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Abstract: Surfactants, whose existence has been recognized as early as 2800 BC, have had 
a long history with the development of human civilization. With the rapid development of 
nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and 
food nanotechnology using nanoparticles have been remarkable, and new applications have 
been developed. The technology of surfactant-coated nanoparticles, which provides new 
functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, 
is attracting a lot of attention in the fields of basic research and industry. This review 
systematically describes these “surfactant-coated nanoparticles” through various sections in 
order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated 
nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress 
and problems of the technology using surfactant-coated nanoparticles through recent research 
reports have been discussed. 
Keywords: drug delivery system, drug targeting, food science, food packaging, nonionic 
surfactants, safety assessment

Introduction
Surfactants have been closely associated to humans for a long time, and these 
continue to be a necessity in our lives until now. The earliest report regarding the 
presence of surfactants is the record of soapy traces observed in clay cylinders at 
the Babylonian archeological site in Mesopotamia in 2800 BC.1,2 Sumerian tablets 
were excavated from the Mesopotamian archeological site in 2200 BC, and its 
cuneiform script describes how to make soap from animal fat and ash.1,2 Until the 
latter half of the 19th century, soap was reported to be the only artificial surfactant. 
However, in Germany after World War I, soap was found unsuitable for hard or 
acidic water, and its severe shortage prompted manufacturers to develop new 
surfactants to meet market demand, resulting in the development of miscellaneous 
surfactants.3 For example, the synthesis method of sodium dodecyl sulfate (SDS, 
also named as sodium lauryl sulfate [SLS]), one of the most produced and con-
sumed surfactants until present, was first reported in Germany in 1933 (Figure 1).4 

Surfactants have been widely used not only in adhesives, coatings, cosmetics, 
household detergents, industrial cleaning agents, oil field chemistry, paints, pesti-
cides, plastics, textiles, but also in the fields of food and medicine.5 It was reported 
in the year 2000 that 4250k tons of detergent and 1190k tons of fabric softener was 
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being consumed each year in Western Europe.6 The global 
consumption of household detergents in 2016 was 73.4 
million tons.7 Due to its wide range of applications and 
high consumption, the global surfactant market was valued 
at $43,655 million in 2017 and will reach approximately 
$64,408 million by 2025.8 In other words, the compound’s 
annual growth rate from 2018 to 2025 is expected to 
be +5.4%.8

The concept of “Nanotechnology” was introduced by 
Richard Feynman in 1959 and named by Norio Taniguchi 
in 1974; this technology has been applied to nanoparticles, 
which are progressively being used in medicine and food 
industries and sometimes referred to as nanomedicine or 
food nanotechnology, respectively.9,10 Among them, sur-
factant-coated nanoparticles have been attracting attention 
in recent years because surfactants provide additional 

+ - -+
Cationic surfactants Anionic surfactants Zwitterionic surfactants

Hydrophobic tail

Hydrophilic head

Polysorbate  80 (Tween 80)Poloxamer 188 (Pluronic F68)

Glyceryl monostearate
(GMS)

Sorbitan monostearate
(Span 60)

Nonionic surfactants

Cetyltrimethylammonium 
bromide (CTAB)

Didodecyldimethylammonium
bromide (DDAB)

Sodium dodecyl sulfate
(SDS)

Sodium cholate
(SC)

Oleyl amidopropyl betaine
(OAPB)

3-(N,N-dimethyltetradecylammonio)
propane-1-sulfonate (SB3-14)

Ionic surfactants

Figure 1 Classification of surfactants and structures of the ionic and nonionic surfactants mentioned in this review.

https://doi.org/10.2147/IJN.S298606                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2021:16 3938

Miyazawa et al                                                                                                                                                       Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


functions to nanoparticles. The present review is aimed to 
characterize the functions of nanoparticles provided by 
surfactants. The applications of surfactants, nanoparticles, 
and surfactant-coated nanoparticles in the field of nano-
medicine and food nanotechnology along with some 
examples are included here. To systematically understand 
the relationship between the surfactants and nanoparticles, 
it is necessary to understand each of them individually. 
Therefore, this review introduces surfactants, surfactant- 
coated nanoparticles, and applications of surfactant-coated 
nanoparticles to nanomedicine and food nanotechnology. 
Through this review, we hope to visualize the current 
development and associated problems of surfactant-coated 
nanoparticles, bridge across disciplines, and lay the foun-
dation for the development of new technologies.

Method
To carry out the literature search, Google Scholar, J-STAGE, 
MEDLINE, PubMed and Web of Science were employed. The 
search was based on key words such as surfactant and absorp-
tion/accelerated blood clearance/aggregation/aging/ 
Alzheimer’s disease/antimicrobial/antioxidant/antiviral/artifi-
cial intelligence/bacteria/bioconcentration/blood-brain bar-
rier/brain uptake/brain/cancer/cationic/cell membrane/cellular 
uptake/cholate/cholesterol/circulation/clinical trials/coating/ 
DLVO/daily meals/digestive system/drug/drug delivery sys-
tem/EPR/emulsifiers/emulsion/environmental considerations/ 
environmental pollution/food nanotechnology/food packa-
ging/food quality/food sensing/food technology/gold nanopar-
ticles/health/history/hydrophilic/hydrophobic/inflammation/ 
inorganic/intravenous/ionic/liposomes/liquid/machine learn-
ing/medical/medicine/mucus layer/nanoparticles/nanotech-
nology/nanotoxicology/niosomes/nonionic/opsonization/oral/ 
organic/Ostwald ripening/oxidative stress/P-glycoprotein/ 
phospholipid/plant/poloxamer/polyethylene glycol/polymer/ 
polymeric nanocomposites/polyphenol/polysorbate/process/ 
quantum dots/reactive oxygen species/reticuloendothelial sys-
tem/SPION/safety/self-assembly/senescence/side effect/silica 
nanoparticles/silver nanoparticles/smart food/stability/stealth 
effect/supramolecular structures/surfactant-coated nanoparti-
cles/tissue distribution/toxicity/tween/Van der Waals forces/ 
vesicles/vitamin.

Surfactant
Overview of Surfactant
Surfactants, which is an abbreviation for “surface-active 
agents,” are classified as amphiphilic compounds due to 

the presence of both hydrophilic and hydrophobic groups 
in their chemical structure.11 Depending on the character-
istic of the hydrophilic group, surfactants can be broadly 
classified into four types: Cationic surfactants (positively 
charged hydrophilic groups), anionic surfactants (negatively 
charged hydrophilic groups), zwitterionic surfactants (hav-
ing both positively and negatively charged hydrophilic 
groups), and nonionic surfactants (the hydrophilic group 
has no charge) (Figure 1).12 Cationic surfactants contain 
alkylamine or quaternary ammonium salts in their hydro-
philic groups and can be adsorbed on negatively charged 
interfaces such as keratin (a component of skin and hair), 
natural fibers, and chemical fibers. They have antistatic and 
disinfectant properties, and are used as antistatic agents, 
coating agents, disinfectants, and softeners (hair condi-
tioners and fabric softeners). Anionic surfactants contain 
carboxylic acid salts, sulfonates, sulfate salts, sulfate esters, 
or phosphates in their hydrophilic groups and offer good 
detergency, foaming property, foam stability, and penetra-
tion. They are used as foaming agents, paints, protein solu-
bilizers, soaps, and present in various household and 
industrial detergents. Zwitterionic surfactants contain car-
boxy betaine, imidazolium betaine, aminoethylglycine salt, 
or amine oxide in their hydrophilic groups. They are often 
used as auxiliary materials to enhance the effectiveness of 
other surfactants or coexisting compounds. For example, 
anionic surfactant (sodium bis(2-ethylhexyl) sulfosuccinate 
[AOT], which self-assembles into the shape of ellipsoidal 
micelles), forms vesicles in the presence of zwitterionic 
surfactant (oleyl amidopropyl betaine [OAPB], which self- 
assembles into the shape of worm-like micelles [Figure 1]) 
and salt.13 Zwitterionic surfactant (3-[N,N-dimethyltetrade-
cylammonio]propane-1-sulfonate [SB3-14] [Figure 1]) 
enhanced the loadability of natural flavonoid dye (querce-
tin) in wool and enhanced its antioxidant properties 
(Figure 1).14 Nonionic surfactants have non-dissociable 
chemical structures in their hydrophilic groups, such as 
amides, alcohols, esters, ethers, or phenols. They are used 
in cosmetics, as food emulsifiers, and skin cleansers due to 
low irritation and toxicity, which are the most important 
advantages associated with their application in nanomedi-
cine and food nanotechnology. There are many reports 
available on the order of toxicity of surfactants, which 
generally demonstrate that cationic surfactants > anionic 
surfactants ≥ zwitterionic surfactants > nonionic surfactants, 
although toxicity may vary depending on the chemical 
structure.15–19 This is owing to the fact that the hydrophilic 
groups of nonionic surfactants do not ionize in aqueous 
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solutions, and thus the critical micelle concentration of 
nonionic surfactants tends to be much lower than that of 
ionic surfactants. Therefore, they are less toxic than ionic 
surfactants. The hydrophobic groups of nonionic surfactants 
are composed of long-chain fatty acids and water-insoluble 
derivatives and are classified as fatty alcohols, esters, ethers, 
and block copolymers.20,21 Among the surfactants of one 
group, toxicity generally correlates with the ability of sur-
factant molecules to migrate from water to cell membranes.-
22 Therefore, the surfactant that has a longer chain length of 
the hydrophobic group and higher hydrophobicity can 
easily move to the lipid bilayer composed of phospholipids. 
Therefore, these are considered more toxic than highly 
hydrophilic surfactants.22 Henceforth, nonionic surfactants 
are most frequently used in the fields of nanomedicine and 
food nanotechnology. Currently, various nonionic surfac-
tants are commercially available, so consumers can choose 
suitable compounds depending on their purpose.

In a system consisting of a single phase, surfactants are 
dispersed and equilibrated in the bulk. On the other hand, 
surfactants initiate their interactions after modification of 
various conditions such as electrolyte concentration, sur-
factant concentration, pH, pressure, temperature, and type 
of solvent. This leads to supramolecular self-assembly of 
bilayer membrane vesicles, cylindrical micelles, lamellar 
phases, spherical micelles, etc.23 In addition, when the 
system consists of multiple phases, surfactants stabilize 
them due to their inherent physical characteristic of 
being localized at the interface (for example, air and 
water, oil and water, solid and water) due to their amphi-
pathic chemical structure. In the absence of a surfactant, 
the molecules present in the respective aqueous and oil 
phases exert high surface tension due to intermolecular 
forces (such as hydrogen bonds), and the system is sepa-
rated into different phases. When the surfactant is loca-
lized at the interface, an intermolecular force acts between 
the hydrophilic group of the surfactant and water mole-
cule, thereby decreasing interfacial tension and surface 
tension leading to formation of supramolecular structures 
such as dispersed phase (such as emulsion) and continuous 
phase (such as bicontinuous liquid crystals) and a drastic 
change in the ratio of surface area to volume. The hydro-
philic-hydrophobic balance (HLB, a parameter that indi-
cates the surfactant’s affinity for water and oil) and the 
critical packing parameter (CPP, a parameter that predicts 
the surfactant’s self-assembly) are used to predict the 
properties of the surfactant.24–27 The “nanoscale supramo-
lecular structures composed of surfactants” as discussed 

above, have been used as templates for the synthesis of 
inorganic materials28,29 enhancement of the activity of 
catalysts,30 reaction field of nanoreactors,31 modulation 
of wettability of biological interfaces,32 and enhanced oil 
recovery from heterogeneous rocks.33

Nonionic Surfactants in the 
Pharmaceutical Industry
The advantages of nonionic surfactants such as low cost, 
high stability, low toxicity, and amphiphilic nature can be 
used as next-generation materials and an alternative to 
applications of phospholipid-based nanostructures (hybrid 
lipid particles, nanocontainers, nanopores, and 
transistors).34 Due to these advantages, the field of nano-
medicine is investigating the use of niosomes (vesicles 
composed of nonionic surfactants) instead of liposomes, 
which are composed of phospholipids and are widely used 
as carriers for drug and gene delivery.35 Bartelds et al 
prepared fluorophore (calcein)-encapsulating niosomes 
consisting of nonionic surfactants (polysorbate 80 [poly-
oxyethylene (20) sorbitan monooleate, also named as 
tween 80 [Figure 1]], sorbitan monostearate, and 
cholesterol).36 And compared their leakage to that of lipo-
somes (consisting of phospholipids and cholesterol) after 
25 h of incubation. The results showed that 10% of calcein 
leaked from the liposomes, whereas less than 3% of cal-
cein leaked from the niosomes. This indicates that nio-
somes could retain the encapsulated material for a longer 
period. Puras et al prepared cationic niosomes consisting 
of cationic lipids and nonionic surfactants (polysorbate 
80).37 They reported lower toxicity during transfection of 
cells with niosomes than with Lipofectamine®, which is 
commonly used in gene transfer techniques. In addition, 
nonionic surfactants are widely used in protein drug deliv-
ery because they can stabilize proteins against interfacial 
tension and minimize the adsorption and aggregation of 
proteins at the interface.38,39 Li et al demonstrated that the 
presence of nonionic surfactants (polysorbate 80 and 
poloxamer 188 [poly(ethylene glycol)-block-poly(propy-
lene glycol)-block-poly(ethylene glycol), also named as 
pluronic F68] [Figure 1]) inhibited the irreversible adsorp-
tion of abatacept on silicone oil used as a lubricant for 
medical syringes with polysorbate 80 being more 
effective.40 Furthermore, poloxamers are used in more 
than 70% of commercially available monoclonal antibody 
drug delivery due to their ability to inhibit self-assembly 
and aggregation of antibodies.41–43 Moreover, the use of 
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nonionic surfactants as pharmaceutical products is also 
being considered. For example, nonoxynol-9 has been 
found to have the potential for human immunodeficiency 
virus type 1 (HIV-1) infection and as topical disinfectant, 
but its efficacy has not been confirmed in clinical 
practice.44,45

Nonionic Surfactants in the Food Industry
Approximately 75% of the total emulsifiers in the global 
food industry are mono- and di-glycerides, widely recog-
nized as nonionic surfactants, either emulsifiers are indust-
rially produced.46 Mono- and di-glycerides have been 
widely used as antimicrobial agents, antidegradants, emul-
sifiers, preservatives, and thickeners in food products such 
as beverages, ice cream, margarine, and shortening. Mono- 
and di-glycerides are also reported to be present in trace 
amounts in natural food resources, such as paprika seed 
oil, pumpkin seed kernel oil, and watermelon seed kernel 
oil, which contain approximately 1% (proportion of total 
lipid) monoglycerides, and 0.3% (proportion of total lipid) 
diglycerides (Figure 1).47,48 The use of nonionic surfac-
tants as food emulsifiers that enhance the absorption of fat- 
soluble food ingredients when taken orally is widely 
recognized.49 It is generally believed that emulsions have 
higher digestibility than other forms because they have 
more surface area to react with digestive enzymes, such 
as lipase. Salvia-Trujillo et al prepared emulsions with 
different particle sizes (small: 0.12 μm, medium: 0.19 
μm, and large: 14 μm) containing lipophilic food compo-
nent (β-carotene), and demonstrated the effect of particle 
size on its absorption using a gastrointestinal tract model.50 

The results showed that the rate of digestion of lipids 
present in emulsions increased with decreasing particle 
size (small = medium > large) along with increased 
absorption of β-carotene (small > medium > large). To 
understand the mechanism of enhanced absorption, Lu 
et al prepared β-carotene encapsulated emulsions contain-
ing sunflower oil with monoglycerides in the range of 
0–2% and demonstrated that the uptake of β-carotene 
into human colorectal adenocarcinoma (Caco-2) cells 
increased as the percentage of monoglycerides increased.51 

They reported the mechanism of reduction in the surface 
charge of the emulsion in gastric fluid environment due to 
the presence of monoglycerides, which leads to an 
increase in the amount of lipase adsorbed onto the surface 
of the emulsion and reduction of creaming (a phenomenon 
in which thermodynamically unstable emulsions undergo 
phase separation over time). The antimicrobial effect of 

food ingredients is also known to be enhanced by coex-
istence with monoglycerides. Lee et al. found that the 
antimicrobial effect of linolenic acid on Bacillus cereus 
and Staphylococcus aureus was enhanced by coexistence 
with monoglycerides.52 They reported that the mechanism 
was that monoglycerides localized on the cell membrane 
of the bacteria enhanced the adhesion of linolenic acid to 
the cell membrane. Moreover, monoglycerides have been 
confirmed in synthesis-based scientific approaches to 
enhance the biological activity of food components. For 
example, omega-3 fatty acids are known to have useful 
physiological effects such as anti-inflammatory, antioxi-
dant, anticancer, and anti-obesity and are available in the 
market as oral supplements, although they are known to be 
chemically unstable, difficult to dissolve in water, and 
have low absorption. To solve these problems and to 
enhance the physiological effects, eicosapentaenoic acid- 
monoglyceride, docosahexaenoic acid-monoglyceride, and 
docosapentaenoic acid-monoglyceride (in which eicosa-
pentaenoic acid, docosahexaenoic acid, docosapentaenoic 
acid were esterified and bound to the sn-1 position of the 
glycerol moiety in the monoglyceride structure) have been 
studied.53,54 In addition to these applications, nonionic 
surfactants are used in a variety of applications in the 
food industry and are detailed in other reviews.55,56

Surfactant-Coated Nanoparticles
Nanoparticles have been used in the fields of nanomedi-
cine and food nanotechnology to impart a variety of func-
tions to encapsulated compounds. However, depending on 
the surface structure, the prepared nanoparticles are diffi-
cult to disperse in water and be aggregated in a short time. 
An approach to solve this problem is to allow coexistence 
of the prepared nanoparticles and the surfactant so that the 
surface of the nanoparticles is covered with the surfactant, 
and the nanoparticles are stabilized in the system. These 
nanoparticles are called “Surfactant-coated nanoparticles” 
(Figure 2A).57,58 It is important to understand the interac-
tion between the nanoparticles and the surfactant in sur-
factant-coated nanoparticles for their efficient 
performance.

The nanoparticles exert forces on each other. 
Orientation interactions (Keesom interactions), dipole 
interactions (Debye interactions), and dispersion interac-
tions (London interactions) are collectively called “van der 
Waals forces” and are responsible for intermolecular 
interactions.59 Van der Waals forces acting between parti-
cles are considered to be caused by the attractive forces 
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between the molecules present in each particle and are 
expressed by the equation (Figure 3A (1)),60 where AH is 
the Hamaker constant that varies depending on the type of 
molecules present in the particles, for example, the value 

of Hamaker constant is 6.5×10−20 J for poly (lactic-co- 
glycolic acid) (PLGA), and in the range of 0.9–3.0×10−19 J 
for gold.61,62 As the size, shape, and temperature of metal-
lic particles change, the value of the Hamaker constant 
also changes due to the change in the dielectric constant.62 

The above equation is approximated to the equation 
(Figure 3A (2)) by the Derjaguin approximation by assum-
ing that the distance between the two particles is narrower 
than the radius (Figure 3B).63 It can be inferred from these 
equations that the van der Waals force between particles 
becomes weaker as the distance between the particles 
increases and becomes stronger as the size of the particles 
increases.

The surface charge between particles is also important 
as it determines the electrostatic repulsive force. Particles 
that are positively or negatively charged in solution form 
an ionic atmosphere due to the attraction of counter ions to 
the surface of these particles, resulting in the formation of 
an electric double layer. When particles come close to each 
other, the overlap of the electric double layer leads to a 
change in the ion concentration and the repulsive force is 

: Surfactant

: Hydrophobic core

A B

Polymeric core

Gold core Silica core

Semiconductor
core

Lipid core

Organic nanoparticles

Inorganic nanoparticles

Transition
metal core

Figure 2 (A) Typical Illustration of surfactant-coated nanoparticles. (B) Various 
organic and inorganic materials used in the core of surfactant-coated nanoparticles.
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Figure 3 (A) Equations of the DLVO theory. (B) Relationship between two particles assuming the DLVO theory. (C) A typical example of potential energy presented in the 
DLVO theory. 
Notes: (A) Data from Hamley63 and Ohshima.65
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generated. This phenomenon is called “electrostatic repul-
sive force.”62,63 Models of the strength of this electrostatic 
repulsive force include Helmholtz, Gouy-Chapman, Stern, 
and BDM (Bockris/Devanathan/Muller), each of which 
has been formulated.64 One of the most widely used equa-
tions for the electrostatic repulsive force is for colloidal 
systems with dispersed nanoparticles (Figure 3A (3)).65 

The theory that considers both the “attractive force” of 
the van der Waals interaction and the “repulsive force” of 
the electrostatic repulsion is called the Derjaguin-Landau- 
Verwey-Overbeek (DLVO) theory.63,66,67 DLVO theory is 
named after the scientists who contributed to its develop-
ment and can explain the coagulation/dispersion state of 
particles. In DLVO theory, the stability of a colloid is 
defined as the total sum of van der Waals force and 
electrostatic repulsion force between particles, and the 
total potential energy and is expressed as shown in 
Figure 3A (4–7).62,65,68

A typical example of the DLVO theory is shown in 
Figure 3C.60,63,65 At high potential energy, the particles are 
stable because they repel each other (Figure 3C (i)). As 
shown in Figure 3C (ii), if there is a deep secondary 
minimum, the particles are in a stable equilibrium state. 
As shown in Figure 3C (iii), when the secondary minimum 
is shallowly declined the particles gradually aggregate. As 
shown in Figure 3C (iv) and (v), if the attractive van der 
Waals force is stronger than the electrostatic repulsive 
force, the particles will aggregate in a short time. To 
elucidate the influence of surfactant adsorption on the 
aggregation behavior of nanoparticles, Farrokhbin et al 
dispersed three types (amidine latex, silica, and sulfate 
latex) of nanoparticles in non-polar solvent (decane) and 
added an anionic surfactant (SDS) and assessed the para-
meters for aggregation based on the DLVO theory (shield-
ing distance, surface charge, and van der Waals force).69 

As a result, they reported an increase in inhibition of 
aggregation and stabilization of dispersion in a concentra-
tion-dependent manner until the concentration of anionic 
surfactant in the system reached a certain concentration. 
Espinosa et al also reported that the dispersion of poly 
(methyl methacrylate) nanoparticles was stabilized in non- 
polar solvents (hexane) when a nonionic surfactant (sorbi-
tan trioleate, also named as Span 85) was present in the 
system.70 Although, the DLVO theory is adaptable to 
particles of hard materials, however, there are limitation 
in its applicability to soft materials such as cells and 
lipoproteins, causing different dispersion phenomena in 
vivo.71,72 Therefore, additional theory will need to be 

developed. If there is a difference in the size of the parti-
cles in the system, the smaller particles are incorporated 
into the larger particles over time due to the difference in 
their surface energies, with the larger particles becoming 
larger and the smaller particles disappearing from the 
system. This phenomenon is known as “Ostwald ripening” 
and is widely recognized as a principle that applies to all 
organic and inorganic particles.73 As mentioned at the 
beginning of this section, particle agglomeration is a con-
cern in particle dispersion systems. However, it has been 
reported that the presence of a surfactant in the system 
induces it to get adsorbed to the surface of the particles 
and lowers the speed of ripening by several orders of 
magnitude.74 Kiss et al demonstrated the mechanism of 
adsorption of nonionic surfactants (pluronic PE6100, 
PE6400 and PE6800) on hydrophobic interfaces (blend 
film composed of polylactic acid [PLA] and PLGA).75 

They reported that highly hydrophilic surfactants could 
not adsorb to the hydrophobic interface, while surfactants 
with both high and low hydrophilic moieties could adsorb 
and distribute effectively to the hydrophobic interface. The 
presence of surfactants at the solid interface increased 
steric stabilization. When the nanoparticles come close to 
each other, the hydrophobic groups of the surfactant on the 
surface of the nanoparticles limit the mutual penetration, 
resulting in steric hindrance and stabilization. Steric stabi-
lization is different from electrostatic repulsive forces, 
such as being unaffected by the electrolyte concentration 
of the solvent and adaptable over a wide range of nano-
particle concentrations.76 Santander-Ortega et al studied in 
detail the adsorption and stabilization mechanism of non-
ionic surfactants on PLGA nanoparticles and confirmed 
that a nonionic surfactant (poloxamer 188) adsorbed to 
the interface of PLGA nanoparticles when both of them 
coexisted.77 Moreover, they demonstrated that as the 
adsorption of nonionic surfactant (poloxamer 188) on the 
surface of PLGA nanoparticles increased, the steric stabi-
lity of nanoparticles was greatly increased by the poly-
ethylene oxide framework in nonionic surfactant, and the 
parameters of the DLVO theory indicated the formation of 
a stable dispersion. Furthermore, surprisingly, they found 
that the stabilization mechanism is not only explained by 
the DLVO theory and steric stabilization, but also depen-
dent on the repulsive hydration forces to the hydrophilic 
interface constructed by nonionic surfactant (poloxamer 
188) on the surface of nanoparticles. Since the stabiliza-
tion by the repulsive hydration force is unaffected by the 
external salt concentration, the system is also expected to 
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be stable in vivo and is attracting attention. Chaudhari et al 
and other researchers reported that an anionic surfactant 
(SDS) and a nonionic surfactant (poloxamers) had little 
effect on the release rate of the encapsulated drug from the 
solid dispersions.78–81 Conclusively, surfactants play an 
important role in the stabilization of nanoparticles and 
there are many applications of surfactant-coated nanopar-
ticles as explained in the next section.

Application of Surfactant-Coated 
Nanoparticles in Nanomedicine
Nanomedicine
Nanotechnology is defined as the deliberate design, char-
acterization, production, and application of materials, 
structures, devices, and systems by controlling their size 
and shape within the nanoscale range.82

Nanomedicine is regarded as “the use of nanoscale mate-
rial properties and physical characteristics for the diagno-
sis and treatment of diseases at the molecular level”.82 

According to a report of 2013, 789 clinical trials were in 
progress at 241 companies and research institutions, and 
363 nanomedicine products and applications were 
identified.83 In the field of nanomedicine, surfactants are 
often used to impart new functions to nanoparticles. 
Recent progress in this field is summarized in Table 1. In 
the following sections, nanomedicine based on surfactant- 
coated organic and inorganic nanoparticles will be pre-
sented and the properties each nanostructure will be dis-
cussed separately. However, in practice, most approaches 
combine multiple materials and properties rather than only 
one. Therefore, in the field of nanomedicine, it is neces-
sary to have integrated knowledge and approaches that are 
not limited to the respective organic and inorganic fields of 
expertise.

Surfactant-Coated Organic Nanoparticles 
in Nanomedicine
During disease treatment, the administered molecule 
(drug) can exhibit a therapeutic effect only when it reaches 
the target site of action, such as an area of inflammation or 
a cancer tissue. However, when a free drug is administered 
into the bloodstream, its therapeutic efficacy is severely 
limited due to various problems including premature 
degradation, expulsion of the drug due to the reticuloen-
dothelial system (RES, also called the mononuclear pha-
gocyte system [MPS]), degradation due to instability of 
the drug, poor dispersibility, and poor accumulation at the 

site of action. The resulting non-selective tissue distribu-
tion of drugs is a major factor responsible for drug toxicity 
(for example, dose-limiting toxicity [DLT]).84 Organic 
nanoparticles, which are widely used in the field of nano-
medicine, have potential to overcome the above problems 
because they can impart a variety of advantages to the 
encapsulated substances.85 For example, organic nanopar-
ticles encapsulating anticancer drugs, genes, and proteins 
can be delivered selectively to the target site of action or 
specific cells while protecting the encapsulation from 
degradation and RES; such a technology increases thera-
peutic efficacy and reduces side effects and is called a 
“drug delivery system”.86–88 The constituents of the 
organic nanoparticles used in the drug delivery system 
are selected to be non-toxic or low-toxic to living organ-
isms, and typical examples include biodegradable poly-
mers (chitosan, gelatin, hyaluronic acid, PLGA, poly 
[alkyl cyanoacrylate], and poly-ε-caprolactone), solid 
lipids (cetyl palmitate, cholesterol, palmitic acid, stearic 
acid, and tristearin), and proteins (albumin, collagen, glia-
din, legumin, protamine and silk) (Figure 2B).89–91 A 
number of methods for preparing organic nanoparticles 
have been reported, and the related mechanism has been 
reviewed in detail by Anton et al.74 For example, the 
emulsification solvent evaporation technique (polymer- 
and lipophilic drug-containing organic solvent is dispersed 
in surfactant-containing water to form an oil in water [O/ 
W] emulsion as a template of nanoparticles, and then 
evaporated to precipitate polymeric nanoparticles contain-
ing the drug dispersed into the system) is widely used to 
prepare nanoparticles composed of biodegradable poly-
mers, and the microemulsion method (oil phase containing 
low melting temperature lipid and lipophilic drug is dis-
persed in surfactant-containing water to form O/W micro-
emulsion as a template of nanoparticles, which is then 
rapidly cooled to precipitate drug-containing solid lipid 
nanoparticles) is widely used to prepare nanoparticles 
composed of solid lipids.90,92 The preparation of PLGA 
nanoparticles by solvent evaporation technique is widely 
used, and the most commonly used surfactant in the pre-
paration process is polyvinyl alcohol (PVA).93 Pisami et al 
used three different surfactants (PVA, sodium cholate [SC] 
[Figure 1], sodium taurocholate [TC], [Figure 1]) in the 
preparation of PLGA nano/micro particles encapsulating 
lipophilic substances (perfluorooctyl bromide [PBOB]) by 
solvent evaporation technique (dichloromethane was used 
as the organic phase) and compared their detail of preci-
pitation process by optical microscopy, confocal 
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microscopy and transmission electron microscopy 
(TEM).94 The results showed that in the TC group, the 
precipitated particles showed acorn shaped (PBOB and 
PLGA individuals precipitated independently) morphol-
ogy, while in the PVA group, both acorn and core-shell 
shaped morphologies were precipitated. As the reason for 
the difference in particle deposition morphology, they 
found that PVA forms a stable phase at the dichloro-
methane-water interface but has properties that prevent 
PLGA molecules from adsorbing to the interface, while 
TC does not allow other chemical species to adsorb at the 
interface. On the other hand, in the SC group, a mixed 
interface of PLGA molecules and surfactant was formed 
during particle formation, and particles with a core-shell 
shaped morphology were stably deposited in the system. 
Therefore, they concluded that when preparing particles by 
solvent evaporation technique, core-shell morphology was 
obtained if PLGA molecules could be adsorbed on the 
mixed interface, otherwise acorn shaped morphology was 
obtained. The coexistence of different surfactants may be 
useful in the formation of particles. Ramirez et al reported 
that when PLGA nanoparticles were prepared by the sol-
vent evaporation technique, the presence of not only PVA 
but also other surfactant (SDS) leads to steric stabilization 
in the systems, resulting in the precipitation of PLGA 
nanoparticles with a smaller particle size than those pre-
pared by PVA alone.95 Such findings suggest that surfac-
tants play a critical role in the preparation of nanoparticles. 
The prepared nanoparticles were administered in vivo after 
their stability, interactions with proteins and cells have 
been thoroughly investigated in vitro.96

Surface Charge and Protein Adsorption
The charge on the surface of the nanoparticles has an impor-
tant influence on their intracellular localization. Compared to 
anionic and nonionic charged nanoparticles, cationic charged 
nanoparticles exhibit higher cellular uptake due to their 
enhanced adhesion to the surface of negatively charged 
cells by electrostatic attraction.97–99 It has also been reported 
that cationic charged nanoparticles incorporated into cells 
have the ability of endosomal escape. Lipid nanoparticles 
composed of ionized amine lipids with a pKa of 6–7 and 
tertiary amines have an electrically neutral surface charge in 
the blood (pH 7.4) but become cationic in the endosomal 
environment (pH < 6.5) after they are taken up into the cell. 
As a result, cationic charged nanoparticles fuse with the 
negatively charged endosomal membrane and release encap-
sulated drugs into the cytoplasm.100–102 By this mechanism, Ta
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cationic surfactants such as cetyltrimethylammonium bro-
mide (CTAB) and didodecyldimethylammonium bromide 
(DDAB) are used to provide a positive charge to the surface 
of nanoparticles (Figure 1). Fay et al prepared cationic 
charged surfactant-coated nanoparticles (PLGA nanoparti-
cles encapsulating plasmid DNA covered with cationic sur-
factant [DDAB]) and assessed their transfection efficiency 
into murine macrophage (RAW 264.7) cells, and observed an 
increase in cellular uptake and endosomal escape; transfec-
tion was achieved with a one thousandth amount of plasmid 
DNA compared to that of commonly used transfection 
reagent Lipofectamine®.103 In addition, cationic charged 
nanoparticles showed a stronger immune response than anio-
nic charged and nonionic nanoparticles, which have attracted 
attention in recent years for the development of vaccines and 
application in the field of immunotheraphy.104,105 Kedmi et al 
prepared cationic charged surfactant-coated nanoparticles 
(small interfering RNA [siRNA] encapsulated in solid lipid 
nanoparticles coated with a cationic surfactant [1, 2-dioleoyl- 
3-trimethylammonium-propane (DOTAP)]) and observed 
the activation of the innate immune system in C57BL/6 
mice.106 The results showed a 10- to 75- fold higher induc-
tion of type 1 helper (Th1) cytokine expression than the 
control particles (weakly anionic charged). However, catio-
nic charged nanoparticles are more likely to disrupt cell 
membrane integrity and cause damage to mitochondria and 
lysosomes than anionic charged and nonionic nanoparticles, 
which raises concerns about their side effects.107 It has also 
been reported that the surface of cationic nanoparticles is 
prone to non-specific adsorption of albumin and alpha-1B- 
glycoprotein.108,109 Furthermore, as mentioned in section 
“Overview of Surfactant” of this review, the cationic surfac-
tant itself has potential toxicity; approaches to avoid this 
toxicity have been reported, for example, Gossmann et al 
observed reduced side effects when the surface of PLGA 
nanoparticles coexisted with nonionic polymers (polyethy-
lene glycol [PEG]) and cationic surfactant (DDAB) in vitro.-
110 The RES is actively involved in the phagocytosis of 
macrophages in the spleen, bone marrow, and liver.111–113 

Nanoparticles administered into the bloodstream bind to 
proteins and antigens called opsonin, forming a corona (a 
complex of nanoparticles, proteins, and antigens), which is 
taken up by macrophages. This phenomenon is called “opso-
nization”, and the process involves apolipoprotein, albumin, 
fibrinogen, immunoglobulins, and complement 
components.114 The opsonized nanoparticles interact with 
receptors on the surface of macrophages and are transported 
to phagosomes and fused with lysosomes for degradation or 

elimination from the body.111 It has been reported that PLGA 
nanoparticles, which are not coated with any surfactant, are 
opsonized by non-specific adsorption of plasma proteins on 
their surface, which leads to their degradation in the body 
(Figure 4A).115 Moreover, targeting ligands present on the 
surface of the nanoparticles are masked by opsonization, 
which reduces their targeting ability. Salvati et al prepared 
silica nanoparticles modified with transferrin on its surface as 
a targeting ligand for receptor (transferrin receptor) on cancer 
cells and reported that the opsonized form of these nanopar-
ticles lost their targeting ability.116 Hence, it is critical to 
avoid opsonization for effective targeting ability of nanopar-
ticles in vivo and to reach the target site of action. 
Furthermore, it has been discovered that the nanoparticles 
coated with nonionic surfactants, such as poloxamers, avoid 
opsonization and predation by macrophages (this phenom-
enon is also called as “stealth effect”) (Figure 4B). Currently, 
PEG modification of nanoparticles is the most widely used 
method to impart stealth effect to nanoparticles, but the 
continuous administration of PEG-modified nanoparticles 
has raised concerns about the accelerated blood clearance 
(ABC) phenomenon (an immune response-induced mechan-
ism to remove PEG-modified nanoparticles from the body).-
117–119 Su et al synthesized PEGylated surfactant by 
conjugation of surfactant (cholesteryl methyl amide) to 
PEG.120 They have reported that nanoemulsions composed 
of PEGylated surfactant showed weak ABC phenomenon in 
male Wistar rats. In the future, the properties of surfactants 
will be pursued more deeply, and surfactants that can modify 
the function of PEG and weaken the ABC phenomenon will 
be found. Jain et al prepared iron-encapsulated PLGA nano-
particles by optimizing the surface modification with a non-
ionic surfactant (poloxamer 188) using adsorption isotherm 
models (Langmuir, BET, Freundlich, Henderson, and Halsey 
models).121 The uptake of these surfactant-coated nanoparti-
cles into murine macrophage (RAW 264.7) cells was com-
pared with that of bare nanoparticles. The results revealed no 
cellular uptake of surfactant-coated nanoparticles after one 
hour of incubation. Liao et al prepared surfactant-coated 
nanoparticles composed of retinoic hydroxamic acid coated 
with nonionic surfactants (poloxamer 184 and 188) and 
observed their anticancer activity in subcutaneous melanoma 
(A375) mouse model.122 They reported that surfactant- 
coated nanoparticles exhibited a stealth effect in the body 
of mice, and showed enhanced anticancer activity due to 
increased accumulation in cancer cells and decreased accu-
mulation in the liver during the 16 h observation period, 
compared to bare nanoparticles. The principle mechanism 
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by which poloxamer-coated nanoparticles exerted a stealth 
effect is due to the influence of PEG and polyoxyethylene 
oxide (PEO) moieties in chemical structure of poloxamer.-
123,124 Surfactants and polymers with PEG, PEO, and poly-
propylene oxide (PPO) moieties are known to inhibit the 
adsorption of opsonins by building a hydrophilic barrier on 
the surface of the nanoparticles and by free movement and 
steric hindrance due to the construction of a polymer brush 
structure.125–128 This stealth effect has been observed not 
only with poloxamers but also with other nonionic surfac-
tants having PEG and/or PEO moieties. For example, Zhao 
et al prepared surfactant-coated nanoparticles (gold nanopar-
ticles covered with a nonionic surfactant [polysorbate 80]) 
and reported that adsorption of opsonization-related sub-
stances (bovine serum albumin [BSA], fibrinogen, γ-globu-
lins, immunoglobulin G [IgG], and lysozyme) on surfactant- 

coated nanoparticles in phosphate buffer was inhibited, and 
no aggregation was observed for 24 hours.129 On the other 
hand, there is a theory of the mechanism of the stealth effect 
of nonionic surfactants related to change in the conformation 
of the opsonins attached to the surfactant. Torcello-Gómez 
et al prepared surfactant-coated nanoparticles (polystyrene 
nanoparticles covered with a nonionic surfactant [poloxamer 
188]) and confirmed their adhesive dynamics with IgG, 
which is a typical example of opsonin.130 They reported 
that the adhesion of IgG on the surface of surfactant-coated 
nanoparticles was only slightly inhibited compared to bare 
nanoparticles, and 80% of the surface area was covered by 
IgG. However, the conformation of IgG that adhered to 
nonionic surfactants changed, suggesting that the suppres-
sion of opsonization is not due to adhesion but due to con-
formational changes in IgG. Although imparting the stealth 

BrainBlood

Avoid the clearance by the 
reticuloendothelial system

Brain transport via 
receptor mediated 

endocytosis 

Phagocytosis

Lysozyme 
degradation

Stealth effect

Specific binding of 
Apolipoprotein E 

Opsonization

: Uncoated (bare) nanoparticle

: Poloxamer 188
coated nanoparticle

: Polysorbate 80 
coated nanoparticle : Opsonization related compound: Apolipoprotein E
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A B C

Brain 
endothelial cell

Figure 4 Behavior and fate of surfactant-coated nanoparticles in the blood stream. 
Notes: (A) Bare nanoparticles. (B) Poloxamer 188 coated nanoparticles. (C) Polysorbate 80 coated nanoparticles.
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effect to the nanoparticles by using nonionic surfactants is 
easy and bears low cost, but the potential problems need to be 
solved. One of such problem is the possibility of detachment 
of surfactants from the nanoparticles and causes 
unexpected side effects in vivo; the physiological effects of 
the autoxidized and hydroxylated products of nonionic sur-
factants, and their complement activation in vivo are largely 
unknown.76,131–133 One way to address these concerns might 
be to optimize the interaction between the encapsulated drug 
and the materials of the nanoparticles. Gagliardi et al com-
pared zein and PLGA as suitable materials for the prepara-
tion of nanoparticles encapsulating lipophilic flavonoid 
(rutin).134 The results showed that the interaction between 
rutin and zein exhibited longer drug release kinetics in the 
zein group compared to the PLGA group, and this effect was 
most effectively demonstrated when sodium deoxycholate 
monohydrate (SD) was used in the preparation of 
nanoparticles. In the future, more useful surfactant-coated 
nanoparticles will be developed by further optimizing the 
compatibility of the encapsulated drug, nanoparticle mate-
rial, and coating surfactant.

Active and Passive Targeting
In addition to the adsorption and surface modification of 
the nanoparticles, the particle size is a major factor gov-
erning the behavior of nanomedicine. It is generally 
accepted that the desired particle size for solid particles 
administered as drugs for circulation in the bloodstream is 
10–200 nm (Figure 5A).135 Particles smaller than 100 nm 
in size are known to avoid phagocytosis by the RES and 
have been reported to circulate in the bloodstream for a 
relatively long time.136–138 On the other hand, since the 
diameter of capillaries in the body is 3–9 μm, particles 
larger than that size can clog capillaries and unintention-
ally accumulate in organs with large surface areas of 
capillaries, such as the lungs.139 Kutscher et al found that 
particles with a size of 6 μm or larger accumulated in the 
lungs for more than a week when polystyrene microparti-
cles of different particle sizes (2, 3, 6, and 10 μm) were 
administered intravenously to rats.140 In addition, particles 
larger than 400 nm in size were captured by splenic filtra-
tion, and then removed and degraded by red pulp 
macrophages.141 Conversely, it has been also reported 
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that too small particle size can make it difficult to circulate 
in the bloodstream. Particles smaller than 15 nm are fil-
tered out of the bloodstream by the kidneys and removed 
from the bloodstream.142 As the average effective pore 
size of normal vascular endothelial cell is approximately 
5 nm, some reports suggest that particles with a size 
smaller than 5 nm leak out of vascular endothelial cells 
and accumulate at unintentional sites, causing them to 
disappear from the bloodstream in a short time.143 

Particle size is also important in the development of can-
cer-targeting drug delivery systems. One of the most 
recognized cancer-targeting effects is the enhanced perme-
ability and retention (EPR) effect, which was reported by 
Matsumura and Maeda in 1986.144 The following two 
phenomena are collectively referred to as the EPR effect: 
(1) the presence of gaps in the new blood vessels around 
the tumor due to an incomplete vascular endothelial sys-
tem, which allows nanoparticles to pass through the vessel 
wall and accumulate in the tissue; and (2) long-term accu-
mulation of nanoparticles in the tumor tissue due to insuf-
ficient intratumoral exclusion system consisting of 
immature lymphoid tissue in cancer cells than in normal 
cells (Figure 5B). The EPR effect is referred to as “passive 
targeting” because it does not require surface modification 
with targeting ligand. The EPR effect is reported to be 
exhibited by particles having size of 100–400 nm.145 

Based on this mechanism, a number of studies on cancer 
targeting chemotherapy using nanoparticles with a particle 
size of 400 nm or less have been reported to date.146–150 

On the other hand, many researchers believe that EPR 
effect alone is not sufficient to achieve cancer-targeting 
therapeutic effect of nanoparticles, and further enhance-
ment is required, as observed in some gastric and pancrea-
tic cancers.151 Sindhwani et al reported in 2020 that the 
accumulation of nanoparticles in solid tumors is domi-
nated via trans-endothelial pathways than by EPR effects, 
which has attracted much attention.152 In addition to the 
EPR effect, “active targeting” has been widely attempted 
to further enhance the therapeutic effects of nanoparticles. 
Active targeting refers to the modification of nanoparticles 
with targeting ligands (antibodies, aptamers, carbohy-
drates, macromolecules, proteins, and small molecules) 
for cancer cell-specific targets (antigens, lipid components, 
receptors, or proteins on the cell membrane). The drug 
encapsulated in the nanoparticles modified with the target-
ing ligand accumulates around the tumor tissue by the 
EPR effect (passive targeting) and is delivered and accu-
mulated at the target site of cancer cells through response, 

affinity, and binding by the molecular site, shape, and 
stimulation (such as pH, temperature, and ultrasound) 
(Figure 5C and D).153,154 Tumors with a volume of less 
than 100 mm3 have insufficient vascular endothelial gaps 
and are recognized as less effective for drug accumulation 
via EPR effect, while active targeting is regarded as effec-
tive in treating such small tumors and other diseases.155 

Acharya et al prepared rapamycin-encapsulated PLGA 
nanoparticles.156  They reported that when their surface 
was modified with epidermal growth factor receptor 
monoclonal antibodies (EGFR mAb) (passive targeting + 
active targeting), their uptake into malignant breast cancer 
(MCF-7) cells was 13-fold higher than that of bare (pas-
sive targeting only) nanoparticles. Poom et al prepared 
PEG nanomicelles containing anticancer drug (paclitaxel) 
and reported that the accumulation of paclitaxel in rat 
tumor tissue decreased to 1% ID/g of tissue after 3 days 
when the PEG nanomicelles were administered (passive 
targeting only), whereas the drug accumulation of more 
than 5% ID/g of tissue was maintained even after 5 days 
when the PEG nanomicelles modified with folate ligands 
were administered (passive targeting + active targeting).157 

However, excessive surface modification of nanoparticles 
with targeting ligands is thought to result in poor targeting 
to cancer cells due to the following factors: (1) decrease in 
the stealth effect due to the reduced surface exposure of 
molecular sites such as PEG, PEO, and PPO, (2) decrease 
in the EPR effect with the increase in particle size, (3) 
reduced diffusion of nanoparticles in cancer tissue, (4) 
decrease in the ability to bind to cancer cell-specific targets 
due to steric hindrance between targeting ligands, and (5) a 
decrease in the number of particles taken up by increasing 
the receptor occupancy per particle (Figure 5D).158 

Therefore, it is suggested to optimize the density of the 
targeting ligands for specific cancer cell targeting for max-
imum interaction between nanoparticles and target cells. 
Recently, several nanomedicine products based on nano-
particles have been approved by the Food and Drug 
Administration (FDA).159,160 Although the field of 
research on nanoparticle-based drug delivery systems is 
developing rapidly, there are many concerns that need to 
be considered in the future, especially when nanoparticles 
are not distributed within the tumor microenvironment 
depending on the condition of cancer,161 expression of 
surface receptors varies depending on the diversity of 
cancer (for example, active targeting not working well 
for cancer stem cells),162 and acquisition of drug resistance 
in cancer.163
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Brain Targeting
Even if a substance is proven effective in treating brain 
tumors, neurodegenerative diseases and central nervous 
system diseases, to the most important challenge is to 
deliver it to the brain. Effective therapeutic antibodies 
are being developed to target brain diseases, however, 
brain delivery approach for these antibodies while main-
taining their shape has yet to be developed.164 

Nanotechnology is potentially used to protect encapsulated 
substances. Establishing technologies for transporting 
nanoparticles to the brain is one of the greatest obstacles 
in the field of nanomedicine. The major obstacle is the 
presence of the blood-brain barrier (BBB), which exists 
between the central nervous system and the blood, and 
greatly restricts the transport of substances to the brain. 
Substances circulating in the bloodstream can only pass 
through the BBB if these are (1) hydrophobic molecules of 
weight below 450 Da or (2) transported via endogenous 
transporters present in the BBB.165,166 Therefore, regard-
less of the type of material used to prepare nanoparticles; it 
is difficult for them to reach the brain by simply injecting 
them intravenously in their original state. On the other 
hand, it has been reported that nonionic surfactant (for 
example, polysorbate 80)-coated nanoparticles with active 
targeting function could reach the brain; although the 
detailed mechanism of transport of nanoparticles into the 
brain by modification with polysorbate 80 is still unclear. 
The current prevailing theory is that apolipoprotein 
adsorption at the polysorbate 80 site of surfactant-coated 
nanoparticles circulating in the bloodstream that crosses 
the BBB through receptor-mediated transcytosis 
(Figure 4C).167,168 The use of nonionic surfactants such 
as polysorbate 80 may also help nanoparticles to accumu-
late in the brain for a long time due to their inhibitory 
effect on P-glycoprotein (Pgp/ABCB1, a mechanism of 
foreign body efflux in the brain).169,170 Other substances 
that use this mechanism of brain transport are poly (butyl 
cyanoacrylate) (PBCA) and PLGA.171 Wilson et al pre-
pared surfactant-coated nanoparticles (rivastigmine-encap-
sulated PBCA nanoparticles coated with polysorbate 80) 
and quantitatively evaluated their transport to the brain.172 

They administered surfactant-coated nanoparticles to a 
group of rats via tail vein injection and reported a four- 
fold increase in the concentration of rivastigmine in the 
brain one hour after administration compared to the group 
receiving free drug. Tahara et al prepared surfactant-coated 
nanoparticles (coumarin-6 encapsulated PLGA 

nanoparticles coated with polysorbate 80) and quantita-
tively evaluated their transport to the brain.173 They 
reported that the surfactant-coated nanoparticles adminis-
tered to a group of rats via tail vein injection showed a 
two-fold increase in the concentration of coumarin-6 in the 
brain one hour after administration, compared to a group 
of rats being administered bare nanoparticles (without 
surfactant coating). Furthermore, they reported that the 
increased transport to the brain was specific only to the 
nanoparticles coated with polysorbate 80, and similar 
result was not demonstrated by chitosan or other nonionic 
surfactants (poloxamer 188). The transport of surfactant- 
coated nanoparticles into the brain has also been studied 
using surfactants other than polysorbate 80, such as poly-
oxyethylene esters of 12-hydroxystearic acid (Solutol® 

HS15, BASF corporation, Ludwigshafen, Germany) and 
D-alpha-tocopherol polyethylene glycol 1000 succinate, 
however, the mechanism of their transport is not clear.-
174,175 Many studies on brain transport of surfactant-coated 
nanoparticles have reported only blood concentration and 
brain accumulation, but it is also important to evaluate the 
drug accumulation in other non-specific organs. Miyazawa 
et al prepared surfactant-coated nanoparticles (PLGA 
nanoparticles encapsulated with β-carotene and coated 
with polysorbate 80), and quantitatively evaluated their 
accumulation in the brain and other organs in rats via tail 
vein administration.176 They reported that the surfactant- 
coated nanoparticles administered group showed higher 
drug accumulation in the lungs (350-fold higher concen-
tration compared to the group of bare nanoparticles) than 
in the brain after one hour of administration. A similar 
phenomenon has been reported in the study by Tröster 
et al, who prepared polymethyl methacrylate resin nano-
particles coated with various nonionic surfactants (poly-
sorbates [20, 60, and 80], poloxamers [184, 188, 338, 407, 
and 908], and polyoxyethylene lauryl ether [Brij 35]) and 
administered them to rats via tail vein to compare their 
accumulation in organs over time.177 In their report, com-
pared to the bare nanoparticles, the particles coated with 
polysorbate 80 had an approximately 11-fold increase in 
accumulation in the lungs and a nine-fold increase in 
accumulation in the brain after 30 min of administration. 
They also reported that approximately half of the particles 
that had accumulated in the lungs migrated to the liver two 
hours after administration. Therefore, increasing drug con-
centrations at the target site of action can enhance the 
desired therapeutic effect, but significant toxicity may 
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also occur because of the increased drug accumulation in 
non-specific organs.

While polysorbates and poloxamers have been reported 
to perform such useful functions, there are concerns about 
their side effects that cause cell membrane damage and 
cytotoxicity.178 Recently, potential surfactants other than 
poloxamer and polysorbate have been discovered for brain 
targeting. For example, Jeong et al prepared surfactant- 
coated nanoparticles (PLGA nanoparticles encapsulated 
with recombinant human erythropoietin [rhEPO] and 
coated with sodium cholate or polysorbate 80) and eval-
uated their cellular uptake (human neuroblastoma [SH- 
SY5Y] cells) and evaluated inhibition rate of glutamate- 
induced neurotoxicity.179 The results showed that the 
sodium cholate-coated nanoparticle group was taken up 
by SH-SY5Y cells and further reduced glutamate-induced 
neurotoxicity with less toxicity than the polysorbate 80- 
coated group. They also examined the efficacy of these 
nanoparticles in vivo experimental stroke model mice and 
reported that the symptoms were reduced.180 It is expected 
that a variety of surfactants targeting the brain will be 
developed in the future. In recent years, the importance 
of “inter-organ communication,” which considers treat-
ment based on the interaction of the drug with entire 
body’s organs, and not just the individual organ has been 
recognized; this concept will also be essential for the 
development of surfactant-coated nanoparticles.181

Surfactant-Coated Inorganic 
Nanoparticles in Nanomedicine
Various types of inorganic materials have been used in 
nanomedicine. In this section, nanoparticles composed of 
gold and silicon, which have been specially studied, and 
the applications of inorganic nanoparticles in quantum 
dots and magnetic resonance imaging (MRI) are mainly 
discussed (Figure 2B).

Gold Nanoparticles
Gold nanoparticles are one of the most widely used inor-
ganic nanoparticles in nanomedicine due to their ease of 
preparation, high dispersion, low toxicity, and stability 
(Figure 2B). And several studies of surfactant-coated 
gold nanoparticles have been conducted (Table 1). Gold 
nanoparticles have a long history of research, and the first 
report on the preparation method by Michael Faraday in 
1857 used chloroauric acid solution.182 A typical method 
for the preparation of gold nanoparticles is the Turkevich 
method (method of reducing Au3+ and Au+ to Au0, which 

is the electrical state of nanoparticles, using trisodium 
citrate), which was reported in 1951 and is still widely 
used today.183,184 Subsequently, various preparation meth-
ods based on chemical reduction of gold ions in the solu-
tion have been developed, and gold nanostructures of 
various shapes (such as nanobowls, nanocages, nanocubes, 
nanopyramids, nanorods, nanospheres, nanoshells, nanos-
tars, and nanowires) have become available and have been 
studied and developed into nanomedicine.185–187 

Nanoparticles composed of transition elements such as 
gold have an optical property called surface plasmon reso-
nance (SPR). SPR is a phenomenon in which plasma 
oscillation on the surface of a transition element generates 
an electric field around it, and this electric field resonates 
with light, resulting in strong absorption and scattering of 
light at a specific wavelength. This property has been used 
to study the enhanced Raman imaging of transition-ele-
ment nanoparticles. The absorption maximum of SPR 
depends on the type of transition element present in the 
nanoparticles.188 Since enhanced Raman imaging directly 
detects molecular vibrations, the dynamics of biomole-
cules in living cells can be observed label-free. This 
advantage has led to the use of gold nanoparticles for 
molecular imaging of living cells and elucidation of the 
functions of biomolecules.189,190 Furthermore, since the 
extinction coefficient of gold nanoparticles is more than 
1000 times higher than that of organic dyes, photothermal 
treatment using the photothermic properties of SPR is also 
being investigated.191,192 Furthermore, the photothermic 
properties of gold nanoparticles leads to a thermoelastic 
expansion that is converted into a photoacoustic wave with 
increase in temperature. This property has also been used 
in research on photoacoustic imaging.193,194 The synthesis 
of gold nanoparticles is not limited to chemical 
approaches, but the synthesis of gold nanoparticles using 
living organisms such as algae, bacteria, and plants (bio- 
based method) is a topic. In general, the bio-based method 
is regarded as having the advantages of not using harmful 
chemicals in the synthesis process and being low cost.195 

In addition to the advantages of the bio-based method 
described above, the use of cultured cell lines to synthesize 
gold nanoparticles may be less toxic than bio-based 
method that use bacteria composed of substances that 
may cause inflammation (surface of synthesized nanopar-
ticle by using bacteria is coated by substances [lipopoly-
saccharides and endotoxins] derived from bacteria). It is 
also expected to enable in-situ synthesis of gold nanopar-
ticles inside the tumor for photochemotherapy. Singh et al 
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confirmed in detail the mechanism by which nanostruc-
tures of gold nanoparticles are formed by human breast 
cancer (MCF7) cells from the medium containing gold 
(III) chloride hydrate.196 They found that the cells were 
stressed by the presence of low doses of gold ions, result-
ing in a reversible state of cellular senescence. For this 
stress, under serum containing medium (Dulbecco’s 
Modified Eagles Medium (DMEM) supplemented with 
10% fetal bovine serum (FBS)), the cells became 
unstressed state and gold nanoparticles with rounded 
facets (single and agglomerated) were deposited. On the 
other hand, in serum-free medium, the cells were in a 
stressed state and released various secretions outside the 
cells. Among these secretions, the presence of gold-bind-
ing proteins significantly affected the crystal growth of 
gold nanoparticles, and gold nanoparticles with sharp 
facets (triangular and hexagonal) were deposited. They 
further synthesized gold nanoribbons by incubating 
human breast cancer (MCF7) cells with gold (III) chloride 
hydrate.197 They confirmed that the gold nanoribbons 
synthesized by this method had anisotropic and high 
aspect ratio and showed more efficient energy conversion 
effect than spherical gold nanoparticles or gold nanorods. 
The molecular dynamic simulation and supported with 
experimental photothermal therapy shown useful applica-
tion of these nanomaterials into nanomedicine for promot-
ing the growth of fibroblast, imaging agent,198 drug carrier 
with improved bioavailability in vitro199 and in vivo.200 

Currently, there are no medical devices for imaging of 
gold nanoparticles that can be used for clinical applica-
tions, and further development of this technology is war-
ranted. On the other hand, some clinical uses of gold 
nanoparticles themselves include Aurimune® (CYT-6091; 
CytImmune Sciences, Rockville, MD, USA), which is 
designed to deliver tumor necrosis factor (TNF-α) to 
tumor sites, and AuroShell® (Nanospectra Biosciences 
Inc., Houston, TX), which is designed to enhance the 
efficacy of near-infrared laser therapy; both of them have 
been developed as gold nanomedicine products and are in 
clinical trials.201,202

Silica Nanoparticles
Silica nanoparticles are inorganic solids that are ubiquitously 
present in the human body (Figure 2B).203 Silanol groups on 
the surface of silica can be easily modified by targeting ligands 
such as small molecules, carbohydrates, antibodies, aptamers, 
proteins, and polymers. Therefore, fluorescent compound- 
encapsulated silica nanoparticle with active targeting function 

on its surface has been studied as bioimaging probes and 
photodynamic therapy for cancer treatment.204,205 The typical 
methods for the preparation of silica nanoparticles are the 
Stöber method, which includes adding acid or alkali to an 
alkoxysilane solution to progress hydrolysis and polyconden-
sation reactions, and the reverse micelle method, which 
includes adding an alkaline solution and a surfactant in a 
hydrophobic organic solvent to form a reverse micelle, and 
then adding an alkoxysilane solution to proceed with the 
hydrolysis and polycondensation reactions.206,207 Attempts 
have also been made to reduce the toxicity of highly toxic 
nanoparticles, such as metals by using the properties of silica. 
Iqbal et al reported that coating the surface of superparamag-
netic iron oxide nanoparticles (SPION), which are used as MRI 
contrast agents, with silica greatly reduced their cytotoxicity 
while maintaining their function as MRI contrast agents.208 On 
the other hand, mesoporous silica nanoparticles composed of 
porous silica, are relatively new materials whose synthesis was 
reported by Yanagisawa et al and Mobil Research and 
Development Corporation in the early 1990s, respectively.-
209,210 Typical preparation method of mesoporous silica nano-
particles includes preparation of a porous structure by using a 
supramolecular structure containing surfactant as a 
template. The size and shape of the pores can be manipulated 
to some extent, depending on the preparation conditions.211 

Mesoporous silica nanoparticles have the following character-
istics: (1) pores of 2–30 nm can be prepared with uniform size 
and distribution, (2) a large pore volume of approximately 
1 cm3 g−1 can be achieved, (3) they have a high density of 
silanol groups on their surfaces, and (4) they have a chemically 
stable silica framework; these characteristics are likely to be 
beneficial for their use in nanomedicine.212 Although there 
have been concerns that the chemical structure of silica tends 
to become unstable in water and humid environments and that 
the silanol groups on the silica surface induce hemolysis, but 
the mesoporous silica nanoparticles with a smaller contact area 
of silanol groups with red blood cells have been found to be 
less prone to hemolysis than other silica nanoparticles.213–215 

Urata et al prepared an ethylene-bridged silsesquioxane frame-
work containing mesoporous silica nanoparticles to stabilize 
the skeletal structure and to inhibit the exposure of silanol 
groups, resulting in decreased hemolysis from 10% to a few 
percent and further stabilized the skeletal structure compared to 
ordinary mesoporous silica nanoparticles in vitro.216 

Doxorubicin and paclitaxel have been known to be synergistic 
due to their different anticancer mechanisms. However, it has 
been difficult to prepare a stable single nanoparticle containing 
both drugs because of their different physicochemical 
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properties. To solve this problem, Yan et al reported the pre-
paration of mesoporous silica nanoparticles with doxorubicin 
being present inside the pores, and a derivative of paclitaxel to 
the surface of the particles and further coated the surface with 
polystyrene sulfonate.217 The prepared nanoparticles success-
fully released both the drugs according to the pH and redox 
status of the cancer cells in vitro. Although research on silica- 
based nanomedicine continues to make great progress, one of 
the reasons why it has not yet reached clinical trials may be its 
potential toxicity, which has not been dispelled. While the 
toxicity of crystalline silica particles due to occupational expo-
sure is widely recognized, the potential toxicity of silica is 
considered proportional to its crystallinity, and therefore it is 
believed that amorphous silica particles are low in toxicity.218 

Currently, epidemiological studies have not yet reached to a 
clear conclusion, and the safety of silica-based materials needs 
to be further confirmed.219 In recent years, a field of nanome-
dicine called “nanotheranostics” has been developed for the 
diagnosis and treatment of diseases at the same time, and the 
development of bio-imaging probes is under intense investiga-
tion in this field.220–222 The fluorescence imaging technology 
using quantum dots, which enables to visualize the behavior of 
individual cells in vivo and to treat them at the same time, has 
been attracting attention (Figure 2B).223 Quantum dots, which 
are colloids of semiconducting nanoparticles approximately 
2–50 nm in size, have fluorescent properties compared to 
fluorophores: negligible fluorescence photobleaching in 
response to the excitation light, a broader excitation spectrum, 
and a sharper emission peak.224,225 Quantum dots with large 
particle sizes have a small band gap and emit red light, while 
quantum dots with small particle sizes emit blue light owing to 
their quantum confinement effect. Therefore, the light absorp-
tion and fluorescence emission wavelengths are shifted to the 
shorter wavelengths with higher energy as the particle size 
decreases. Due to these fluorescent properties, quantum dots 
can be used with a single light source to simultaneously excite 
and visualize target cells labeled with various types of quantum 
dots. The use of quantum dots has enabled imaging that was 
difficult to achieve with fluorophores including cytometric 
imaging,226 lymph node mapping,227,228 imaging of cancer 
stem cells,229 and imaging of circulating tumor cells.230 

However, since quantum dots are composed of semiconductor 
materials, side effects of heavy metals and their residues (sele-
nium, cadmium, and lead) in living organisms are a major 
concern.231,232 The shape of the nanoparticles is also related 
to cytotoxicity as shown in a study by Yamamoto et al that 
dendritic titanium dioxide particles with dendritic shape have 
higher cytotoxicity than spindle and spherical shapes.233 If 

quantum dots are to be used clinically in the future, these 
potential risks will need to be eliminated in advance. 
Recently, research and development of quantum dots com-
posed of less toxic carbon, silicon, and germanium has 
initiated.234–236 Shen et al prepared surfactant-coated nanopar-
ticles (quantum dots composed of silicon covered with polox-
amer 407) and determined whether they could be used for the 
imaging of mitochondria in human umbilical vein endothelial 
cells (HUVECs) using confocal microscopy.237 As a result, 
they reported that the MitoTracker® (commonly used fluoro-
phore for fluorescent staining of mitochondria) faded in 80 
seconds, whereas surfactant-coated nanoparticles accumulated 
in the mitochondria with low toxicity for further use in living 
cells, and also maintained nearly constant fluorescence inten-
sity for 30 min.

Other Inorganic Nanoparticles
Nanomedicine is also used in MRI, which is an impor-
tant imaging technique in contemporary medicine. MRI 
is used clinically to observe signals of hydrogen ions 
(1H) contained in water molecules (H2O), and adipose 
tissues (CH, CH2, and CH3). The magnetization of 
hydrogen ions in a static magnetic field is excited by 
the magnetic resonance (MR) phenomenon when irra-
diated with radiofrequency magnetic waves (radiofre-
quency [RF] pulses). MRI detects the relaxation time 
for these excited hydrogen ions to return to the ground 
state. The T1 relaxation time of hydrogen ions is 
observed to be greatly shortened by the presence of 
surrounding transition elements (Cr2+, Cr3+, Mn2+, Mn3 

+, Fe2+, and Fe3+) and lanthanides (Gd3+ and Dy3+), and 
MRI contrast agent containing nanoparticles composed 
of these elements have been studied (Figure 2B).238,239 

For example, ferucarbotran (Resovist®, Bayer 
Healthcare, Leverkusen, Germany), ferumoxides 
(Feridex®, Bayer Healthcare, Leverkusen, Germany), 
erumoxtran-10 (Combidex®, AMAG Pharma, Waltham, 
MA), and NC100150 (Clariscan®, Nycomed, Zürich, 
Switzerland), which are composed of SPION, have 
been used in clinical practice as MRI contrast agent 
nanoparticles.240 On the other hand, metal ions in MRI 
contrast agent nanoparticles have the potential risk of 
disrupting the redox balance in vivo by reacting with 
hydrogen peroxide to produce reactive oxygen species 
(ROS), and oxidizing vitamins and proteins, which are 
antioxidants present in the body; this leads to the pro-
gression and development of the disease.241 The accu-
mulation of inorganic nanoparticles in monocytes, 
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macrophages, and tissues can also cause inflammation; 
nanoparticles such as silica, gold, silver, carbon, iron, 
zinc, and titanium, have been reported to induce the 
production of various proinflammatory cytokines (inter-
leukin [IL]-1β, IL-6, IL-12, IL-23, and TNF-α), and 
ROS associated with classically activated (M1) 
macrophages.242 These pro-inflammatory cytokines 
increase the expression of P-glycoprotein in various 
organs in vivo, and prevent likely functions of the 
nanoparticles.243,244 Radomski et al also reported that 
carbon nanoparticles interact with platelets and vascular 
endothelial cells, resulting in localized inflammation in 
vivo.245 Further studies are needed to avoid the potential 
health risks associated with such inorganic 
nanoparticles.

Other Nanostructures in Nanomedicine
This review focuses on “nanoparticles” among various 
nanostructures (carbon nanotubes, dendrimers, lipo-
somes, micelles, nanographenes, nanorobots, and 
nanosheets) used in the field of nanomedicine. 
Properties and applications of other nanostructure that 
could not be presented in this review have been reviewed 
in detail in other reports.246–250

Application of Surfactant-Coated 
Nanoparticles in Food 
Nanotechnology
Food Nanotechnology
The development in the field of nanotechnology has been 
remarkable, and interest in its application in the global food 
industry has increased greatly in recent years due to its 
potential to add new properties and functions to existing 
food products. The international symposium 
“Nanotechnology Research: Applications in Nutritional 
Sciences” was held at Experimental Biology 2009, focusing 
on the application of nanotechnology to food and nutrition, 
and this field was widely recognized.251 Although a definition 
of nano-based technologies in the field of food and nutrition 
has not yet been established, the application of nanoscale 
material properties to the food and nutrition industry is gen-
erally named as “food nanotechnology”.252–254 Currently, 
there are no established global rules regarding the applica-
tions of food nanotechnology, however, the Organization for 
Economic Cooperation and Development (OECD) launched 
a sponsorship program for testing of nanomaterials in 2007, 
and the FDA issued four guidance documents on the use of 

nanotechnology in animal products, cosmetics, food, and 
other products in 2014–2015.253 In the field of food nano-
technology, the approach of nanoparticles is considered to 
have the potential to be applied in various technologies, such 
as pesticides,255 antimicrobial,256 anti-solidification,257 plant 
genetic engineering,258 detection of foodborne pathogens,259 

food processing,260 development of functional foods,261 pur-
ification of drinking water,262 extension of food 
preservation,263 and texture improvement252–254,264,265 

(Figure 6). Surfactant-coated nanoparticles have been widely 
used in the field of food nanotechnology. Recent progress of 
surfactant-coated nanoparticles in this field is summarized in 
Table 2. Surfactant-coated organic and inorganic nanoparti-
cles in food nanotechnology will be discussed separately in 
the following sections.

Food nanotechnology

Sensory characteristics
of supplements

Security

Agriculture Processing

Nutrition Products

Pesticides

Genetic engineering

Food preservation

Agrichemical delivery

Sensors to monitor soil conditions

Nanoencapsulation of 
flavors and aromas

Nanoemulsions

Anti-caking agents

Functional foods

Mineral and vitamin fortification

Drinking water 
purification

Nutrient delivery

UV protection

Antimicrobials

Condition monitors

Active food packaging

Contaminant sensors

Figure 6 The potential applications of food nanotechnology. 
Notes: Data from Martirosyan.265
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Surfactant-Coated Organic Nanoparticles 
in Food Nanotechnology
Smart Food
Food components are supplied to the human body on a 
daily basis via oral intake, and are maintained in the body 
at optimal concentrations in various tissues for life sup-
port. However, their concentrations fluctuate due to var-
ious disorders such as disease and aging, leading to the 
disruption of the redox balance in the body. Certain types 
of diseases and obesity also increase the amount of ROS 
produced in the human body, resulting in accelerated aging 
and disease progression (Figure 7). 176,266,267 It is recog-
nized that the concentration of antioxidants in human 
blood decreases with aging. Mecocci et al measured the 
concentrations of various antioxidants (α-carotene, β-car-
otene, β-cryptoxanthin, lutein, zeaxanthin, all-trans lyco-
pene, lycopene total, retinol, ascorbic acid, uric acid, α- 
tocopherol, thiols, plasma superoxide dismutase [SOD], 
red blood cells [RBCs] SOD, glutathione peroxidase 
[GPX] and nicotinamide adenine dinucleotide phosphate 
[NADPH]) in the blood of healthy subjects under 60, 
61–80, 81–99, and over 100 years of age, and reported 
that several food-derived antioxidants (α-carotene, β-car-
otene, β-cryptoxanthin, lutein, zeaxanthin, all-trans lyco-
pene, lycopene total, ascorbic acid and uric acid) tended to 
decrease with age (Figure 8). 268 It is hoped that these 
problems can be overcome by daily dietary intake of food- 
derived antioxidants to achieve longevity (Figure 7). 
Research on the inhibition of disease progression and 

development by daily intake of food components has 
been widely conducted. For example, it has been reported 
that the blood of dementia patients with Alzheimer’s dis-
ease has higher concentrations of RBCs with high levels of 
phospholipid hydroperoxides in their lipid membranes 
(also named as “aged RBCs” which are responsible for 
poor oxygenation and deterioration of blood rheology) 
compared to healthy subjects.269–272 Since the presence 
of these aged RBCs are considered to be one of the causes 
of the progression and onset of Alzheimer’s disease, food 
ingredients that prevent the peroxidation of red blood cell 
membrane lipids are expected. Nakagawa et al reported 
that daily intake of polar carotenoid (astaxanthin [6 or 12 
mg/day] or lutein [9.67 mg/day]) capsules for more than 
two weeks suppressed the appearance of aged RBCs in 
human blood.273,274 Obesity is regarded as a low-grade 
inflammatory disease.275 Miyazawa et al reported that 20 
weeks of simultaneous intake of polyphenol (curcumin 
[1 g/kg diet in this study], which is abundant in turmeric) 
and alkaloid (piperine [50 mg/kg diet in this study], enhan-
cer of curcumin’s bioavailability, which is abundant in 
pepper) reduced inflammation (interleukin [IL]-1β and 
keratinocyte chemoattractant/growth-regulated oncogene 
chemokines [KC/GRO] in plasma) and body fat in obese 
under caloric restriction model (C57BL/6) mice.276 Gregor 
et al reported that a 3-week intake of a vitamin E analog 
(rice bran tocotrienol [5 or 10 mg/day]) reduced triglycer-
ide and phospholipid hydroperoxide levels in the blood 
and liver in F344 rats.277 Vitamin C has been around for 
100 years since its discovery. Its prevailing theory of its 
mechanism of anticancer effect was due to cytotoxicity 
caused by hydrogen peroxide (H2O2) produced by the 
oxidation of vitamin C (ascorbic acid) in extracellular 
environment.278 On the other hand, Yun et al reported in 
2014 a new theory in which the oxidized product of 
ascorbic acid (dehydroascorbic acid) is taken up by cancer 
cells via glucose transporter (GLUT) and inhibit the pro-
duction of adenosine triphosphate (ATP) and lead the cell 
death to cancer.279 Since this report, there has been a surge 
of interest in elucidating more detailed mechanisms of the 
anticancer effects of vitamin C.280,281 As introduced in 
section “Food Nanotechnology” in this review, nanotech-
nology has been expected to have a variety of applications 
in the fields of basic research and industry of foods. Not 
only that, attempts to maximize the useful effects of var-
ious food ingredients such as those described above using 
nanotechnology have also attracted attention. 
Nanotechnology is being developed to encapsulate food 

Various diseases

Production of free radicals

Antioxidants from 
food source

Increase of reactive 
oxygen species
(ROS)

Inflammation

Redox 
balance

Redox 
imbarance

Oxidative 
stress

Inpaired
antioxidation

Genomic 
instability

Aging

Figure 7 Illustration of the relationships between diseases, free radicals, reactive 
oxygen species, and aging in the body, and its regulation by antioxidants from food 
source. 
Notes: Data from Miyazawa241 and Adapted from Elsevier Books, 191, Fajardo AM, 
Bisoffi M, Chapter 18 - Curcumin analogs, oxidative stress, and prostate cancer, 
191-202, Copyright 2014, with permission from Elsevier.267.
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components into organic nanoparticles to perform various 
functions. This attempt to improve human health was 
named “Smart food” by Martínez-Ballesta et al.282,283 

The components of the nanoparticles used in smart food 
are selected to have low toxicity in living organisms. 
Typical examples include polymers (chitosan, collagen, 
gelatin, hyaluronic acid, and PLGA), solid lipids (choles-
terol, palmitic acid and stearic acid), and proteins (milk 
protein, nisin, and zein) (Figure 2B).284–286 It will be of 
great significance if this smart food can extend healthy life 
expectancy through daily dietary habits. Davis et al 
reported a decrease of nearly half in the content of useful 
antioxidants in crops in 1999 compared to 1950.287 From 
the perspective of the food crisis, there will be great value 
in this smart food that can efficiently supply nutrients to 
the body.

Application of Food Nanotechnology in the Digestive 
System
Encapsulating food ingredients into nanoparticles extends 
their shelf life and protects them from degradation in the 
digestive system.288–290 Dietary patterns, food matrix, and 

passage through the gastrointestinal tract were often 
important factor for food nanotechnology. These factors 
may have a major impact on nanoparticle characteristics, 
behavior, and toxicity.291 As described briefly in section 
“Nonionic Surfactants in the Food Industry” in this review, 
the presence of surfactants occupies an important position 
in this mechanism of digestion and absorption. In complex 
of in vivo digestive system, not yet have an integrated 
knowledge of how the different types of surfactants used 
in surfactant-coated nanoparticles affect the above factors. 
However, these are important for understanding of the 
absorption and metabolism of nanoparticles, and their 
necessity has also been suggested in other reviews.292–294 

The orally administered nanoparticles are known to avoid 
various digestive enzymes (such as amylase, lipase, and 
pepsin) and the highly acidic environment of the stomach 
(pH 1–3), reach the small intestinal epithelium, and are 
absorbed into the body (Figure 9). 49,295,296 As a result, the 
bioavailability of the encapsulated food components in the 
nanoparticles is improved.260,261 The balance between the 
hydrophilic and hydrophobic nature of the nanoparticle 
interface and the digestive system is an important factor 
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responsible for absorption into the body, and hydrophilic 
coating on the surface of hydrophobic nanoparticles has 
been widely accepted to increase their absorption.297–299 

Maisel et al prepared polystyrene nanoparticles coated 
with a hydrophilic polymer (PEG) and confirmed their 
localization to the small intestine in ex vivo studies in 

Figure 9 The digestive stages after oral administration and the mechanisms of in vivo uptake of surfactant-coated nanoparticles through the small intestine. 
Notes: (A-1) Transcellular route, through the M cells. (A-2) Transcellular route, through the enterocyte. (B) Paracellular route. (C) Persorption route. Data from these published 
studies 318 295 49
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mice.300 The results showed that bare nanoparticles 
(unmodified nanoparticles) accumulated in the mucosal 
layer of the small intestine, whereas the PEG-coated nano-
particles reached closer to the small intestinal villi with a 
homogeneous distribution. Bourganis et al demonstrated a 
similar phenomenon in a transwell model using porcine 
mucosa.301 It has also been reported that coating the sur-
face of nanoparticles with hydrophilic natural polysacchar-
ides (chitosan) also increase the absorption of food 
components. This nanoparticle coating enhances mucosal 
adhesion and protects the nanoparticles from acidic envir-
onment and digestive enzymes.302,303 The digestive sys-
tem is constantly secreting mucus, and a 15.5 ± 4.5 μm 
thick mucus barrier (pH 5.5–7.5) physically blocks micro-
organisms and hydrophobic substances entering the intest-
inal tissues.304–306 This mucus forms a hydrogel (primarily 
composed of water and lipids, mucin, nucleic acids, and 
proteins) with a mucin skeleton cross-linked by hydropho-
bic interactions and disulfide bonds.307 Therefore, the 
nanoparticles that reach the small intestine must have the 
ability to penetrate the mucus barrier to reach the intestinal 
tissues and be absorbed into the body. It has been discov-
ered that the surfactant-coated nanoparticles can pass 
through the mucus layer to reach the intestinal tissues 
(Figure 6A). Ensign et al reported that pretreatment with 
a nonionic surfactant (poloxamer 407) uniformly dispersed 
mucus-adherent nanoparticles (polystyrene nanoparticles) 
in the mucus while maintaining the barrier function of the 
mucus to herpes simplex virus type-1 (HSV-1).308 In sup-
port of this result, Xin et al confirmed that cationic 

surfactant (SDS) and nonionic surfactants (poloxamers 
[188, 407], polysorbate 80)-pretreated ileum of rats 
showed enhanced penetration of PLGA nanoparticles into 
the intestinal epithelium at 30 min of administration, com-
pared to the bare nanoparticles group.309 Nanoparticles 
coated with a nonionic surfactant (poloxamer 407) are 
known to inhibit the interaction between the core of par-
ticles and mucus components. Yang et al prepared surfac-
tant-coated nanoparticles (poloxamer 407-coated 
fluorescently tagged PLGA nanoparticles) and estimated 
their penetration in the human mucosa.310 The results 
showed that less than 1% of bare nanoparticles were dis-
persed in the mucus layer within 30 min observation time, 
while 60–80% of the surfactant-coated nanoparticles were 
dispersed in the mucus layer. They also reported that this 
effect was exerted by coating with poloxamer 407, regard-
less of the type of nanoparticles.

When the nanoparticles pass through the mucus layer, 
as described above, they reach the small intestine. In the 
small intestine, three pathways are being reported related 
to the passage of nanoparticles (Figure 9A–C). 
(Figure 9A): Transcellular route, which involves the pro-
cess of transcytosis via intestinal epithelial cells. Particles 
present in the intestinal lumen are thought to be endocy-
tosed into small intestinal epithelial cells via four different 
mechanisms: clathrin-mediated endocytosis, caveola- 
mediated endocytosis, micropinocytosis, and 
phagocytosis.295,311 In general, transcytosis via small 
intestinal epithelial cells has been reported to be easier 
for particles with smaller size.312,313 Rejman et al 
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demonstrated the uptake mechanism and intracellular 
accumulation of fluorescent latex beads with a particle 
size of 50–1000 nm into non-phagocytic B16 melanoma 
cells.314 They found that particles less than 200 nm in size 
were taken up into the cells via clathrin-mediated endocy-
tosis, while particles more than 200 nm in size were taken 
up into the cells via caveola-mediated endocytosis. There 
are two routes possible for uptake, one through the M cells 
(Figure 9A-1) and the other through the enterocyte 
(Figure 9A-2). Compared to enterocytes, M cells are less 
protected by the mucus barrier and are therefore easier for 
nanoparticles to reach, but their total area is only about 1% 
of the total absorbed surface area of the gut.295,315 

(Figure 9B): Paracellular route, which involves the trans-
portation through the gaps between small intestinal epithe-
lial cells. The intercellular gap is said to be between 30 
and 100 Å, with a total area of only 0.1% of the total 
absorbed surface area of the gut.316 Furthermore, only a 
few solid nanoparticles are considered to pass through this 
route, because the majority of nanoparticles are blocked by 
the presence of tight junctions between epithelial cells. 
(Figure 9C): Persorption mechanism, which involves a 
passage through the gap formed in the epithelium by the 
extrusion of dead intestinal cells from the epithelial layer 
of the small intestine.317 Although the persorption 
mechanism is considered to allow nanoparticles to pass 
through in their native state, however due to the small 
number of research reports, their detailed mechanism is 
still largely unknown. Nanoparticles are thought to pass 
through the small intestinal epithelium from either of the 
above routes and are subsequently transported into the 
lymph and bloodstream (Figure 9A–C). Lamson et al 
reported that when negatively charged silica nanoparticles 
were administered orally to mice, these bound to integrins 
in small intestinal epithelial cells, induced relaxation of 
tight junctions, and increased intestinal permeability, 
which prompted the protein migration further into the 
bloodstream.318 The mechanism involves the binding of 
negatively charged silica nanoparticles (<100 nm) to integ-
rins present on epithelial cell surface receptors, thereby 
stimulating various signaling pathways (Akt, PAK, Raf 
and Src pathways) that activate the enzyme myosin light 
chain kinase (MLCK). Activated MLCK phosphorylates 
the myosin portion of the cytoskeleton and exerts tension 
on the tight junctions, then leading them to open. The gaps 
in the tight junctions opened in this way allow the passage 
of macromolecules without causing cell damage 
(Figure 9B). Furthermore, they confirmed the effect of 

insulin (model protein) on blood glucose levels in 
C57BL/6 mice in which tight junctions were opened by 
oral administration of above negatively charged silica 
nanoparticles. The results reported that the orally adminis-
tered insulin (10 U/kg) group showed hypoglycemia for 
several hours longer than the subcutaneously injected insu-
lin (1 U/kg) group. Other institutions have reported that 
ultrasound-induced cavitation temporarily weakens the 
barrier function of the intestinal tract and increases the 
absorption of drugs (hydrocortisone, insulin, mesalamine) 
from the small intestine.319 A variety of surfactants have 
been used in the preparation of “smart foods,” and many 
studies on “smart foods” using surfactant-coated nanopar-
ticles have been reported (Table 2). However, there are 
few reports on the effect of different surfactants on absorp-
tion and metabolism in vivo. Although the latter could not 
be included in this review, future studies are of vital 
importance for such integrated information.

Along with the uptake of the nanoparticles, their dis-
persibility in the intestinal lumen before reaching the 
intestinal mucosa may have a significant impact on the 
absorption of the food components encapsulated in nano-
particles. Harigae et al prepared PLGA nanoparticles 
encapsulating curcumin (a polyphenol compound) and 
compared its oral absorption (area under the curves 
[AUCs] of curcumin and its main metabolite [curcumin 
glucuronide]) with the control group of free curcumin in 
rats.320 The results revealed that high concentrations of 
curcumin glucuronide were present in the blood in case of 
PLGA nanoparticle-treated group compared to the control 
group, but the blood concentrations of curcumin were 
lower in both groups. Furthermore, they confirmed the 
transport mechanism of curcumin in PLGA nanoparticles 
to mixed micelles in a human colorectal adenocarcinoma 
(Caco-2) cell transwell model. As a result, the major factor 
responsible for the enhanced absorption of curcumin glu-
curonide in bile acid micelles from PLGA nanoparticles 
was the high dispersibility of the PLGA nanoparticles in 
the solution, instead of the pathways described above 
(Figure 9A–C) or metabolic resistance. It is generally 
believed that orally administered nutritional components 
are taken up from the small intestine and transferred to the 
liver via the portal vein or through the mesenteric lymph 
nodes, which are subsequently transported to various 
organs via the lymphoid network and bloodstream.321 

There are only a few studies available on the behavior of 
nanoparticles, either metabolism or modification, during 
their uptake from the small intestine and transfer to the 
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lymph and bloodstream. Itaya et al compared the uptake of 
curcuminoids-encapsulated PLGA nanoparticles and free 
curcuminoids into human monocytic leukemia (THP-1) 
cells.322 The results confirmed that only curcumin was 
selectively taken up among the curcuminoids in both 
groups, suggesting that curcuminoids are released from 
PLGA nanoparticles and taken up by the cells after 
becoming educt. Further investigation of the detailed 
uptake mechanism revealed that curcuminoids with a 
higher affinity for albumin (a major transport protein in 
the blood), were less likely to be taken up by monocytes. 
Yan et al supported this phenomenon and elucidated that 
when albumin adheres to the surface of disulfide-stabilized 
poly (methacrylic acid) nanoporous particles, the nanopar-
ticles are evaded from macrophage uptake.323 Future stu-
dies are necessary to elucidate the phenomenon of orally 

administrated nanoparticles in the blood and its further 
interaction with the blood components through quantita-
tive measurements.

Application of Food Nanotechnology to New 
Packaging Technologies
The development of new packaging technologies for food 
products is important for ensuring food safety.256,257,263 The 
packaging requirements like to allow desirable outside air to 
pass through depends on the type of foods and beverages to 
be packaged. For example, carbonated beverage packaging 
needs to minimize the ingress of oxygen and the loss of 
carbon dioxide.324 In case of fruits and vegetables that 
require breathing, packaging techniques are required to 
exchange outside air according to each type. For potatoes, 
tomatoes and apples, gas transfer of 1–2% of O2, 15–20% of 
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CO2, and 25–30% of ethylene, respectively is required for 
their storage.325 As a food packaging material, polymeric 
nanocomposites with organic nanoparticles dispersed in a 
polymeric matrix can be more precisely manipulated for 
strength and selective permeability of outside air than the 
traditional packaging materials used in the past, such as 
metal, ceramic, paper, and plastic.326 Poverenov et al devel-
oped alginate nanoparticle-dispersed chitosan polymeric 
nanocomposites and reported that when coated on fresh-cut 
melons, it protected against dehydration and ethanol eva-
poration for 15 days while maintaining selective permeability 
of the outside air, ideal for storage.327 Azeredo et al devel-
oped thin films of polymeric nanocomposites containing 
15% cellulose nanofibers and 18% glycerol as food plastici-
zers and reported that they exhibited ductility and hydropho-
bicity while maintaining higher strength than synthetic 
polymers such as low-density polyethylene and 
polypropylene.328 Furthermore, the film is biodegradable 
and environmental friendly. Surfactants are used as disper-
sants for organic nanoparticles in the manufacturing stage of 
polymeric nanocomposites.329–331 Despite the development 
of polymeric nanocomposites, there are few reports available 
on the safety of long-term ingestion,332 which needs to be 
considered.

The antimicrobial activity of natural products such as 
mushrooms in food packaging may help to overcome the 
food industry challenges of food contamination and spoi-
lage by bacteria. Mushrooms synthesize a variety of meta-
bolites with antitumor, antiviral, anti-inflammatory, 
antibacterial, antifungal, and anti-yeast activities.333 

Therefore, there is a growing need for bioprospecting of 
mushrooms.334 And mushrooms are also known to pro-
duce multidrug resistance inhibitors that enhance the activ-
ity of antimicrobial compounds, and the synergy with 
silver nanoparticles dramatically improves resistant micro-
organisms and their antimicrobial activity. This use of 
mushrooms for application of food nanotechnology to 
new packaging technologies is thoroughly reviewed in 
the report by Pandey et al in 2020.334 The application of 
nanotechnology to food packaging to maintain food qual-
ity will become even more important in the future.335

Surfactant-Coated Inorganic 
Nanoparticles in Food Nanotechnology
Food nanosensing, which uses inorganic nanoparticles for 
sensing of food (adulterant sensing, artificial smell and 
taste sensing, bacterial toxin sensing, brand protection 

and product authenticity, freshness sensing, pathogenic 
bacteria sensing), plays an important role in better food 
quality and safety evaluation.336 Karatapanis et al reported 
that silica-modified magnetite nanoparticles coated with 
cationic surfactants can be used as adsorbents for Cu(II), 
Ni(II), Co(II), Cd(II), Pb(II) and Mn(II).337 The detection 
limits of these elements in aqueous solution were 4.7, 9.1, 
9.5, 2.3, 7.4, and 15.3 ng/L, respectively. Zahid et al 
developed an electrochemical sensor with a surfactant (1- 
(2, 4-dinitrophenyl)-dodecanoylthiourea (DAN), which 
has soil fertility enhancing characteristics) immobilized 
at the interface to detect Hg (II) in drinking water with a 
detection limit of 0.64 μg/L.338 These sensing of food 
using nanoparticles has been described in detail in other 
reviews.339,340

Among the inorganic nanoparticles used in food nano-
technology, silver nanoparticles are the most widely used 
in the food industry due to their antimicrobial properties. 
Approximately 55.4% of all consumer products using 
nanoparticles in the market are made with silver 
nanoparticles.341 In addition, several countries are already 
using silver nanoparticles as antimicrobial agents in food 
supplements and food packaging materials.342 When silver 
nanoparticles reach the bacterial cell surface, they form 
irregularly shaped pits on the membrane surface, reducing 
the barrier function of lipopolysaccharides present on the 
cell surface, and thereby altering the membrane 
permeability.343 Subsequently, silver cation (Ag+) is gen-
erated by protons and enzymes present in the bacterial cell, 
causing an increase in oxidative stress due to ROS and 
inhibition of deoxyribonucleic acid (DNA) replication, 
leading to bacterial cell death.344,345 Costa et al prepared 
an alginate film containing silver nanoparticles and 
reported that coating it on fresh-cut carrots protected the 
carrots from dehydration and microbial spoilage and 
extended the shelf life from four days (in non-additive 
group) to 70 days.346 Hedayati et al prepared surfactant- 
coated nanoparticles (gum Arabic containing silver nano-
particles and a nonionic surfactant (glyceryl monostearate 
[Figure 1]). 347 They reported that coating green bell 
pepper with this product protected the antioxidant (vitamin 
C) in the green bell pepper from dehydration and micro-
bial spoilage and maintained marketable quality even after 
21-days of storage. Since silver nanoparticles need to be in 
a dispersed state to exert their antibacterial effect, the 
approach of coating their surface with a non-ionic surfac-
tant and dispersing them in a system is widely used. 
Kvitek et al prepared surfactant-coated nanoparticles 
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(silver nanoparticles coated with SDS or polysorbate 80) 
and confirmed their antimicrobial activity.348 Results 
showed that coating with both surfactants had increased 
antimicrobial activity of silver against 10 strains of bac-
teria compared to bare nanoparticles, and the SDS-coated 
nanoparticles exhibited more potency. In addition to silver 
nanoparticles, zinc oxide nanoparticles are used as supple-
ments, antibacterial agents, and anti-browning agents.349 

Li et al reported the use of zinc oxide nanoparticles as an 
anti-browning agent for food products.350 They developed 
a polyvinyl chloride nanoparticles containing zinc oxide 
(ZnO), and when Fuji apples were coated with it, the 
activity of polyphenol oxidase and pyrogallol peroxidase 
was suppressed, resulting in reduced formation of malon-
dialdehyde (reduced from 74.9 nmol/g (untreated group) to 
53.9 nmol/g) and decrease in the browning index (reduced 
from 31.7 (untreated group) to 23.9), after 12-days. 
Several studies on the use of silver nanoparticles and 
their potential application for antiviral effects have also 
been reported. Huy et al reported that silver nanoparticles 
were not toxic to normal cells (human rhabdomyosarcoma 
cell line), while they exhibited toxicity to a non-enveloped 
virus (poliovirus) in vitro.351 Sreekanth et al also reported 
that the preparation of silver nanoparticles using terpenoid 
and flavonoid mixtures extracted from the roots of ginseng 
by green synthesis and showed toxicity to the influenza A 
virus, while they did not exhibit toxicity to assumed nor-
mal cells (Madin-Darby canine kidney [MDCK] cell 
line).352 Antoine et al reported that zinc oxide nanoparti-
cles greatly inhibited herpes simplex virus type 2 (HSV-2) 
infection of the reproductive organs in female BALB/c 
mice and reduced mortality.353 Gurunathan et al reviewed 
in 2020 the possibility that antiviral potential of inorganic 
nanoparticles might be a fight against coronaviruses.354 

Other inorganic nanoparticles such as those containing 
iron oxide (supplements and colorants), titanium dioxide 
(food additives), silica (anti-caking agents and flavors), 
and selenium (supplements) are used in food 
nanotechnology.290,355–357 It is believed that surfactants 
can also be used for these inorganic nanoparticles other 
than silver nanoparticles to further enhance their functions 
in the future. On the contrary, Gram-negative bacteria such 
as Escherichia coli 013, Pseudomonas aeruginosa 
CCM3955, and Escherichia coli CCM3954 gradually 
acquire resistance to inorganic nanoparticles.358 In addi-
tion, silver, titanium dioxide, zinc oxide, and silica nano-
particles reach the colon after oral administration, and 
their antimicrobial properties can affect the intestinal 

microbiota and aggravate the immune response of the 
gut-associated lymphoid tissue.359 New technologies in 
food nanotechnology are expected to overcome these cur-
rent concerns.

Nanoparticles Originally Contained in 
Food
Humans consume food products containing nanoscale sub-
stances on daily basis. There are numerous nanostructures 
(such as emulsion, nanoparticles and micelles, and colloids) 
composed of proteins, carbohydrates, and lipids that exist in 
the food matrix. For example, milk contains nanostructures 
such as casein micelles (50–300 nm in diameter), whey 
protein (4–6 nm in diameter), and lactose (0.5 nm in dia-
meter). A wide variety of nanoscale materials, from both 
natural and artificial sources, might be present in foods 
(Figure 10).291 Several studies have been conducted on 
these nanostructures present in food; beer (containing 
microplastics),360 chewing gum (containing titanium 
dioxide),361 chicken meat (containing silver nanoparticles),-
362 drink products (containing silver, gold, copper, iridium, 
palladium, platinum, silicon, and zinc nanomaterials),363 

drinking water (containing titanium dioxide, silver, and 
gold nanoparticles),364 and honey (containing non-pollen 
particles).365 Zhang et al used atomic force microscopy to 
examine the nanostructure of pectin in cherries and found a 
close relationship between its structure and fruit firmness.366 

Dang et al also reported that cooking and processing of foods 
can change their nanostructures, which further changes the 
physical properties of the foods.367 It has been reported that 
ferritin nanoparticles contained in plant-based foods are 
taken up from small intestinal epithelial cells and used as a 
source of iron in the body.368 Nanostructures are also pro-
duced during oral ingestion, for example, orally ingested 
foods can be physically (emulsification, mastication, and 
peristalsis) and chemically (acidic pH environment and inter-
action with various digestive enzymes) stimulated in various 
organs of the digestive system, some of which are miniatur-
ized to the nanoscale. It is believed that the food components 
(amino acids, inorganic salts, monosaccharides, polyphenols, 
and vitamins) are miniaturized in this way and reaches the 
small intestine, where they are subsequently absorbed.241,321 

Some nanoparticles are formed in the digestive organs by 
chemical precipitation. For example, when food-derived cal-
cium and phosphate ions are present in the small intestine, 
calcium phosphate nanoparticles are deposited.369 Thus, 
nanoparticles are present in many food products, however, 
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the “nanostructures that are not purpose-designed and are 
originally contained in food”, as described in this section, 
are not considered as the products of food 
nanotechnology.265

Safety of Nanoparticles in the Food 
Industry
The safety of nanoparticles in food industry is an 
important concern that cannot be ignored. Many stu-
dies have claimed that nanoparticles may migrate from 
packaging materials into food, then taken up and accu-
mulated in the human body via oral intake.370 In addi-
tion, nanoscale pesticide residues present in food and 
other foreign substances that have contaminated the 
food products during their manufacturing process are 
unintentional contaminants. Distinguishing such con-
taminants from the nanoparticles prepared by food 
nanotechnology or nanoparticles originally contained 
in food or food-derived nanoparticles is important for 
food quality, safety, and environmental considerations. 
Inorganic nanoparticles that may be contaminated in 
the food include transition metals (for example, silver, 
iron, titanium, and zinc), alkali earth metals (calcium 
and magnesium), and non-metals (selenium and sili-
cate). In developed countries, it is estimated that 
more than 1012 inorganic nanoparticles are taken into 
the human body per day.371 Some nanoparticles are 
also unintentionally contaminated in animal and plant 
breeding environments. For example, Lin et al exam-
ined the transfer and accumulation of two types of 
nanostructures (C70 fullerene and multiwalled carbon 
nanotubes) into plants through their growing 
environment.372 Rice seedlings were grown in a germi-
nation culture medium containing C70 fullerene or 
multiwalled carbon nanotubes for two weeks. Then, 
they were transplanted into the soil and grown to 
maturity. Rice seeds were taken from the first genera-
tion of plants grown in this manner, and the second 
generation was grown in a nanoparticle-free germina-
tion buffer. They found that C70 fullerenes were pre-
sent in the first generation of seeds grown in an 
environment containing nanoparticles for a long period. 
The presence of C70 fullerene was also observed in the 
leaves of the second generation grown from the C70 
fullerene-accumulating seeds obtained in the first gen-
eration. In contrast, the plants grown in the germina-
tion culture medium containing multi-walled carbon 

nanotubes did not show their accumulation in either 
first or second generation. This suggests that C70 full-
erene and multiwalled carbon nanotubes accumulate 
differently in the plant body depending on their nanos-
tructures. Such uptake of nanoparticles into plants has 
also been studied with metal nanoparticles such as 
gold, silver and silica.373–375 The nanostructures have 
the potential risk of exposure and accumulation 
through various routes in the human body, such as 
unintentional inhalation and dermal contact.376 At this 
stage, the types and amounts of nanostructures present 
in the environment, their accumulation in plants and 
animals, and the risk of pollution in the food supply 
are not yet well understood, which is very important 
considering the use of nanoparticles in food industry. 
Bieberstein et al assessed consumer inclination towards 
purchase of products of food nanotechnology in France 
and Germany, focusing on two applications: “nano 
vitamin” and “nano packaging.” The results reported 
that consumers in both countries tended to be reluctant 
to accept food nanotechnology.377 These trends are due 
to unresolved concerns about the safety of products of 
food nanotechnology, which needs to be assessed 
through research that is more extensive.

Conclusions and Outlook
Surfactants have a long history of use by humans, and 
various products have been made that make use of their 
properties. Moreover, the surfactant-coated nanoparticles 
demonstrated the crucial importance of surfactants in the 
fields of nanomedicine and food nanotechnology. In both 
fields, it has been demonstrated that surfactants can further 
enhance the functions of the nanoparticles. Various 
approaches that take advantage of the synergistic effects 
of nanoparticles and surfactants have the potential to cre-
ate many useful new technologies in the future, although 
challenges are yet to be overcome, including safety of 
nanoparticles and surfactants. There are many cases 
where technologies that are highly effective in vitro do 
not work well in vivo because of unexpected problems that 
arise when applied to humans. While new technologies are 
being developed everyday, the rapid development of nano-
medicine and food nanotechnology has also ignited con-
sumer concerns. Current information on nanoparticles and 
surfactants is insufficient to overcome these concerns. 
Therefore, continuing research is needed to obtain reliable 
information in the future. Recently, advances in machine 
learning and artificial intelligence immensely decoded and 
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empowered, the cell-nanomaterial interaction modelling, 
which gave modern to nanomedicine to predict the biosaf-
ety and efficacy378,379 and in-silico methods380,381 to 
potentially decipher the quantitative nanostructure activ-
ity-relationship (Nano-QSAR). In 2010, the two timelines 
(nanoparticles and artificial intelligence) merged as artifi-
cial intelligence was applied to the task of identifying and 
predicting of grouping according to their properties, inter-
action, and toxicity of nanoparticles (Figure 11). 379 The 
fields of nanoparticles and artificial intelligence will con-
tinue to complement each other. There will be significant 
progress in research field of surfactant-coated nanoparti-
cles as the develop of these technologies. This review is 
not limited to either nanomedicine or food nanotechnol-
ogy, but is intended to be of interest to people in both 
fields and to bridge these fields. We hope that this review 
will serve as an impetus for the development of new 
technologies in interdisciplinary fields.
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