-derived MSCs 
(DP-MSCs) on intravitreal transplantation improved the retinal 
function in a rat model of retinal degeneration,20 and rat bone 
marrow-derived MSCs (BM-MSCs) rescued the ONL thick-
ness by enhancing autophagy.21 Intravitreal injection of umbi-
lical cord-derived MSCs (UC-MSCs), and the exosomes 
derived from UC-MSCs suppressed inflammatory response, 
retinal damage and improved the visual functions in a mouse 
model of retinal injury.22 Injection of mouse BM-MSCs or 
paracrine factors derived from BM-MSCs into the anterior 
ocular chamber induced proliferation of progenitor cells in 
the ciliary body and promoted ocular regeneration and repair 
in a glaucoma mouse model.23 Similarly, conditioned media 
(CM) from BM-MSCs containing the paracrine factors signif-
icantly reduced the intraocular pressure (IOP) and protected 
the host RGCs.24 Intravenous injection of UC-MSCs reduced 
diabetes-associated microvascular leakage in the retina by 
upregulating the expression of tight junction protein 
occludin.25 In a streptozotocin-induced diabetic mouse model 
of DR, intravitreal injection of adipose tissue-derived MSCs 
(AD-MSCs) increased intraocular levels of neurotrophic fac-
tors and prevented the loss of RGCs.26

Several studies have analyzed the potential of MSC- 
derived factors, cells, and engineered MSCs to repair the 
damaged retina. Extracellular vesicles derived from human 
BM-MSCs significantly protected RGCs and prevented retinal 
nerve fiber layer thinning in a preclinical rat model of 
glaucoma.27 Injection of the stromal fraction of adipose tissue, 
which is enriched with pericytes, decreased vascular leakage, 
apoptosis and improved the “b” wave amplitude in a DR 
mouse model.28 Similar reductions in vascular leakage and 
improvements in visual acuity were observed when CM 
derived from human AD-MSCs were intravitreally injected 
in Ins2Akita mouse model of DR.29 Murine BM-MSCs geneti-
cally modified to produce neurotrophin-4 preserved the retinal 
bioelectrical activity in the injured retina and completely 
restored the laminated organization of the outer retina in an 
RP animal model.30 Similarly, BM-MSCs genetically engi-
neered to express C-X-C chemokine receptor type 4,31 or 
PEDF32 significantly reduced the retinal damage, reduced the 
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level of pro-inflammatory cytokines, and restored the retinal 
structure and function in DR disease models. Interestingly, the 
administration of neural stem cells derived from UC-MSCs 
significantly improved the vision and survival of RGCs in 
diabetic rats.33

Clinical Trials with Stem Cells
The encouraging results obtained from preclinical studies 
led to several clinical trials utilizing various stem cells and 
their derivatives.

ESCs
In an interim report on Phase I/IIa clinical trial 
(NCT02286089) of 12 patients with advanced dry age- 
related macular degeneration (AMD) and geographic atrophy 
(GA), Banin et al reported that hESC-derived RPE cells were 
well tolerated in patients when administered along with sys-
temic immunosuppression before transplantation. 
Transplanted cells were detected in the subretinal space during 
long-term follow-up, and improvement in the RPE layers at the 
GA border was observed.34 Similarly, transplantation of 
hESC-derived RPE cells in AMD and Stargardt macular dys-
trophy (SMD) patients resulted in significant improvement in 
visual acuity without any abnormal proliferation.35,36 A recent 
update by Riemann et al on the fourth cohort of patients in 
phase I/IIa clinical trial (NCT02286089) reported visual 
improvements and alterations in the appearance of drusen in 
the treated patients. However, formation of epiretinal mem-
branes (ERM) and retinal detachment was observed in some 
patients, which were successfully treated.37 In another clinical 
trial that tested the feasibility of utilizing ESC-derived RPE 
cells for retinal degeneration, da Cruz et al reported improved 
visual acuity in two patients with severe exudative AMD after 
subretinal transplantation. However, one of the patients experi-
enced a reduction in photoreceptor function during the follow- 
up period, and the other patient had retinal detachment, which 
might or might not be related to the surgical procedure.38

iPSCs
Although ESC-derived RPE cells were functional and patients 
showed improvements in visual acuity, transplantation of ESC- 
derived cells requires local or systemic immunosuppression. 
With the recent utilization of iPSCs to treat several disorders, 
Mandai et al reported interesting outcomes in the clinical trials 
with transplantation of iPSC-derived RPE cells. Autologous 
transplantation of iPSC-derived RPE cells in a patient with 
advanced neovascular AMD was well tolerated, and although 
the transplanted cell layer was intact, no improvement in the 

visual acuity was observed one year after the transplantation.39 

A four-year follow-up on the same patient found that the 
transplanted cells supported the photoreceptors, and the visual 
acuity remained stable without anti-VEGF administration.40

MSCs
Mesenchymal stem cells (MSCs) and their derivatives were 
tested in numerous preclinical and clinical trials to treat retinal 
disorders. In Phase I clinical trial on 4 Asian patients with 
traumatic optic neuropathy, Sung et al found that sub-tenon 
transplantation of human placenta-derived MSCs (PD-MSCs) 
was safe without any adverse inflammatory or proliferative 
side effects. PD-MSCs had a protective effect on RGCs, res-
cued the expression of Tuj1 and GFAP, which was concurrent 
with improved visual acuity.41 In a non-randomized phase 
I clinical trial of 14 patients with RP, autologous BM-MSCs 
were transplanted intravitreally, and the improvement in visual 
function was assessed between 1 and 7 years. Immediately 
after transplantation, an increase in IOP was observed in all the 
patients that returned to baseline after 24hr. All the participants 
showed improvement in BCVA (best-corrected visual acuity) 
a few months after transplantation; however, it returned to 
baseline within 12 months, and no further deterioration of the 
condition was observed. One of the participants developed 
a condition called osseous metaplasia in the ciliary body in 
the third year of follow-up, and another patient developed 
intraocular lens (IOL) subluxation in the fourth year.42

In Phase III clinical trial, Kahraman et al transplanted UC- 
MSCs into the suprachoroidal area of 82 RP patients involving 
124 eyes. At a 6-month follow-up, 46% of eyes experienced an 
improvement in the vision, 42% of eyes remained stable, and 
12% of eyes had the condition worsening, but none experi-
enced adverse events.43 Similarly, in a phase I/II clinical trial of 
32 RP patients, when UC-MSCs were administered intrave-
nously, 90.6% of patients had improved visual acuity at 12- 
months follow-up. None of the patients experienced adverse 
effects; however, the average visual field sensitivity and flash 
visual evoked potential remained the same for all the patients 
following the transplantation.44 Several other clinical trials in 
RP patients reported improved visual acuity or significant 
changes when BM-MSCs were transplanted.45 In phase III 
clinical trial on 32 patients involving 34 eyes with RP, sub- 
tenon transplantation of Wharton’s jelly-derived MSCs (WJ- 
MSCs) significantly improved BCVA, visual field, and outer 
retinal thickness during a 6-month follow-up. The transplanted 
cells did not induce any adverse side-effects with the study still 
on-going.46 In a clinical trial involving patients with prolifera-
tive DR (PDR) and non-proliferative DR (NPDR), intravenous 

https://doi.org/10.2147/BTT.S290331                                                                                                                                                                                                                                  

DovePress                                                                                                                                                     

Biologics: Targets and Therapy 2021:15 302

Sharma and Jaganathan                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


transplantation of autologous BM-MSCs significantly 
improved the BCVA at 3- and 6-months follow-up period in 
the NPDR group but not the PDR patients. Injection of BM- 
MSCs was followed by intravenous administration of dexa-
methasone sodium, and the transplantation did not cause any 
adverse immune reactions systemically or at the ocular site.47 

In another clinical trial involving two patients with advanced 
glaucoma, with intravitreal injection of autologous BM-MSCs, 
none of the patients showed improvements in visual acuity or 
visual field during a 12-month follow-up, but one of the 
patients experienced retinal detachment two-weeks after the 
treatment initiation.48

In addition to transplantation of stem cells cultured ex vivo 
before transplantation, a few clinical trials examined the direct 
injection of stem cell population isolated from bone marrow or 
adipose tissue. Recently, Wiącek et al reported intravitreal 
transplantation of autologous bone marrow-derived lineage- 
negative (BM lin−) cells in RP patients with the disease inci-
dence ranging from few years to more than 10 years.49 

A significant improvement in the BCVA and BCDVA (best- 
corrected distance visual acuity) was reported by the patients at 
the 12-months follow-up period, and improvement in the 
visual parameters was more pronounced in patients who had 
symptoms for less than 10 years and maintained functional 
foveal cones. The study also reported retinal detachment in 
three cases, with two cases requiring surgery to achieve com-
plete retinal attachment.49 In two separate clinical trials, Limoli 
et al transplanted autologous adipose-derived stem cells 
(ADSCs) from the stromal vascular fraction of the adipose 
tissue along with platelets obtained from platelet-rich plasma 
and adipose stromal cells of the orbital fat in the subscleral 
space. The study reported an improvement in visual perfor-
mance with no adverse effects.50,51 In an experimental clinical 
trial, when patients with refractory macular holes were injected 
with either UC-MSCs or exosomes derived from UC-MSCs, 
improvement in BCVA and closure of macular holes in six out 
of seven patients was observed. No adverse reaction was 
observed, except one patient who showed inflammatory 
response due to the high dose of exosomes.52

Challenges with Stem Cells Therapy
In addition to the protective and regenerative effect identified 
with the transplantation of stem cells for retinal diseases, 
several clinical and preclinical studies have also reported 
transplantation-related adverse effects. For example, in a rat 
model of anterior ischemic optic neuropathy, intravitreal trans-
plantation of WJ-MSCs induced retinal damage and severe 
inflammation, accompanied by macrophage infiltration. 

However, intravitreal injection of CM from MSCs inhibited 
apoptosis of RGCs, reduced inflammation by inhibiting micro-
glia activation and macrophage infiltration.53 In the Pde6brd1 
mice model of autosomal recessive form of RP, subretinally 
transplanted iPSC-derived CRX+ photoreceptor precursor 
cells engrafted into the retina and differentiated into cones, 
leading to improved visual behavior scores. However, an 
“unconventional” light response was observed after transplan-
tation due to novel synapse formation between cones and 
RGCs.54

In a case study of a patient with RP associated with Usher 
Syndrome, intravitreal transplantation of autologous adipose 
tissue-derived stem cells induced neovascular glaucoma, gra-
dual vision loss, and retinal detachment.55 Several clinical 
trials have reported adverse effects of retinal detachment and 
vision loss following stem cell transplantations.56 

Transplantation of hESCs, autologous BM-MSCs, resulted in 
retinal detachment in AMD patients37,38 and glaucoma,48 and 
RP patients49 respectively. Some of them required surgical 
interventions to facilitate retinal attachment. Other adverse 
effects include inflammatory response due to the injections of 
the cells15 or its factors.42 These adverse effects might be due to 
the invasive nature of intravitreal transplantation, and thus 
further research on the optimal delivery route for each disease 
type is required.

As mentioned earlier, due considerations should be given 
to the transplantation route and immune suppression during 
transplantation. Hu et al found that transplantation of autolo-
gous rat ASCs in the vitreous chamber reduced apoptosis and 
distortion of retinal structure; however, it induced retinal fold-
ing and failed to improve the ERG “b” wave response. In 
contrast, the subretinal transplantation of ASCs significantly 
improved the “b” wave response and was deemed a more 
suitable transplantation site for stem cells.57 Several studies 
have noted positive integration of the transplanted cells in the 
retinal layer and improved visual acuity in the short-term 
follow-up; however, a long-term improvement in the vision 
and quality of life has not been studied. In addition, several 
studies also lack long-term follow-up regarding the safety and 
the functioning of the transplanted cells.

Recent studies have highlighted another caveat in assessing 
the integration of transplanted photoreceptor cells in the host 
retina. Several studies have used fluorescent reporters to estab-
lish the integration of transplants forming novel synaptic con-
nections in the host retina.58,59 However, bidirectional material 
transfer of cytoplasmic and nuclear proteins between trans-
planted cells and host photoreceptors has been shown to 
account for most of such integration instances.59 Therefore, 
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caution should be exercised while interpreting the integration 
of the transplanted stem cells in the host retina.

Conclusions and Future Directions
Given the positive outcomes obtained from several precli-
nical and clinical studies, stem cell therapy remains an 
excellent option for the treatment of retinal degeneration. 
In addition to transplanting stem cells and their deriva-
tives, future therapeutic options can include co- 
transplantation of two or more types of cells to achieve 
a better clinical benefit.16,60 Further, stem cells can be 
modified to overexpress retinal regenerative 
factors,31,32,61 and utilization of scaffolds to culture and 
transplant the stem cells and their derivations might 
improve their clinical benefits.62,63

However, there is a lack of consensus on the route of 
administration, method of evaluation of outcome, source 
of stem cells, and the long-term effect of stem cell 
transplantations. Donor-based variations in the function-
ing of RPE cells derived from iPSCs were observed,18 

which should be considered before transplantation. Age- 
related and niche-based changes in the function of MSCs 
have been well documented64 and should be given due 
consideration while utilizing them for clinical use. Thus, 
cell-line banks with modified or unmodified stem cells 
tested to have the best clinical outcome can be estab-
lished to overcome the donor-based and culture-based 
heterogeneity. Moreover, standard culture conditions 
should be established for expanding the stem cells to 
avoid variations incorporated due to culture conditions 
and in vitro aging. Although RPE cells, RPCs derived 
from hESCs, iPSCs but not undifferentiated cells were 
injected during therapy, the possibility of tumor forma-
tion exists from the residual undifferentiated cells. To 
date, data on the long-term safety of cells derived from 
hESCs and iPSCs in terms of teratoma formation after 
transplantation is not available; thus, MSCs and their 
derivatives might be more suitable candidates for the 
treatment of retinal degeneration.
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