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Purpose: Persistent poor sleep quality leads to impaired cognitive performance and an 
inability to perform daily activities. Biomarker-assisted diagnosis is important for the early 
treatment of poor sleep quality; however, diagnostic biomarkers for poor sleep quality remain 
unidentified. Circulating microRNAs (miRNAs) have been reported to be linked to the 
pathogenesis of poor sleep quality, indicating their possible role in sleep problem diagnosis. 
The present study aimed to identify potential miRNA biomarkers for poor sleep quality.
Patients and Methods: Differentially expressed serum miRNAs in patients with poor 
sleep quality and healthy controls (n=20) were analyzed via small RNA sequencing. Two- 
step quantitative RT-PCR in the two independent populations and receiver operating char-
acteristic (ROC) analyses were used to validate the identified miRNAs. In silico analysis was 
then used to identify the target genes.
Results: Of the 59 circulating miRNAs identified via differential analysis, six were validated 
for differential expression by quantitative RT-PCR (n=60). Two of these six miRNAs, miR- 
4433b-3p and miR-619-5p, were reconfirmed in the second validation with an independent 
validation cohort (n=59). ROC analyses (n=40) revealed the probability of the two miRNAs 
as potential biomarkers with areas under the ROC curve (AUCs) of 0.81 and 0.70, respec-
tively. The combined AUC was 0.86, which was much higher than that of each miRNA. 
Using in silico target gene analysis, the target genes of the two miRNAs were identified to be 
associated with the regulation of the circadian rhythm and inflammatory pathways.
Conclusion: Our results revealed that miR-619-5p and miR-4433b-3p could be developed 
as potential diagnostic biomarkers for poor sleep quality. The combination of both miRNAs 
may be more effective than the use of the individual miRNA for sleep problem diagnosis.
Keywords: inappropriate sleep quality, miRNA, serum, expression profiling

Introduction
Poor sleep quality is common and associated with short- and long-term effects on 
human health and well-being. Poor sleep quality has been linked to leading causes 
of death, including cancers1–3 and chronic diseases such as cardiovascular 
disease,4–6 hypertension,7,8 and diabetes.9 Various methods for assessment of 
sleep quality have been developed, of which the Pittsburgh Sleep Quality Index 
(PSQI) is the most widely used.10 The PSQI provides a measure of global sleep 
quality based on the respondent’s subjective answers to a questionnaire evaluating 
parameters of sleep quality such as sleep latency, sleep duration, habitual sleep 
efficiency, sleep disturbance, daytime disturbance, sleep quality, and use of sleep 
medications.10 A global PSQI score >5 indicates poor sleep quality (score range 
from 0–21).11 Sleep problem induced by low-quality sleep leads to the aggravation 
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of diseases, such as hypertension, cardiovascular disease, 
dyslipidemia, and metabolic syndrome, and reduces the 
overall quality of life.12 The pathogenic molecular 
mechanisms of poor sleep quality are not fully understood, 
indicating the difficulty in effective prediction and devel-
opment of treatments. Therefore, the diagnosis and therapy 
of poor sleep quality are important clinical issues.

The recent identification of circulating miRNAs has 
enabled the profiling of multivariate models or signatures 
that could predict sleep problem diagnosis in patients.13 

miRNAs are endogenous post-transcriptional regulators of 
gene signatures and are crucial for the regulation of bio-
logical processes. The differential expression signatures of 
miRNAs depend on pathological stimuli and reflect the 
functional state of the cell, making the miRNA signature 
an attractive biomarker candidate. Numerous reports have 
indicated circulating miRNAs as potential biomarkers for 
the diagnosis of diseases, such as cancer14 and cardiovas-
cular disease.15 In the serum, miRNAs are highly stable, 
and significant changes in their expression have been 
reported in cardiovascular diseases16 and several types of 
cancer.17 Thus, miRNAs have been suggested as highly 
useful biomarkers for the diagnosis of such disorders.18

In this study, we performed miRNA profiling via high- 
throughput sequencing to explore a method for the predic-
tion or diagnosis of poor sleep quality. Herein, we report 
the identification of two miRNAs as potential biomarkers 
that are differentially expressed in individuals comprising 
both adult men and women with poor sleep quality, com-
pared to healthy controls, and their validation as putative 
biomarkers for sleep problem prediction or diagnosis.

Patients and Methods
Subject Selection
Subjects for NGS and the First Validation
In the first analytical step, next-generation sequencing 
(NGS) was carried out on subjects who visited an oriental 
medicine clinic due to recurrent poor sleep quality, and 40 
individuals (17 men and 23 women, aged 35–45 years, 
recruited between 2014 and 2015) within the normal body 
mass index (BMI) range (≥18.5 kg/m2 and <25 kg/m2) 
were set as the poor sleep quality group based on their 
scores on the poor sleep quality questionnaire of the PSQI 
(Table S1). The PSQI measures the subjective sleep qual-
ity and disturbances during the previous month, and it 
comprises 19 items that assess a broad range of parameters 
related to sleep quality. There are seven component scores 

(subjective sleep quality, sleep latency, sleep duration, 
habitual sleep efficiency, sleep disturbances, use of sleep-
ing medication, and daytime dysfunction). Each compo-
nent score has a range of 0–3, with higher scores 
indicating more severe sleep complaints. The PSQI 
score, obtained by adding the scores of all seven cate-
gories, ranges from 0 (good sleeper) to 21 (poor sleeper). 
Using a cut-off score of 5, the individuals were categor-
ized as having: poor sleep quality (PSQI score >5) or good 
sleep quality (PSQI score ≤5).11 The poor sleep quality 
group had no subjects with medical history affecting sleep 
quality such as severe insomnia, depression, and related 
medications, or female subjects in the pregnancy, breast- 
feeding, or menstruation stage. The control group con-
sisted of 40 healthy individuals (20 men and 20 women), 
with no medical history of cardio-cerebrovascular dis-
eases, cancer, psychological disorders, arthritis, thyroid 
disorders, and medications for neuropsychiatry in the 
past one month, and no pregnant or breast-feeding 
women as assessed by both subjective diagnosis and test-
ing for metabolic syndrome factors. Ten individuals each 
(five men and five women, aged 30–49 years, recruited 
between 2016 and 2017) from the poor sleep quality and 
the control groups were selected for NGS analysis. The 
remaining 30 individuals in each group were evaluated via 
quantitative reverse transcription-polymerase chain reac-
tion (RT-qPCR). The inclusion and exclusion criteria are 
shown in Table S2.

Subjects for the Second Validation and ROC Curve 
Analysis
The poor sleep quality group for the second test consisted 
of 49 subjects (23 men and 26 women, aged 35–45 years, 
recruited between 2015 and 2016), selected from among 
the people who visited an oriental medicine clinic due to 
persistent and recurrent symptoms of fatigue, with a poor 
sleep quality-PSQI score >5, BMI within the normal 
range, and no history of specific diseases possibly affect-
ing sleep or related to metabolic syndrome. The control 
group consisted of 50 healthy individuals (24 men and 26 
women, aged 30–49 years; recruited between 2016 and 
2017) with a PSQI score ≤5 and fulfilling the above men-
tioned criteria regarding BMI and disease history. We 
randomly divided the poor sleep quality and control sub-
jects into two subgroups for the second validation (29 
cases and 30 controls) and the receiver operating charac-
teristic (ROC) curve analysis (20 cases and controls each).
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Small RNA Sequencing and Data Analysis
Serum RNA Extraction and Library Preparation
Total RNA was isolated from 1.5 mL serum using the 
mirVana Paris kit (Ambion, Carlsbad, CA, USA), and 
miRNAs were subsequently isolated using a Bioanalyzer 
(Agilent Technologies, Santa Clara, CA, USA). For each 
sample, a cDNA library based on 10 ng of small RNAs 
was prepared using the NEBNext® Multiplex Small RNA 
Library Prep Set.

Circulating miRNA Profiling Using High-Throughput 
Sequencing
The nucleotide sequence of the prepared cDNA library 
was analyzed using an Illumina NextSeq 500 platform 
(Illumina, San Diego, CA, USA) with 76 bp single reads. 
Reads were trimmed using the FASTQ Toolkit to remove 
adapters and low-quality reads (per-base quality <15 nt), 
thereby improving mapping. High-quality sequence reads 
were mapped to the human genome (hg19), and the 
expression levels of miRNAs were quantified using the 
BaseSpace® Small RNA v1.0. The differences in miRNA 
expression between the poor sleep quality and control 
groups, in terms of the rate of change (log transformation) 
and statistical significance (|log FC| ≥2 and p-value <0.05) 
were analyzed using the DESeq2 packages.19

Functional Annotation of DEmiRs
To study the biological function of the differentially 
expressed miRNAs (DEmiRs) in poor sleep quality, we 
performed gene ontology enrichment analysis based on the 
online software TAM 2.0,20 and a p-value of <0.05 was set 
as statistically significant.

Target Gene Expression and Correlation Analysis
Target genes of the identified six DEmiRs were predicted 
using TargetScan.21 Expression data for poor sleep quality 
were downloaded from the GEO database (available at 
https://www.ncbi.nlm.nih.gov/geo/; accession number: 
GSE80612). Each sample was grouped into two distinct 
groups (short and long sleep).22 Differentially expressed 
genes (DEGs) were identified using GEO2R.23 The pair-
wise Pearson correlation coefficients between target genes 
and DEmiRs were calculated to identify miRNA-target 
pairs with correlations in expression (p-value <0.05).

Functional Annotation of Target Gene-miRNAs and 
Visualization
To gain insight into the functions of miRNA target genes, 
we performed gene set enrichment analysis based on fast 

gene set enrichment analysis (fgsea).24 The cut-off value 
for the hallmark gene sets was p-value <0.05. Two 
miRNA-target pairs were used to establish the miRNA- 
target regulatory network, which was visualized using the 
Cytoscape software.25 Furthermore, the interactions in the 
network module were investigated using the GeneMANIA 
Cytoscape plugin (Cytoscape software, version 3.8.2).26

ROC Curve Analysis
The diagnostic value for differentiating between the poor 
sleep quality (n=20) and sleep control (n=20) groups was 
assessed by calculating the area under the ROC curve. The 
poor sleep quality prediction probability, sensitivity, and 
1-specificity for each sample were calculated based on 
a logistic regression model with age, gender, and miRNA 
expression level as variables, using the SPSS program. 
Based on the calculated values, an ROC was drawn 
using the SPSS program, with 1-specificity as the x-axis 
and sensitivity as y-axis. The area under the curve (AUC) 
for determining the accuracy as well as the p-value for 
statistical significance was estimated.

RT-qPCR Validation
Serum miRNA Isolation
Spike-in control RNA (Cel-miR-39) was added to 0.4 mL of 
the same serum used in Section “Serum RNA extraction and 
library preparation”, and the total RNA was isolated from 
the serum using the mirVana Paris kit (Ambion). The cDNA 
library was prepared using the miScript II RT kit (Qiagen).

RT-qPCR Analysis
A pre-amplification (12 cycles) was carried out using 
primers that could selectively recognize the base sequence 
and the miScript PreAMP PCR kit (Qiagen). Next, 
a qualitative analysis of miRNAs was carried out using 
the miScript SYBR Green PCR kit (Qiagen) and a real- 
time PCR system (LifeScience, ABI).

Statistical Analysis of the Differences in miRNA 
Expression Level
After correction of experimental errors for the threshold 
cycle (Ct) value of miRNAs using the spike-in control 
RNA (Cel-miR-39) Ct values, and following the log trans-
formation for the rate of change in the expression of 
miRNAs between the poor sleep quality and control 
groups, a t-test was performed to evaluate the statistical 
significance (p-value <0.05).
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Results
Patient Characteristics
A total of 179 participants, including 89 patients with poor 
sleep quality and 90 controls, were enrolled in this study. 
Table 1 shows the demographics and clinical features of the 
patients with poor sleep quality and healthy controls. There 
were no significant differences in age and BMI between cases 
and controls in all the four study groups (p-value > 0.05 with 
Mann–Whitney U-test; data not shown). The gender ratios, 
especially in cases of validation steps, appeared to be differ-
ent in that the percentage of women was slightly higher than 
that of men. The study procedure is illustrated in Figure 1.

DEmiRs in Poor Sleep Quality versus 
Control Groups
We performed miRNA profiling using 10 (five women 
and men each) patients with poor sleep quality and 10 
(five women and men each) controls to identify DEmiRs 
between the two groups. Of them, approximately 8.72% 
(26/298) were upregulated and 4.70% (14/298) were 
downregulated in women (|fc| ≥2 and p-value <0.05) 
(Figure 2A). In men, 0.67% (2/298) and 7.38% (22/ 
298) DEmiRs were upregulated and downregulated, 
respectively, in the poor sleep quality group compared 
to that in the control group (Figure 2B). In total, 59 

Table 1 Characteristics of the 179 Participants in This Study

Group Subgroup Gender n Age (y) Body Mass Index (kg/m2) Pittsburgh Sleep Quality Index

NGS Case All 10 35.4 ± 5.7 24.0 ± 2.8 10.5 (9–13)

Men 5 37.2 ± 8.0 25.6 ± 3.0 10 (9–13)

Women 5 33.6 ± 1.3 22.5 ± 1.6 11 (9–11)

Control All 10 36.9 ± 4.1 24.1 ± 3.1 1 (0–2)

Men 5 37.1 ± 3.2 25.9 ± 1.4 1 (1–2)

Women 5 36.6 ± 5.2 22.3 ± 3.3 1 (0–1)

1st validation Case All 30 38.2 ± 5.1 23.0 ± 3.4 8 (6–11)

Men 12 37.2 ± 4.5 24.9 ± 3.7 9 (7–11)

Women 18 38.9 ± 5.5 21.7 ± 2.5 8 (6–11)

Control All 30 38.3 ± 4.3 22.7 ± 2.7 2 (0–4)

Men 15 37.7 ± 4.8 24.0 ± 2.9 3(2–4)

Women 15 39.0 ± 3.8 21.4 ± 1.8 1 (0–2)

2nd validation Case All 29 40.4 ± 2.9 22.0 ± 1.6 9 (6–17)

Men 13 39.3 ± 2.3 23.1 ± 0.99 8 (6–15)

Women 16 41.3 ± 3.1 21.1 ± 1.5 11 (8–17)

Control All 30 40.0 ± 2.9 21.9 ± 1.5 2 (0–5)

Men 14 40.0 ± 3.7 22.6 ± 1.4 3.5 (2–5)

Women 16 40.0 ± 2.2 21.3 ± 1.3 1 (0–2)

ROC Case All 20 39.7 ± 3.9 21.5 ± 2.1 8.5 (6–15)

Men 10 39.5 ± 4.5 21.5 ± 2.1 8 (6–15)

Women 10 40.0 ± 3.5 22.0 ± 1.6 9 (8–15)

Control All 20 39.7 ± 2.6 21.2 ± 2.1 2 (0–5)

Men 10 39.4 ± 2.4 22.2 ± 2.2 4 (2–5)

Women 10 40.0 ± 2.9 20.2 ± 1.5 1 (0–2)

Note: Values are presented as mean ± standard deviation except Pittsburgh sleep quality index (median and range). 
Abbreviations: NGS, next-generation sequencing; ROC, receiver operating characteristic.
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miRNAs were identified as differentially expressed 
between the poor sleep quality and control groups 
(Figure 2C).

Functional annotation of these 59 DEmiRs revealed 
that they were significantly enriched in T-cell differ-
entiation (p-value: 4.41E-07), hematopoiesis (p-value: 
8.71E-08), and adipocyte differentiation (p-value: 
6.40E-08; Figure 2D; Table S3). Table S4 shows the 
DEmiRs, their fold changes, and p-values in the serum 
of patients with poor sleep quality.

Selection of Two miRNAs Relevant to 
Poor Sleep Quality Based on the Results 
of the Two-Step Validation
To confirm the expression profiles obtained from high- 
throughput sequencing, two-step RT-qPCR was performed 
to validate the 59 DEmiRs previously identified by NGS 
analysis. The expression patterns of the selected miRNAs 
were consistent with those determined using NGS, indicat-
ing that the sequencing data produced in the present study 

Figure 1 Overall flow diagram of study inclusion. Overall scheme to identify miRNA as potential biomarker. Number of study participants according to overall design. 
Abbreviations: NGS, next-generation sequencing; ROC, receiver operating characteristic; AUCs, areas under the ROC curve.
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Figure 2 The 59 DEmiRs in the serum of patients with poor sleep quality compared with that in controls. A volcano plot to visualize the DEmiRs between the poor sleep 
quality and sleep control groups in women (A) and men (B). The red dots represent upregulated expression, and the blue dots represent downregulated expression. (C) 
Venn diagram is illustrated to compare the number of DEmiRs between women and men. Venn diagram showing detailed distributions among the number of DEmiRs. (D) 
Dot plot showing gene ontology functions for the 59 DEmiRs. Only the enriched pathways with a p-value <0.05 are shown. The size of the dots represents the DEmiR 
count, and the colors represent p-values.
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were reliable and could be subjected to further analysis. 
Six miRNAs were consistently verified in the first valida-
tion cohort (60 independent subjects; 30 patients with poor 
sleep quality and 30 controls) using RT-qPCR analysis 
(Figure 3). Out of the six miRNAs, let-7a and miR-296 
were upregulated in patients with poor sleep quality com-
pared to that in controls (Figure 3A and B), whereas miR- 
619-5p, miR-642, miR-1273d, and miR-4433b-3p were 
downregulated in patients with poor sleep quality (Figure 
3C–F). For two of these miRNAs, miR-4433b-3p and 
miR-619-5p, a statistically significant difference between 
the two groups in an independent second validation cohort 
of 59 subjects (59 independent subjects, 29 patients with 
poor sleep quality, and 30 controls) was observed (Figure 
4A and B). Expression of both the miRNAs was down-
regulated in the poor sleep quality group compared to that 
in the control group. This result was in accordance with 
the NGS data and the first RT-qPCR validation. We iden-
tified a strong correlation between the two identified 
miRNAs (Figure 4C; miR-4433b-3p and miR-619-5p: 
r=0.5, p-value=0.026) in both the poor sleep quality and 
control groups. Interestingly, miR-4433b-3p indicated 
reproducibility in men, while both the miRNAs indicated 
reproducibility in women.

Assessment of the Diagnostic Potential of 
Validated miRNAs Using ROC Analysis
The ROC curves of miR-4433b-3p and miR-619-5p 
revealed their potential as useful biomarkers with 
AUCs of 0.81 and 0.70, respectively. As shown in 
Figure 4D, miR-4433b-3p and miR-619-5p were signifi-
cantly associated with each other, indicating their effec-
tiveness for joint diagnosis. The combined AUC value 
was 0.86, which was much higher than that of each 
single miRNA, suggesting the highest discriminatory 
power.

Identification of miRNA-Target Gene 
Interaction Networks for Poor Sleep 
Quality
To identify the potential roles of differentially expressed 
target genes in poor sleep quality, we conducted target 
gene prediction, statistical differential analysis of target 
genes, and functional enrichment analysis. The distribution 
of differentially expressed target genes is summarized in 
Table S5 and Figure S1. Enrichment analysis of the six 

miRNA target sets showed that target genes of the upregu-
lated miRNAs were most frequently associated with TGF 
beta signaling (p-value: 0.02) and E2F targets (p-value: 
0.04), while the targets genes of downregulated miRNAs 
were enriched in MYC targets (p-value: 0.03), PI3K-AKT- 
MTOR signaling (p-value: 0.02), and inflammatory response 
(p-value: 0.02; Figure S2 and Table S6). Among the differ-
entially expressed target genes of miR-4433b-3p and miR- 
619-5p from the total target genes of the six miRNAs, we 
identified the previously reported circadian rhythm or clock- 
related genes. CREBBP, RPS27A, and HDAC2, which were 
the differentially expressed target genes of miR-4433b-3p, 
were previously reported to be related to the circadian 
rhythm (Figure S3A). Additionally, six genes (PPP1CB, 
PPP1CC, CREBBP, HELZ2, NCOA1, and TBL1X) which 
were the differentially expressed target genes of miR-619- 
5p, were associated with the circadian rhythm or clock- 
related genes (Figure S3B).

To identify the direct target genes regulated by the two 
poor sleep quality-miRNAs, we analyzed the reverse corre-
lation of expression of each miRNA with its target mRNA 
expression. A total of 100 genes were identified via the 
Pearson correlation test with a p-value <0.05 (Table S7). 
The miRNA-mRNA analysis identified 41 genes, which 
accounted for 41% (41/100) of the target genes that were 
inversely correlated with the two miRNAs. The integrated 
miRNA-mRNA network of the two poor sleep quality- 
miRNAs and 100 target genes is shown in Figure 5. 
Network analyses showed that the predicted target genes of 
the two poor sleep quality-miRNAs overlapped with DHX40 
and ZNF160. Functional enrichment of the network genes 
identified 15 pathways related to “inflammation” and “cir-
cadian” terms, which could possibly be poor sleep quality- 
associated (Table S8). Significantly enriched pathways by 
miR-4433b-3p included inflammation (p-value: 0.048) and 
inflammatory bowel disease (p-value: 0.006) pathways. 
Among the two genes showing a significant correlation 
with miR-619-5p expression levels, GBN5 and TP53 were 
associated with circadian entrainment and entrainment of the 
circadian clock by photoperiod.

Discussion
Circulating miRNAs in the serum may serve as clinically 
important biomarkers of various diseases, including poor 
sleep quality.27 The lack of effective biomarkers, such as 
circulating miRNAs that could indicate sleep problem 
needs to be addressed. Altered expression of miRNAs is 
associated with sleep related diseases.27–31 This suggests 
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Figure 3 The first verification of the six candidate miRNAs via RT-qPCR. The expression levels of circulating miRNAs in the poor sleep quality group compared with that in 
the sleep control group. (A) let-7a (B) miR-296 (C) miR-619 (D) miR-642 (E) miR-1273d, and (F) miR-4433b. (Blue box: control; green box: poor sleep quality).
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that altered expression levels of miRNAs may not only be 
an important physiological component associated with 
sleep quality but may also serve as a useful biomarker 
for the detection of poor sleep quality. Recent studies have 
focused on the detection and identification of circulating 
miRNAs associated with sleep-related diseases such as 
OSA (obstructive sleep apnea),27,28 also referred to as 
OSAHS (obstructive sleep apnea-hypopnea syndrome),29 

narcolepsy,30 and habitual short sleep.31 To our knowl-
edge, this is the first study regarding the role of circulating 
miRNAs in identifying signatures of patients with poor 
sleep quality, assessed for global sleep quality using the 
PSQI. The key findings of the present study were that low 

quality of sleep (PSQI >5) is associated with alteration in 
the expression levels of miR-4433b-3p and miR-619-5p, 
key miRNAs underlying the diagnosis of poor sleep qual-
ity, and that an miRNA-mRNA network related to poor 
sleep quality has been identified. miR-4433b-3p has been 
reported as an associated biomarker in breast cancer,32 

autism,33 and stroke.34 Dysregulation of miR-619-5p was 
found to be a prognostic indicator in colorectal cancer.35 

However, currently, there is no report on miR-4433b-3p 
and miR-619-5p correlating them with sleep-related 
diseases.

The ROC curve analysis of the two miRNA signatures 
revealed that the combined AUC value was 0.86, implying 

Figure 4 Detection of two candidate miRNAs. (A) Expression levels of miR-4433b-3p via RT-qPCR (B) Expression levels of miR-619-5p via RT-qPCR (C) Scatter plot based 
on Pearson correlation between miR-4433b-3p and miR-619-5p expression levels (D) Diagnostic power of the two miRNA candidates using ROC analysis.
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good predictive performance. Functional network analyses 
revealed that the target genes of the two miRNAs function 
in the circadian cycle in inflammatory diseases, such as 
IBD (Inflammatory bowel disease), and in the inflamma-
tion of the stomach, liver, lung, and joints. These new 
miRNAs and target mRNAs showed good predictive 
power in poor sleep quality groups. The target genes of 
these miRNAs were related to circadian genes; and there-
fore, they may be used as novel markers for poor sleep.

Detection of miRNA-target genes and functional ana-
lysis to understand the molecular basis of sleep problem 
pathogenesis is an important challenge since there are 
numerous pathways that drive poor sleep quality. To pre-
dict the changes in expression of target genes of the 
validated miRNAs, we performed differential expression 
analysis related to sleep problem from GEO data for 
functional analysis. Functional analysis showed that the 
differentially expressed target genes of the poor sleep 
quality-miRNAs were related to TNFA signaling via 
NFKB, TGF beta signaling, interferon-gamma response, 
and inflammatory response (Figure S2). 
A proinflammatory vascular environment is a common 
consequence of insufficient sleep and is thought to be 
a major contributor to poor sleep quality.36,37

Recent studies have investigated the regulatory mechan-
isms of the circadian clock affecting diverse diseases.38,39 We 
focused on recent research findings regarding circadian clock 
regulation within the miRNA systems,40 shedding light on 
circadian rhythm-related regulation. Investigation of the roles 
of the circadian clock genes regulated by miRNAs in poor 

sleep quality is expected to help identify new targets for sleep- 
related diseases. In this study, we identified differentially 
expressed target genes previously reported in the circadian 
rhythm or clock regulation. CREBBP (also known as CBP), 
a common target gene of both miR-4433b-3p and miR-619- 
5p, has been reported to play an important role in the rapid 
activation of the CLOCK-BMAL1 heterodimer that leads to 
phase resetting of the circadian clock.41 From the mRNA- 
miRNA interaction network, two genes (TP53 and GNB5) 
related to circadian genes were correlated with miR-619-5p 
expression. TP53 is known to have a regulatory role in period2 
(PER2) expression,42 and GNB5 plays a crucial role in con-
trolling the clock genes in the hippocampus.43 Additionally, 
many studies have reported that molecular interactions 
between TP53 and coactivators CBP/p300 are critical for the 
regulation of TP53 transactivation, associated with disease 
progression and treatment.44,45 Therefore, the interplay 
between TP53 and CREBBP appears to play a crucial role in 
poor sleep quality through its effects on the circadian clock.

This study had a few limitations. First, the sample size 
of the test was small. Hence, large-scale prospective 
cohort studies in different ethnic populations are necessary 
to verify our findings. Second, the exact molecular 
mechanisms and roles of these miRNAs remain unclear, 
and further experimental validation studies are needed.

Conclusions
We identified two serum miRNAs to distinguish patients with 
poor sleep quality from controls. Among these miRNAs, the 

Figure 5 The miRNA-mRNA interaction network for poor sleep quality. Integrated networks of the miRNA-mRNA interaction (correlation p-value <0.05). Yellow and 
green circles represent miRNAs and functional terms, the blue and red circles represent the inversely correlated target genes and positively correlated target genes.
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combination of miR-4433b-3p and miR-619-5p has better 
potential to diagnose poor sleep quality. Our findings on 
these candidate miRNAs for sleep problem diagnosis are pre-
liminary, and the mechanisms of how these miRNAs affect the 
pathogenesis of poor sleep quality require further investigation. 
Since these miRNAs may play a critical role in regulating 
target genes (especially circadian rhythm), they have the poten-
tial to be used as tools for the diagnosis of sleep problems.
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