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Abstract: Dysfunction in the mitochondria (Mc) contributes to tumor progression. It is a
major challenge to deliver therapeutic agents specifically to the Mc for precise treatment.
Smart drug delivery systems are based on stimuli-responsiveness and active targeting. Here,
we give a whole list of documented pathways to achieve smart stimuli-responsive (St-) and
Mc-targeted DDSs (St-Mc-DDSs) by combining St and Mc targeting strategies. We present
the formulations, targeting characteristics of St-Mc-DDSs and clarify their anti-cancer
mechanisms as well as improvement in efficacy and safety. St-Mc-DDSs usually not only
have Mc-targeting groups, molecules (lipophilic cations, peptides, and aptamers) or materials
but also sense the surrounding environment and correspondingly respond to internal biosti-
mulators such as pH, redox changes, enzyme and glucose, and/or externally applied triggers
such as light, magnet, temperature and ultrasound. St-Mc-DDSs exquisitely control the
action site, increase therapeutic efficacy and decrease side effects of the drug. We summarize
the clinical research progress and propose suggestions for follow-up research. St-Mc-DDSs
may be an innovative and sensitive precision medicine for cancer treatment.
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Introduction
In addition to cancer prevention and early detection, an effective cancer treatment
strategy is undoubtedly very important." In order to achieve maximum efficacy
and minimal side effects, it seems to be necessary to precisely control drug location
and maintenance at the destined tumor cells.** Mitochondria (Mc) is linked to
many hallmarks of cancer cells and its dysfunction may induce tumor cell death, so
Mc has been considered as a pharmacological target over the last decades.’
Scientists have developed various smart stimuli-responsive (St) and Mc-targeting
drug delivery systems (DDSs) (St-Mc-DDSs) (Figure 1). These systems have better
efficacy and higher safety compared to Mc-DDSs or Sm-DDSs.>'°

St-Mc-DDSs have the added advantages of St-DDS and Mc-DDS (Table 1),
including (1) hierarchical targetability. St-Mc-DDSs deliver drugs into tumor cells
and cellular Mc organelles successively. (2) Controlled drug release. St-DDSs only
release drugs at the target tumor tissue under the stimuli trigger but does not release
or leak drugs at nontarget tissue sites. After entering the cells, St-Mc-DDSs further
accurately deliver drugs to the target organelle Mc under the guidance of the Mc-
targeting group. (3) This system can achieve maximum therapeutic efficacy and
produce minimal adverse effects. Drug molecules accumulate as much as possible
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Figure | Schematic diagram of the therapeutic mechanism of St-Mc-DDSs.
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Notes: (A) Endogenous and exogenous St types of St-Mc-DDSs. (B) Smart St-Mc-DDSs are achieved by combining St- and Mc-targeting strategies. (C) Five St-Mc-DDS
types classified according to the spatial location relationships of different types of St- or Mc-DDSs. (D) Two types of Mc-targeting modes according to the structure.
Abbreviation: Mc, mitochondria; Mc-DDSs, mitochondria-targeting drug delivery systems; St, stimuli-responsive; St-DDSs, stimuli-responsive drug delivery systems; St-Mc-

DDSs, smart stimuli-responsive and mitochondria-targeting drug delivery systems.

at the precise target site organelle to exert efficacy while
spending as little time as possible in normal cells and other
organelles to reduce nonspecific toxicity. St-Mc-DDSs
avoid the respective design based-deficiencies of the single
St-DDSs (such as low drug concentration at the Mc) or
Mc-DDS (such as high drug leakage at nontarget tissue/
cell).

The Mc presenting in most eukaryotic cells has been
well recognized as an organelle target.'""'? The Mc is an
organelle with two-layered membrane. It is approximately
0.5 to 1.0 pm in diameter and of variable length. In
addition to energizing cells, Mc also play a crucial role
in cell differentiation, signaling and apoptosis.™'> Mc dys-

function induces various hallmarks of cancer cells, such as

Table | A Comparison of the Characteristics Among St-Mc-DDS, St-DDS and Mc-DDS

Comparison St-Mc-DDS St-DDS Mc-DDS
Advantage

Precisely Mc targeting \ x N
Maximum therapeutic response \ x x
Stimulus responsiveness N v x
Controlled drug release \ \ x
EPR effect v V v
Long blood circulation \ N +
Low clearance \/ \/ ~
Disadvantage or deficiency

Low drug concentration at Mc x \/ x
High drug leakage at nontarget tissue/cell x

High non-specific toxicity x x y

Notes: \ Refers to have the property, X Refers to not have the property.
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limitless proliferation, damaged apoptosis, reduced autop-
hagy and increased anabolism.'*'> However, Mc-targeted
therapy is a tedious task.

Before the drug molecule finally reaches the Mc, it
needs not to be eliminated from blood circulation, selec-
tively accumulate in the target tissue, pass through the
cellular membrane barrier and escape from lysosomal
endocytosis.” The St-DDS seems to be able to increase
the stability of the nanocarriers and reduce nontarget drug
release in systemic circulation. The responsiveness of St-
DDS to endogenous (En) stimuli (also called biostimula-
tors, include factors such as pH, redox potentials, enzymes

1617 and exogenous (Ex) stimuli (also called

and glucose)
externally applied triggers, include factors such as tem-
perature, light and ultrasound) shows potential for a vari-
ety of biomedical applications®'®. The St-DDS senses the
stimuli in the surrounding environment, analyzes the sti-
mulus and responds accordingly.” In reaction to the differ-
ences between tissue/cell microenvironments or blood
systems of tumor and normality.

St-DDSs change the physicochemical characteristics
(hydrophilicity, diameter or charge) accordingly to acquire
greater in-depth tumorpenetration, increased cell ingestion,
controlled drug delivery, and useful endosomal flee.”’
Cellular Mc-specific DDSs may be achieved or strength-
ened by anchoring cell-specific homing ligands (which
bind to overexpressed antigens on tumor cell outside)
along with Mc-selective groups on its surface.'”?® The
receptors currently utilized for active cancer cell targeted
induction contain epidermal growth factor receptor
(EGFR),>' folate’?® and transferrin receptors.”**> For
further endocytosis, a series of cell penetrating peptides
(CPPs), such as cationic trans-activating transcriptional
activator (TAT),”® polyarginine,”” amphipathic MPG
(unabbreviated notation),”® Pep-1,** Pep-7,°° and hydro-
phobic C105Y,*! have been developed to modify drug
molecules or nanocarriers. After entering the organelle-
rich cytoplasm, bioactive drug molecules need to be deliv-
ered directly to their Mc action site to acquire high ther-
apeutic efficacy and low off-target result.'®**** The Mc-
targeted groups that are able to carry drugs include micro-
molecule ligands,** hydrophobic cations,***® Mc protein

10,39 and

40,41

import machinery,’”*® Mc-penetrating peptides
Mc inner/outer —membrane-targeting molecules.
Through the above analyses, St-Mc-DDS deliver the med-
icines as much as possible to targeted organelle/cell/tissues

and acquire perfect treatment effect and medication safety.

Obviously, there are many ways to combine St- and
Mc- DDSs, and we have given a whole list of the docu-
mented pathways to achieve smart St-Mc-DDSs by com-
bining St- and Mc-targeting strategies (Figure 2). Here, we
systematically collected and analyzed the design theories,
implementation method and action mechanisms of St-Mc-
DDSs in cancer therapy. We present their smart features
and physicochemical and pharmacokinetic properties
(Tables 2 and 3), which are closely related to their anti-
tumor efficacy and safety (Tables 4 and 5). Compared to
conventional DDSs, St-Mc-DDSs exhibit improved cura-
tive efficacy and safety. We propose the challenges and
future perspectives of St-Mc-DDSs. This is the first review
of the combined application of stimuli-responsive St- and
Mc-targeted DDSs. This review will help to evaluate and
choose the appropriate smart DDS to cure cancer.

Mc Targeting Characteristics of St-

Mc-DDSs

St-Mc-DDSs usually have 2 types of Mc-targeting modes
according to the component structure: an Mc group or an
Mc molecule (lipophilic cation, peptide or aptamer), and a
material (Figure 1D).

Mc Group and Molecule-Based St-Mc-
DDSs

Lipophilic Cation-Based St-Mc-DDSs
Mitochondriotropics are low-molecular weight compounds
with high
Mitochondriotropic molecules often have delocalized posi-

intrinsic affinity towards Mc.
tive charge and enough hydrophilicity. Once entering
inside mammalian cells, mitochondriotropics accumulate
either at or inside Mc without requiring the assistance of
any Mc-targeted delivery system.®> Owing to the high Mc
targeting of mitochondriotropics, they are widely used as
Mc targeting groups to facilitate drug delivery.'®-2%4>>
Hydrophobic cations such as triphenylphosphonium
(TPP),** (4-carboxybutyl) triphenylphosphonium bromide
(CTPP),* IR780°* and 9-O-octadecyl'® have been used as
Mc targeting groups of St-Mc-DDS to deliver a variety of
small molecule drugs. TPP consists three phenyl groups. It
has positive charge and sufficient lipophilicity that facil-
itates transportation across the Mc membrane.®>** TPP
and CTPP moieties are usually conjugated with small

molecules’®™**  or decorated on the surface of
nanoparticles.**** Owing to their sufficient lipophilicity

and delocalized positive charge, TPP-carrying molecules
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Figure 2 A list of documented pathways to achieve smart St-Mc-DDS by combining St- with Mc-targeting methods.
can get easily across lipophilic Mc membrane.®” The mer-  Mc Targeting Peptide-Based St-Mc-DDS
its of TPP-molecules over other hydrophilic cation-mole- Two Mc-targeting peptides, ie, KLA peptide (p

cules include its good biological stability, amphiphilic
properties, ease of modification, inertia toward cellular
materials, and deficiency in ultraviolet (UV)-visible light
and fluorescence absorption. TPP-ubiquinone is safe for
human, thus shows good clinical potential and the transla-
tional significance of TPP.** IR-780 is a lipophilic hepta-
methine cyanine dye. It is automatically ingested by tumor
cells through organic-anion polypeptide transporters, and
accumulated in Mc sites due to its hydrophobic cation.®®
IR-780 is typically used in nanocarriers for photothermo-
graphy, photodynamic and photothermal therapies (PDT
and PTT).>*36:86

In addition to the above lipophilic cations, rhoda-
123,37:88 MKT-077"°
anthracyclines”'”> have demonstrated specific affinity
to Mc in different Mc-DDSs, but they have not been
used in St-Mc-DDSs.

mine flupirtine,® and

[KLAKLAK],)"” and MQ peptide (MLFNLRILLNN
AAFRNGHNFMVRNFRCGQPLQ),*” have been used in
St-Mc-DDSs for subcellular-targeted delivery of chemical
drugs and DNA, respectively. KLA is an Mc-penetrating
peptide (MPP) that can be decorated on the surface of
liposomes. Positively charged KLA targets Mc, and its
lysine unit facilitates cellular uptake since lysine interacts
with the cellular membrane via a hydrogen bond and elec-
trostatic force to accelerate internalization.*’ In addition,
KLA further disrupts the Mc membrane and initiates apop-
totic cell death.”®> MPPs have been confirmed to delocalize
lipophilic cations to deliver bioactive compounds to the
Mc.”*7 MPPs usually have positively charged (lysine,
arginine) and lipophilic (isoleucine, phenylalanine, tyrosine)
amino acids.”®*° For example, the aromatic cation-contain-
ing Szeto-Schiller (SS) peptide'® was mainly designed to
deliver tyrosine or dimethyl tyrosine as an antioxidant motif
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to the Mc. The SS peptide is taken up by the cell and inner
Mc membrane by an energy-independent mechanism.” In
order to meet different investigative requirements, MPPs
are designed to have different functions and structures (eg,
different amino acid sequences, hydrophobicities and pep-
tide charges). For example, incorporating the D-isomer of
arginine into MPPs protects the peptides from enzymatic

34,101

degradation, integrating the targeting motif for cell

ingestion and the proapoptotic motif into MPPs for
enhanced anticancer effects.'®!%*!%

The MQ peptide sequence is an Mc-targeting sequence
(MTS, also called an Mc signal peptide).”” MTSs usually
consist of 20~30 amino acids, which reach the Mc through
the use of a translocase from the outer and inner mem-
brane complexes by mimicking the cellular mechanism of
Mc protein delivery.**'**!'% That is, MTSs create chi-
meric proteins and are taken up via the Mc protein import
machinery.” The multifunctional peptide/DNA complex
facilitates DNA targeting to the Mc.?” In a peptide chain
having lysine-histidine fragment, cation contributes to
cross cellular membrane, lysine condenses DNA for cel-
lular ingestion, and histidine helps DNA to reach cytosol
by endosomal lysis through proton sponge effect. Once
this type of peptide is attached to a Mc-specific peptide
sequence, it will effectively facilitates the targeting of
DNA to the Mec.

However, the deep mechanism of Mc-targeting charac-
teristics of peptides is unclear. In contrast to hydrophobic
cations, peptides are degradable and cause slight cytotoxicity
after Mc deposition. Peptides have large molecular weights,
so they might induce undesired immune responses; peptide
degradation might cause Mc-targeting failure;'*® some pep-
tides are difficult to synthesize or to be conjugated with
targeting materials; and the characteristics and abilities of
some targeting materials conjugated with Mc-targeting pep-

tides might be affected.'®’

Mc Aptamer-Based St-Mc-DDSs

The Mc cytochrome (Cyt) C aptamer®”-”" is employed to
make St-Mc-DDSs efficiently accumulate in the Mc of
cancer cells. The Cyt C aptamer is a short single-stranded

71

oligonucleotide sequence that specifically recognizes
CytC'*®'% which is normally located in the inner Mc
membrane and plays a key role in ATP synthesis.®”"!
Cyt C is secreted into the cytosol and induces apoptosis
through a Mc pathway.”>''*!"! Cyt C aptamers have been
attached on the outside of smart mesoporous silica-encap-
nanorods®” and  bacterial

sulated gold magnetic

nanoparticles’' to allow them to efficiently accumulate in
the Mc of cancer cells. Mc-targeting aptamers are a pro-
spective strategy for St-Mc-DDSs. Compared to peptides,
aptamers are much easier to synthesize while harder to be
biodegraded and denatured by further modification.
Aptamer has large molecule, so its conjugation efficiency
with targeting material is low and targeting efficiency is
probably influenced. Aptamer is so expensive that the
clinical application of aptamer-based St-Mc-DDSs is
severely hindered.'"’

In addition to Cyt C aptamers, other Mc-targeted apta-
mers have been applied. An aptamer containing folding
guanine-rich RNA/DNA was designed to modify nanocom-
plexes for Mc imaging and decrease the Mc membrane
potential.''* A dual-ligand liposomal system was decorated
with a Mc RNA aptamer (RNase P) that enhanced cellular
uptake and achieved Mc targeting.''® The short RNA apta-
mer Mitomer 2 showed good binding affinity to the Mc and

resistance to degradation by nucleases.''*

Mc Materials-Based St-Mc-DDSs

Mc materials such as colloidal dequalinium vesicles®® and
carbon nanomaterials®**7%!1>-11¢ have been used in St-
Mc-DDSs. Amphiphilic dicationic dequalinium may self-
assemble to form aggregates DQAsomes.” DQAsomes dis-
play a positive surface charge in aqueous environments
and accumulate in the Mc in response to the electroche-

36

mical gradient across the Mc membrane system.

DQAsomes serve as a mitochondriotropic carriers to deli-
ver hydrophobic drugs and genes to the Mc.''7-!'®
Carbon-based nanomaterials (such as graphene, carbon
dots and carbon nanotubes) have been emerging as new
biomaterials to design and fabricate St-Mc-DDSs due to
their high tunability, good biocompatibility and other
unique physicochemical ~characteristics.®4¢%70-116.119.120
They selectively target the Mc based on their polarization
and positive charge. In graphene oxide (NGO)-based St-
Mc-DDSs, graphene serves not only as a carrier material
for Mc targeting but also as a phototherapy agent.** The
hypericin-functionalized NGO nanoparticles enhance Mc-
targeting and the synergistic anticancer effects of photo-
therapy and chemotherapy.''> A novel type of fluorescent
carbon dot achieved Mc imaging and Mc-targeted PDT
without further modification by other mitochondriotropic
ligands (such as TPP).''® A dual Mec-targeting moiety
(TPP and carbon dot)-modified biocompatible platform
(magnetic mesoporous silica nanovesicles) achieved

long-term imaging and magnetic field-enhanced cellular
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uptake.”® Mc-targeting single-walled carbon nanotubes
(SWCNs) are used for cancer photothermal therapy.68

Stimuli-Responsive Characteristics
of St-Mc-DDSs

Endogenous Stimuli-Responsive St-Mc-
DDSs

En stimuli-responsive St and Mc-targeted platforms (En/
St-Mc-DDS) have gradually been used to enhance cancer
treatment efficacy. En stimuli in the cancerous microenvir-
onment provide signals for anticancer DDSs to accumulate
in tumor tissues/cells and release drugs in an on-demand
manner.'"’ The physiological signals facilitating tumor
targeting include an acidic media,'*' overexpressed
enzymes (such as matrix metalloproteinase, cathepsin,
phospholipase, and oxidoreductase)'**

tein makers,'** ATP,'** intracellular glutathione (GSH)
127,128

or membrane-pro-
125
or hypoxic features.'*® According to the En/St type,
En/St-Mc-DDSs are mainly classified into three types (pH-
, redox- and enzyme-responsive St-Mc-DDSs). Their
recent advances are described as follows. To date, there
have been no reports of En (other biomolecules outside of
our list) stimuli-responsive St-Mc-DDSs.

pH-Responsive St-Mc-DDSs

Compared to normal tissues, tumors have higher metabolism
and most of them have lower pH values of extracellular and
intracellular fluids (6.5~7.0 vs ~7.4; 5.0~6.0 vs ~7.2)."*° The
organelles of tumor cells such as Mc (~8.0),**'3%!3! 1yso-
somes (4.5~5.0), endosomes (5.5~6.0) and cytosol (7.4)'*
have different pH values. Therefore, Mc-targeted nanocar-
riers with a particular responsiveness to pH can intently
release drugs at tumor locations, simultaneously preventing
the unwanted release in normal tissue. Weakly acidic/basic
compounds are suitable constituents for the preparation of
pH-responsive Mc-targeted platforms. For example, com-
pounds containing -COOH, -NH, or -SO;H groups may
alter from their neutral to ionized forms,'*® and further
induces dramatic alteration in the interaction or affinity
between the drug molecule and drug vesicle. The pH gradi-
ents are stimuli that release drug from pH-sensitive Mc-
targeted systems.>®+*

Two easy measures have been employed to design pH-
responsive St-Mc-DDSs.'** The first is based on acid-
cleavable linkers such as a Schiff-base, hydrazone,
acetal/ketal, amide or cis-aconityl. The second is based
on the degradation of the polymer and destabilization of

the nanocarrier in a pH-sensitive manner. pH-sensitive St-
Mc-DDSs usually have the following functional features:
they expose the carrier core or overturn the positive charge
in the tumor extracellular environment to promote carrier
uptake and they degrade the carrier inside the cells to
achieve rapid drug release or proton sponge action to
promote endosome escape.

The polyethylene glycol (PEG)-Schiff base-cholesterol
derivate was synthesized and attached to the liposomes
(PSLP).*> Schiff base bond is hydrolyzed in acidic
media, and the PEG shell is removed from the liposomes.
The remaining lipophilic PSLP is exposed and easily inter-
nalized by tumor cells. Dioleoyl phosphoethanolamine
(DOPE) is a constituent of lamellar PSLP that exists in a
hexagonal phase at physiological pH but is deformed in
acidic medium. After internalization, DOPE merges with
the lysosomal membrane and releases the drugs into the
cytosol. Then, the drug accumulates in Mc through the
guidance of TPP. In addition to the combination of stimuli-
triggered St- and Mc-targeted strategies, other active tar-
geted strategies (such as Eph receptor A10 (EphA 10)-
mediated cellular endocytosis) and passive targeted strate-
gies (such as the enhanced permeability and retention
effect, EPR) have been applied simultaneously to achieve
better St-Mc delivery.*?

A pH-responsive St-Mc nanohybrid comprised a N-(2-
hydroxypropyl) methacrylamide (HPMA) copolymer shell
and a positively charged nanovesicle core was fabricated
via electrostatic interactions.*” Under mildly acidic envir-
onment of the tumor, the first-stage pH-responsiveness
took place when the hydrolysis of the amide bonds in the
HPMA copolymers occurred and the charge of the copo-
lymer changed from negative to positive, which was ben-
eficial for cellular ingestion. The second-stage occurred in
endosomes/lysosomes due to the proton sponge effect,
which facilitated Mc location.

Another pH-responsive St-Mc-DDS was prepared to
induce cellular apoptosis.*’” This liposome contains a
hybrid lipid by synthesizing Mc peptide KLA with
dimethylmaleic anhydride via amide bond and 1,2-distear-
oyl-sn-glycero-3-phosphoethanolamine (DSPE). This lipo-
some exhibited positive charge at pH ~6.8 of extracellular
media to facilitate its entrance into cancerous cells. After
that, KL A purposely delivered cargo to Mc.

An  alkaline St-Mc-DDS
constructed.*® Lipophilic CTPP conjugated with glucoli-

pH-responsive was

pid-like conjugates formed micelles in aqueous solution
and encapsulated celastrol in the hydrophobic core. These
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micelles selectively responded to the Mc alkaline pH (pH
8.0), while reduced drug leakage occurred in the cyto-
plasm (pH 7.4) and lysosomes (pH 5.0). The acidity/basi-
city of the loaded drug was relevant to the drug release
rate and solubility in different environments.

Redox-Responsive St-Mc-DDSs

The redox/oxidation states between the intracellular and
extracellular matrices of tumors are very different. For
example, the GSH level in the cytosol (2-10 mM) of
tumor cells is ~1000 times greater than that in the extra-
cellular matrix (2-20 uM) or >4 times greater than that in
the normal cells, which renders the tumor intracellular
redox potential.'*> Redox-responsive functional bonds or
groups® such as disulfide, phenylboronic acid and ester
bonds, and singlet oxygen-responsive imidazoles have
been used to design redox-responsive St-Mc-DDSs.

Disulfide bonds are incorporated into either the
crosslinker or polymer structure of DDSs. Disulfide
bonds are converted to thiol groups by various intracel-
lular stimuli, such as the reducing agent GSH.®* A Sm-
Mc-DDS for overcoming multidrug resistance (MDR)
had a dendrimer core co-decorated with paclitaxel
(PTX) via a disulfide bond and TPP via an amido
bond, and a shell covered with PEG layer via a
MMP2-sensitive peptide.”® Once the core detached
from the PEG layer, it targeted the Mc via TPP gui-
dance, and PTX was rapidly released through a reduc-
tive reaction. Another Sm-Mc-DDS was TPP-oligomeric
hyaluronic acid-S-S-curcumin-loaded micelles.>®

Phenylboronic acid and ester bonds are sensitive to
H,0,. Arylboronic esters and thioketal linkers are oxi-
dized by H,0, at 50 uM'*® and 100 pM,"” respectively.
The lipophilic neutral ferrocene/lipophobic cation ferroce-
nium redox pair was utilized for the design of cancer-
specific, Mc-targeting moieties to trigger reactive oxygen
species (ROS)-mediated drug release.'®

A polymeric micelle with an imidazole group is singlet
oxygen-responsive and able to deliver pyropheophorbide
A (PPA)-TPP (a photosensitizer).”® The imidazole moiety
was oxidized to hydrophilic urea upon triggering with
light. The amphiphilicity of micelles changed, followed
by rapid photosensitizer release and Mc inhibition via
TPP. The PDT efficacy was then enhanced.

Generally, these redox-responsive St-Mc-DDSs disas-
semblied and released drug in response to ROS, through
lipophobic-lipophilic transition or cleavage of ROS-
responsive linkers. The high sensitivity and specificity

the above St-Mc-DDSs.
However, there are still some challenges to be addressed:

have been confirmed by

the degraded linkers should be histobiocompatible, non-
toxic and non-immunogenic. Otherwise, they may lead to
unwanted side effects and a varied redox state inside tumor
cells, which is associated with phenylboronic acid and
ester bonds. Due to the ROS dynamic and heterogeneity
of tumor cells, it is difficult to control redox balance and

understand related molecular mechanism.'>®

Enzyme-Responsive St-Mc-DDSs

Enzymes such as esterases, hyaluronidases (HAases) and
alkaline phosphatases (APases) are concentrated inside the
cellular cytoplasm or lysosomes or overexpressed in the
extracellular environment of tumor sites.'*’ Catalytic reac-
tions refer to the cleavage/formation of chemical bonds or

the oxidation/reduction of substrates.

a1

Enzymatic
activation'*' using different enzymes as stimuli has been
applied to design enzyme-responsive St-Mc-DDSs.

A new stable and monodispersing nonisocyanate poly-
urethane nanocapsule (NIPU) are developed.>* Their shells
had a polyurethane-based'** polymeric backbone with
embedded ester linkages in response to esterases. Their
core loaded the hydrophilic drug doxorubicin (DOX) dur-
ing the polymer synthesis and NIPU preparation process.
NIPU was further post-grafted with phosphonium ions to
achieve Mc-targeted release of the drug. Song et al'® first
designed a Mc-targeted nanodrug (a positively charged 9-
O-octadecyl substituted berberine derivative, BD) that was
dually modified with DSPE-PEG2000 to increase the sta-
bility and the negatively charged hyaluronic acid to
achieve tumor targeting and lysosomal escape through
recognition by HAase in tumor tissue and lysosomes.
TPP was attached to phosphorylated tetrapeptide enantio-
mers to obtain oligomers that would self-assemble to form
nanosized assemblies in response to APase enzyme-cata-
lyzed reaction.”” These assemblies further caused Mc dys-
function and killed cancer cells while minimizing acquired
drug resistance.

In summary, enzymes as stimuli of St-Mc-DDSs have
intrinsic merits: as endogenous components, they have
inherent biocompatibility and biosafety; they have extra-
ordinary selectivity for substrates and high catalytic effi-
ciency; and the same enzyme family, such as matrix
metalloproteinases, in tumor cells usually have similar
active pockets that may lead to similar substrate

preferences.'*?
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Exogenous Stimuli-Responsive St-Mc-
DDSs

Ex stimuli such as magnetism and light have been
employed to control drug release within a Mc-DDS (Ex/
Sm-Mc-DDS). Compared to En stimuli, Ex stimuli seem
to have been more successful in overcoming the individual
variability of controlled drug release.**'** We will dis-
cuss the rationales and applications of light and magnetic
responsive Ex/St-Mc-DDS. To date, the combination of
other Ex stimuli (temperature, ultrasound, electric pulse,
etc.) and Mc-DDS has not been reported.

Light-Responsive St-Mc-DDS

UV (200~400 nm) light only has weak penetrating power,
and it is harmful to normal cells and tissues. In contrast,
NIR light (650~900 nm) has better tissue penetration and
an improved safety profile.'*> Therefore, NIR-responsive
DDSs with good spatiotemporal control are potential
nanocarriers for practical therapy. Based on the NIR-
responsive mechanism, there are three types of light-
responsive St-Mc-DDS: NIR light-activated PDT-, PTT-
and PDT/PTT-based St-Mc-DDSs.

Wei et al®* used NGO as a smart carrier, which was
dually modified with a monoclonal antibody (mAb) for
avp3-positive tumor cell location and a PPA-PEG conju-
gate for phototoxicity in the organic environment of the
Mc. The nanodrug PPA-NGO-mAD significantly enhanced
Mc-mediated PDT apoptosis by yielding ROS such as
singlet oxygen and free radicals. Hou et al® designed
titanium dioxide (TiO,, shell)-decorated upconversion
nanosystems.”’ These core/shell nanocomposites (inor-
ganic crystalline nanoparticles, 1-100 nm) transformed
NIR light to UV emission, which triggered the cytotoxicity
of TiO,. Therefore, under NIR irradiation, these nanocom-
posites served as an effective photosensitizer and gener-
ated intracellular ROS in the Mc to kill tumor cells.

PTT usually uses a photothermal conversion agent to
convert NIR light into thermal energy for hyperthermia in
the tumor region. Chen et al coencapsulated Mc-targeting
gold nanostars (AuNSs) and DOX in a hyaluronic acid
protective shell to fabricate a St-Mc-DDS, which was
ingested into cancer cells upon recognition by CD44 recep-
tor. DOX was then released for chemotherapy. The AuNSs
codecorated with the cationic peptide R8 and proapoptotic
peptide TPP-KLLA acted as a Mc-targeting nanoheater for
NIR-triggered PTT.”® Kong et al'* designed a microhybrid
with two-photon absorption characteristics through coordi-
nation interactions between silver and a fluorescent cyano-

carboxylic acid derivative. The decreased quantum fluores-
cence and improved two-photon absorption caused by the
surface plasmon resonance effect led to good photothermal
output in Mc of HeLa cancer cells when radiation at 780 nm.

Zhang et al®* designed a nanosystem by integrating
IR780 into perfluorooctyl bromide (PFOB)-based nanolipo-
somes for synergistic PDT/PTT under NIR irradiation at 808
nm. Mc-targeting IR780 is easily to be encapsulated into
nanoliposomes due to its hydrophobicity. IR780 had PTT/
PDT effects, and the PDT effect was enhanced by the oxygen
carried by PFOB. This Mc-targeting nanoliposome was bet-
ter than the one consisting of indocyanine green (ICG) and
PFOB.'*” The latter had PTT/PDT effects but did not have a
Mec-targeting effect. Luo et al'*® synthesized a Mc-targeted
NIR photosensitizer for jointly PTT/PDT by modifying hep-
tamethine cyanine dye with different side-chain N-alkyl.

In summary, in order to conquer resistance to che-
motherapy, PTT and PDT are often applied jointly in a
NIR-responsive St-Mc-DDS to achieve synergistic antitu-
mor effects. However, the biocompatibility and biodegrad-
ability of the photosensitizer (especially inorganic
nanoparticles) used in such delivery systems must be con-
sidered for clinical implications.'*’ In addition, the light-
responsive St-Mc-DDS is only suitable for the treatment of
superficial tumors such as skin surface cancer and breast
cancer due to limited light penetration.

Magnetic Field-Responsive St-Mc-DDSs

The application of magnetic materials along with external
magnetic fields was first introduced to medicine by
Freeman et al'>® in 1960. Magnetic stimuli-triggered St-

151

DDSs features advantages over chemotherapy: °° they are

a noninvasive approach to control drug release;' >

they
scarcely have any physical interaction with the body and
are effective over a distance as long as a few centimeters;
the nanocarriers can overcome blood flow resistance and
arrive at the tumor region under the influence of a magnetic
field spatially focused at desired sites; and upon removal of
the external magnetic field, there is no residual magnetism
or drug effects. Magnetic field-responsive St-Mc-DDSs
usually use superparamagnetic iron oxide nanoparticles
(SPIONs) 10~20 nm in size. Surface functionalization of
SPIONs may overcome their drawbacks, such as a short
blood circulation time due to aggregation and oxidization.
Kim et al® modified SPIONs with PK11195
(C,1H,;CIN,0) and chitosan-graft-PEI to fabricate a Mc-
targeting gene carrier, which effectively condensed and
protected DNA. Under an exterior magnetic field, the
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transfection productivity of this gene carrier was compar-
able to PEI 25 K. PK11195 facilitated the accumulation in
the Mc and activated apoptosis. This magnetofection of
the magnetic-responsive St-Mc-DDS led to an enhanced
therapeutic effect on tumor cells. Zhang et al’® constructed
a Mc-targeting nanoplatform of iron oxide silica nanove-
sicles decorated with TPP. The cellular uptake efficiency
of the nanoplatform was enhanced upon application of a
magnetic field of 0.30 T. SPIONs increased temperature

under magnism to kill tumor cells by hyperthermia.'>

Multi-Responsive St-Mc-DDSs

Compared to single stimuli, multiple stimuli, such as the
combination of Ex and En stimuli, may have synergistic
effects. Wang et al”® combined magnetic stimulus and NIR
light irradiation with redox responsiveness into a multistage
targeted nanocarrier to enhance the efficacy of cancer ther-
apy. The core-shell-S-S-shell nanocarrier was composed of
an Fe;04 core, an inward polydopamine (PDA, a photosen-
sitizer) shell connected to TPP, and an outward methoxy PEG
(mPEG) shell linked to PDA via a disulfide bond. The mag-
netic Fe30,4 core increased nanocarrier location in tumor.
Once entering the tumor cells, the outer mPEG shell is
detached by redox reaction to disclose TPP for Mc targeting.
Upon NIR light irradiation, PDA generated a photothermal
effect, and the loaded DOX rapidly entered the Mc, resulting
in cell apoptosis. Chen et al’® combined NIR light stimuli and
enzyme responsiveness to deliver dual peptide (Mc-target-
ing)-decorated AuNSs and DOX to cure tumors. Zhang et al’®
combined NIR light stimuli and redox responsiveness to
coprepare a Mc-targeting polymeric micelle.

The combination of different En stimuli (such as redox or
pH and enzyme stimuli) may result in the sequential release
of drugs or polymers at precise times.'>* Zhou et al’' con-
structed lipid polymer nanocarriers containing PTX, which is
composed of an amphipathic copolymer containing TPP,
poly (D,L-lactide-co-glycolide) (PLGA) and an amphipathic
copolymer having redox-responsive property. The hydropho-
bic drug core (CCM) was decorated with hydrophilic shell
(OHA and TPP) via a disulfide bond. The micelles were
ingested by cancerous cells through CD44 recognition,
entered the Mc and released CCM due to disulfide bond
cleavage in response to high levels of GSH. The long-acting
PEGylated nanocarriers accumulated in the tumor. PEG4000
detached via redox-triggered activation after uptake by can-
cer cells. The nanocarriers recovered to carry positive charge,
and then enhanced anticancer efficacy was achieved through
precise localization at the Mc.

Relationship Characteristics of St-
Mc-DDSs

According to the spatial location relationships of different
types of St- or Mc-DDSs, St-Mc-DDS are mainly classified
as one of 5 types (Figure 1C): St material loaded with a Mc
group or molecule-drug St-Mc-DDS; St material-Mc group or
molecule loaded with drug St-Mc-DDS; St material-Mc mate-
rial loaded with drug St-Mc-DDS; Mc group or molecule-drug
St-Mc-DDS; or normal material-loaded with St-Mc-DDS.

St Material Loaded with Mc Group or

Molecule-Drug

The drug molecules conjugated with Mc-targeting groups
or molecules are further encapsulated in St materials to
form different types (such as pH-, redox-, enzyme- or
light-responsive) of St-Mc-DDSs. The Mc group or mole-
cule-drug will be released in response to the tumor micro-
environment or local Ex stimulus, which overcomes the
nonspecific drug uptake by normal cells to a certain extent,
thereby reducing toxicity. However, the linkage of the Mc
group or molecule to the drug molecule may have a
negative effect on anticancer efficacy. Therefore, an antic-
ancer efficacy comparison between the Mc group or mole-
cule-drug and free drug group is necessary and valuable.

1*? synthesized a docetaxel-TPP (a Mc-tar-

Zhang et a
geting molecule) conjugate, and incorporated it into lipo-
somes composed of PEG-Schiff base-cholesterol (a pH-
sensitive St material) and DSPE. PEG-Schiff base-choles-
terol was hydrolyzed in pH ~6.0 (tumor microenviron-
ment) to get rid of PEG shell, and DSPE merged with
the tumor lysosomal membrane (pH ~5.0), resulting in fast
drug release into the cytoplasm and accumulation into the
Mc under the guidance of TPP. Xing et al*® developed
self-

composed of phenylboronic

amphiphilic quercetin-TPP conjugates into a
assembled nanoparticles
acid-PEG (a pH-sensitive St material) via boric acid ester
bonds for tumor therapy. Zhang et al’® encapsulated PPA
(a photosensitizer)-TPP (a Mc-targeting molecule) into
imidazole (a redox-responsive St material)-bearing poly-

meric micelles. Song et al'’

constructed a nanodrug self-
assembled from a 9-O-octadecyl (a Mc-targeting group)-
substituted berberine derivative, further modified with
DSPE-PEG2000 to increase stability and coated the nano-
drug with HA (an enzyme HAase-sensitive St material) to
achieve tumor targeting. Chen et al coencapsulated DOX

and TPP-KLA (a Mc-targeting molecule and peptide)-

4136

Dove!

International Journal of Nanomedicine 2021:16


https://www.dovepress.com
https://www.dovepress.com

Dove

Huang et al

decorated AuNSs (a light-responsive Sm material) into a
HA (an enzyme HAase-sensitive St material) shell.” 8

St Material-Mc Group or Molecules
Loaded with Drug

The Mc targeting group or molecule is directly bonded to a
St material to form a composite material that will further
encapsulate drug molecules to form different types (such
as pH-, redox- or enzyme-responsive) of St-Mc-DDSs.
Tan et al* conjugated a lipophilic cation CTPP (a Mc-
targeting molecule) with CSOSA (an alkaline pH-sensitive
St material) to produce a St-Mc-material (CTPP-CSOSA)
that formed micelles that simultaneously encapsulated
celastrol into the hydrophobic core. Jiang et al*’ conju-
gated the Mc peptide KLA with DSPE and DMA (a pH-
responsive material) to yield a DSPE-KLA-DMA lipid to
prepare liposomes containing PTX. Zhou et al’' mixed
C18-PEG2000-TPP (a Mc group) and DLPE-SS-
mPEG4000 (a reductive responsive polymer) with PLGA
to prepare nanoparticles loaded with PTX. Pramanik et al>>
selected a TPP-modified nonisocyanate polyurethane (an
esterase-responsive polymer) to construct biodegradable
nanocapsules containing DOX.

As far as St-Mc-DDSs with St material-Mc group or
molecules loaded with drugs are concerned, the antitumor
effects of the drug can retain intact since it has an unmo-
dified structure. However, Mc groups or molecules are
usually positively charged, easily absorbed by non-specific
proteins and rapidly eliminated by the reticuloendothelial
system in circulation.*”>'*” Therefore, it is necessary to
cover a Mc material with a negatively charged St material.
In addition, when reaching the tumor site, the St material
should be able to expose the Mc groups or molecules in
response to stimuli, which can promote the electrostatic
interaction between the nanoparticles and cancer cell
membrane for cell internalization.

St Material-Mc Material Loaded with
Drug

St material-Mc material can be a compound material com-
posed of St- and Mc-material*® or a material that has both
smart properties and Mc-targeting abilities.''>*'"?

Shi et al*® incorporated the HER-2 peptide-PEG2000-
Schiff base-cholesterol (HPSC) derivative (a pH-respon-
sive material) on the surface of DQAsomes (dicationic
dequalinium vesicle, a Mc material) containing DOX to

treat drug-resistant breast cancer. Li et al*> encapsulated

docetaxel in a positively charged mesoporous silica nano-
particle core (MSN, a Mc material) and then wrapped it
with a pH-responsive HPMA copolymer shell to cover the
positive charge of the mesoporous silica MSN. When St-
Mc-DDS is prepared using a compound of St material-Mc

1’36

materia its structural characteristics and in vivo pro-

cesses are similar to those of St-Mc-DDSs containing a
drug loaded in St material-Mc group or molecule.*”>! St
material-Mc material St-Mc-DDSs usually respond to sti-
mulation of the tumor microenvironment or local Ex sti-
muli and induce physical property changes, such as
particle size and charge. Then, the St-Mc-DDS arrives at
the Mc under the guidance of the Mc material.

Carbon nanomaterials can be used not only as Mc-
targeted nanocarriers but also as St photosensitizers to
induce phototherapy.''” Han et al''> constructed a hyper-
icin-functionalized NGO to deliver DOX, which had
enhanced Mc targeting and synergistic anticancer effects.
St-Mc-DDSs prepared using a single material having both
Sm properties and a Mc targeting ability usually first
accumulates in the Mc, and then energy conversion occurs

under Ex stimulation.''>!"”

Mc Group or Molecule-St Material-Drug
When the Mc group or molecule, St material and drug are
connected together, they form a St-Mc-DDS with a 100%
encapsulation rate. Wang et al’® proposed TPP-OHA-S-S-
CCM micelles (an Mc molecule-enzyme/redox-sensitive
multifunctional micelle) to exert anticancer efficacy. Li
et al** presented TPP-fluorogen-hydrazone bond-PEG
micelles (an Mc molecule-pH sensitive micelle), and
fluorogen underwent aggregation-induced emission
(AIE). The PEG moiety increased blood circulation stabi-
lity. Guan et al’’ decorated AIE copolymers (PAIE, a
photosensitizer able to be photoactivated upon 980 nm
laser irradiation to yield ROS) with TPP to form PAIE-
TPP, which was further conjugated with mPEG-CHO (a
pH-responsive material) via a benzoic imine bond. Wang
et al”® prepared TPP-PDA (a photothermal agent)-S-S
(redox sensitive)-mPEG nanoparticles using a similar
strategy.

St-Mc-DDSs formed by directly connecting a drug
with the Mc group or molecule-St material may reduce
the problem of drug leakage during circulation. These
compounds can not only change the physical properties
in response to stimulation of the tumor microenvironment
but also deliver therapeutic agents to produce pPDT*%7
and PTT”? effects under light irradiation.
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Normal Material Loaded with St-Mc-Drug
(St-Mc) drugs mainly refer to small molecule drugs with
Mc targeting ability and light conversion performance.
They can be encapsulated inside common materials to
form St-Mc-DDSs. IR-780 is a St-Mc drug that can selec-
tively accumulate in the Mc and is commonly used in
photothermography, PTT, and PDT.>****® Zhang et al>*
encapsulated IR780 into nanoliposomes based on perfluor-
ooctyl bromide to form an artificial nanoRBC. These lipo-
somes delivered oxygen to the tumor to alleviate tumor
hypoxia and enhanced Mc-targeted phototherapy and mul-
tiple imaging guidance/monitoring. The iridium (Ir) com-
plex is another St-Mc drug that targets the Mc and can
achieve photoredox reaction in tumor.’>'*>"'>” Huang
et al'>” prepared an Ir photocatalyst. This complex loca-
lizes in the Mc and depletes NADH, unbalances intracel-
lular redox and causes immunogenic cellular death upon
light irradiation. In another work, Ir and Fe;0,4 cooperated
to form photothermogenic nanozyme Ir@Fe;O04 NPs,
which could increase the local temperature of the tumor,
thereby catalyzing H,O, to generate OH.> Similarly,
PEGylated SWCNTs were used for Mc-targeted PTD.®®

Compared with the above four types of St-Mc-DDSs,
St-Mc-DDSs with St-Mc drug loading in common materi-
als has a simpler design and preparation requirements for
dosage forms. They can even be administered directly.'”’
In general, it is necessary to prepare St-Mc-DDSs with
suitable structural properties based on the properties of the
given drug and material.

Clinical Research Progress
PDT is considered a prospect effective therapy without
obvious side effects. Photofrin® (a hematoporphyrin-

derived photosensitizer) is a powder injection to cure var-

158

ious cancers such as colorectal carcinoma, ”° esophageal

159

cancer, and malignant cutaneous neoplasms.'®® The

application of micelle nanotechnology further enhances

Photofrin® delivery and efficacy at the cellular level.'®!

Visudyne® (a liposomal photosensitizer containing a sec-
ond-generation photosensitizer derived from porphyrin) is

used to treat subfoveal choroidal

162,163

clinically
neovascularization and has been found to be preclini-
cally effective for cancer treatment.'®* Ameluz® (containing
10% of the photosensitizer 5-aminolevulinic acid) is a non-
sterile white-to-yellow nanoemulsion-based gel for topical

165,166

use to clinically detect and treat bladder cancer or

cure melanoma skin cancer.'®’ In addition to light-

responsive St-DDSs, other stimuli-responsive St-DDSs are
developed in different clinical phases. They are thermore-
sponsive liposomes ThermoDox to cure breast tumor (phase
1) and liver cancer (phase IIl); the enzyme-responsive
polymeric nanoparticles Opaxio to cure ovarian carcinoma;
and the magnetic field-responsive iron oxide NanoTherm
for the treatment of glioblastoma. One significant character-
istic of these promising St-DDSs is their simple formula-
their

which favors clinical

168,169

tion, preclinical  to
transformation.

Some synthesized Mc-targeted compounds, such as
MitoQ and SkQ1 (also called Visomitin), have already
entered the clinical trial stage. Both are lipophilic antiox-
idants with TPP groups.'’® MitoQ is used to treat aging,'”"
pulmonary hypertension, etc.,'’? while SkQ1 is used to
treat conjunctivitis'’> in completed clinical trials. MitoQ is
currently undergoing other clinical trials for pulmonary
hypertension, etc. Unfortunately, all antioxidant tests are
not for antitumor therapy. However, it is worth trying to
perform the clinical transformation of other Mc-targeted
compounds with TPP groups and their DDSs.>* Some
novel compounds with potent anticancer activity have
been identified to use the Mc as a target and act on its
metabolism in recent years. Venetoclax represents a first-
in-class selective and effective Bcl-2 inhibitor.'”* Tt was
approved by the United States FDA in 2016 to treat
relapsed-refractory chronic lymphocytic leukemia. Its clin-
ical dosage form is ordinary tablets. Ganetespib is an
injectable small molecule drug. It has a favorable safety
profile and promising early results by inhibiting heat shock
protein 90. It has been investigated in multiple clinical
trials of various tumors, such as metastatic pancreatic

175

cancer (phase II), "~ relapsed-refractory small cell lung

cancer (phase Ib/IT),'’® and advanced carcinomas and sar-
comas (phase I)."””

To date, there are still no clinical antitumor investiga-
tions of St-Mc-DDSs or Mc-DDSs. In addition, there are
only a few St-DDSs in the clinic or the clinical trial stage.
Most of these compounds are still at the basic research or
preclinical stages. The possible reasons are listed as

follows.

1. Insufficient in vitro pharmaceutical data. The for-
mulation consists of some excipients or critical
materials that are not pharmaceutical grade and not
approved for pharmaceutical application, and their
components, purity, quality, function and toxicity
are unclear. Most preparation processes are too
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sophisticated for industrial production scale-up. The
drug payload and encapsulation efficiency of most
St-Mc-DDSs have not been determined, and some
may not be high. Formulation stability has not been
considered and investigated.

2. Insufficient in vitro release, in vivo pharmacoki-
netics and biodistribution data. Some in vitro release
in suitable release media should be supplemented,
and the media type should be chosen based on
administrative pathways and designed release
microenvironment. There is no in vivo pharmacoki-
netic behavior research or analysis of the bioavail-
ability or pharmacokinetic parameters, such as the
area under the plasma drug concentration versus
time curve, peak time, clearance, etc. The relation-
ship between the in vivo pharmacokinetics and in
vitro release should be investigated. The biodistri-
bution in different normal tissues and tumors, tissue
fluids, cells, and organelles, particularly the Mc,
should be clarified.

3. Insufficient pharmacodynamic data. Most studies are
limited to one or two cell lines and/or several animal
experiments and are still in the proof-of-principle
stage. The effects of stimuli and Mc targeting on
intracellular trafficking, action pathways, and clinical
efficacy require further research. When targeting the
Mc alone does not achieve the desired therapeutic
effect, designing nanocarriers that target multiple
organelles at the same time may be an alternative
strategy since in-depth studies on lysosomes, the endo-
plasmic reticulum and other organelles have shown
that these organelles are closely related to apoptosis or
autophagy, which can affect tumorigenesis.

4. Insufficient safety data. No preliminary safety eva-
luation of the Sm-Mc-DDS including toxicity,
immunogenicity and side effects in animals has
been reported. Additionally, the positive stimuli to
rats or mice may not be suitable or safe for patients.

5. The mutual interference or promotion of St stimuli
and Mc-targeting in one DDS requires more experi-
mental data. Theoretically, each Sm type may com-
bine with each Mc targeting type or subtype, but in
fact, there have been no reports of some En (other
biomolecules outside our list) or Ex (temperature,
ultrasound, electric pulse, etc.) stimuli-responsive
St-Mc-DDSs. The chosen criterion is not clear.

6. Compared to single stimulus-response St-Mc-DDSs,
multiple stimuli-response St-Mc-DDSs are more

difficult to achieve transformation. The latter is
still in its infancy, their design principles are more
complex than the former, and their fabrication and
assembly processes are more difficult. Sometimes,
failure to respond to one stimulus may lead to inef-
fectiveness of the whole system. Therefore, the
sequence and degree of response to each stimulus
should be further assessed.

Summary and Outlook

Mc dysfunction plays a vital role in programmed cell
death, such as apoptosis and necrosis. It is reasonable to
choose the Mc as a novel target for an antitumor strategy.
However, most drugs or nanocarriers on the market do not
have Mc targeting functions, and they need to overcome
many obstacles before reaching the tumor tissue, cells and
Mc due to the complexity of the tumor tissue environment.
The concept of Mc targeting, while seemingly simple in
theory, has multiple subtly different practical approaches.
Lipophilic cation such as TPP and IR-780 have good
safety and clinical potential. IR-780 are also used for
PDT/PTT therapy. Mc-targeting peptides such as KLA
and MQ peptides, have positively charged and lipophilic
amino acids. Mc-targeting aptamers are too expensive to
make clinical transformation difficult. Peptides and apta-
mers may be unstable and cause unwanted side-effects due
to large molecular weights. Mc materials form vesicles to
deliver drug. NGO nanoparticles may achieve PDT/PTT
effects. There are differences on the future status of var-
ious Mc-targeted approaches to cancer therapy. In this
context, structurally modified and programmed micro/
nanoparticles, which can be programmed using computa-
tion techniques to obtain En (pH, redox and enzyme) or Ex
(light and magnetism) stimuli responsive to increase their
accumulation in the Mc. Multifunctional nanocarriers with
single/multiple stimuli-responsiveness and Mc targeting
properties may better protect and deliver drugs, reduce
normal tissue accumulation and enhance therapeutic
effects. Stimuli-responsive system may be an effective
way to improve Mc targeting delivery. An important bio-
logical hypothesis is that the tissue microenvironment can
trigger a desirable event to a large extent from stimuli-
responsive behavior. However, until now, no evidence
supports this. The responsiveness should be considered
as an important contributor to therapeutic efficacy, and
an urgent necessity to assess in depth in vivo responsive-

ness that is intimately relevant for the functionality. Some
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strategies had been proposed to amplify the responsiveness
and improve the functionality.'”®%

Undoubtedly, enormous efforts have been exerted in
the design and basic research of St-Mc-DDS for cancer
therapy, and the preliminary results are encouraging.
However, the clinical transformation of St-Mc-DDSs is
comparatively motionless. In order to address the chal-
lenges in clinical transformation, there is a great need to
consider and perform the following measures in the future,
which include but are not limited to choosing the drug
using the Mc as a main target; choosing approved pharma-
ceutical excipients to formulate the St-Mc-DDS; choosing
suitable stimuli according to the tumor site (superficial or
deep tumor); optimizing the preparation method and
choosing a method that is as simple as possible; and
performing the necessary experiments (such as stability,
pharmacokinetics and safety tests) needed for clinical trial
application. Recently, advances in machine learning and
artificial intelligence immensely decode and empower the
cell-nanomaterial interaction modelling, which give mod-
ern to nanomedicine to predict the targeting and efficacy of
payload to intracellular compartment'®'~'#?
methods.®!

nanostructure activity-relationship (Nano-QSAR) and pro-

using in-silico
This potentially decipher the quantitative

mote the understanding of bio-physicochemical identity at
the nano-bio interface. In this context, structurally mod-
ified and programmed micro/nanoparticles, which can be
programmed using computation techniques to stimuli
responsive and increase their accumulation in the mito-
chondria. The predictability of targeting and effectiveness,
coupled with the clarity of the mechanism of action, may
accelerate the clinical transformation of nanomedicine. We
should follow innovative advantages and conduct prospec-
tive research. In addition, considering the fact that more
than 10% of all cancer drugs in use today are nanodrug
and irony is less 10% of clinical oncologist know this,
future concept must evolve around the why there is a need
for education and training in nanomedicine for future
doctors? Emphasis must be their incorporation into the
general medical curriculum the key concept in
nanomedicine.

Role of EPR in cancer barrier is somewhat oversell
considering less than 1% nanomedicine formulations fol-
low the trend designed by using EPR. In the last decades,
it has been increasingly recognized that there is large inter-
and intra-individual heterogeneity in EPR-mediated tumor
targeting, explaining the heterogeneous outcomes of clin-

ical trials in which nanomedicine formulations have been

evaluated. To address this heterogeneity, as in other areas
of oncology drug development, we have to move away
from a one-size-fits-all tumor targeting approach, towards
methods that can be employed to individualize and
improve nanomedicine treatments.

Overall, St-Mc-DDSs may be innovative and sensitive
precision medicines. They provide great potential for
enhanced cancer treatment. This new strategy is expected
to be applied in clinical practice as soon as possible and to
open up new ideas for precision medicine soon.

Abbreviations

AIE, aggregation-induced emission; APases, alkaline
phosphatases; AuNSs, gold nanostars; BD, berberine
derivative; CCM, curcumin; CPPs, cell penetrating pep-
tides;
bromide; Cyt, cytochrome; DDSs, drug delivery sys-
tems; DMA, dimethylmaleic anhydride; DOPE, dioleoyl
phosphoethanolamine; DOX, doxorubicin; DSPE,1,2-
EGFR,
epidermal growth factor receptor; En, endogenous; En/

CTPP, (4-carboxybutyl) triphenylphosphonium

distearoyl-sn-glycero-3-phosphoethanolamine;

Sm-Mc-DDS, En stimuli-responsive Sm and Mc-tar-
geted platforms; EphA 10, Eph receptor A10; EPR,
enhanced permeability and retention effect; Ex, exogen-
ous; GSH, glutathione; HAases, hyaluronidases; HPMA,
N-(2-hydroxypropyl) methacrylamide; HPSC, HER-2
peptide-PEG2000-Schiff base-cholesterol; Hsp90, heat
shock protein 90; ICG, indocyanine green; LPNPs,
lipid polymer hybrid nanoparticles; mAb, monoclonal
antibody; Mc, mitochondria; MDR, multidrug resis-
tance; mPEG, methoxy PEG; MPP, Mc-penetrating pep-
tide; MSN, mesoporous silica nanoparticle; MTS, Mc-
targeting sequence; NGO, graphene oxide; NIPU, non-
isocyanate polyurethane nanocapsule; NIR, near-infra-
OHA, PDA,
polydopamine; PDT, photodynamic therapy; PEG, poly-
ethylene glycol; PFOB, perfluorooctyl bromide; PLGA,
poly (D,L-lactide-co-glycolide); PPA, pyropheophorbide
A; PTT, photothermal therapy; PTX, paclitaxel; ROS,
reactive oxygen species;

red; oligomeric  hyaluronic  acid;

St, stimuli-responsive; St-
DDSs, stimuli-responsive drug delivery systems; St-
Mc-DDSs, smart stimuli-responsive and mitochondria-
targeting drug delivery systems; SPIONs, superparamag-
SS, Szeto-Schiller;
SWCNs, single-walled carbon nanotubes; TAT, trans-

netic iron oxide nanoparticles;

activating transcriptional activator; TPP, triphenylpho-
sphonium; UCNP, uv,
ultraviolet.

upconversion nanoparticle;
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