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Abstract: Acute lymphoblastic leukemia (ALL) is a heterogenous hematological malig-
nancy representing 25% of all cancers in children less than 15 years of age. Significant 
improvements in survival and cure rates have been made over the past four decades in 
pediatric ALL treatment. Asparaginases, derived from Escherichia coli and Erwinia 
chrysanthemi, have become a critical component of ALL therapy since the 1960s. 
Asparaginases cause depletion of serum asparagine, leading to deprivation of this 
critical amino acid for protein synthesis, and hence limit survival of lymphoblasts. 
Pegaspargase, a conjugate of monomethoxypolyethylene glycol (mPEG) and 
L-asparaginase, has become an integral component of pediatric upfront and relapsed 
ALL protocols due to its longer half-life and improved immunogenicity profile com-
pared to native asparaginase preparations. Over the past two decades great strides have 
been made in outcomes for pediatric ALL due to risk stratification, incorporation of 
multiagent chemotherapy protocols, and central nervous system prophylaxis with pegas-
pargase having played an important role in this success. However, adolescents and 
young adults (AYA) with ALL when treated on contemporaneous trials using adult ALL 
regimens, continue to have poor outcomes. There is increasing realization of adapting 
pediatric trial regimens for treating AYAs, especially those incorporating higher inten-
sity of chemotherapeutic agents with pegaspargase being one such agent. Dose or 
treatment-limiting toxicity is observed in 25–30% of patients, most notable being 
hypersensitivity reactions. Other toxicities include asparaginase-associated pancreatitis, 
thrombosis, liver dysfunction, osteonecrosis, and dyslipidemia. Discontinuation or sub-
therapeutic levels of asparaginase are associated with inferior disease-free survival 
leading to higher risk of relapse, and in cases of relapse, a higher risk for remission 
failure. This article provides an overview of available evidence for use of pegaspargase 
in pediatric acute lymphoblastic leukemia. 
Keywords: asparagine, asparaginase, serum asparaginase activity, toxicity

Introduction
Acute lymphoblastic leukemia (ALL) is the most commonly encountered cancer 
of childhood with peak prevalence between ages 2–5 years. Two main subtypes, 
B-cell and T-cell, comprise the majority of ALL, at 85–90% and 10–15% of 
cases, respectively.1 Outcomes within pediatric ALL vary by subtype and risk 
category, but are generally favorable. While within standard-risk (SR) B-cell 
ALL overall survival (OS) is as high as 96%, high risk (HR) B-ALL and T-ALL 
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continue to have lower event-free survival (EFS) and 
OS.2–6 Over the past several decades, significant pro-
gress has been made with risk stratification and che-
motherapy dose intensification. Asparaginase, 
introduced as a component of the chemotherapeutic 
backbone for ALL in the 1970s, has been of significant 
importance in advancing the treatment of childhood 
leukemia.3,7,8 Its antileukemic activity is accomplished 
by converting asparagine to aspartic acid and ammonia 
in the extracellular fluid. Lymphoblasts are very sensi-
tive to the lack of asparagine and this shortage reduces 
the synthesis of asparagine-dependent proteins causing 
cell death.9 There are extensive clinical data supporting 
the use and improved survival benefits of asparaginase 
therapy in pediatric ALL.2,3,10–17 Omission or low ther-
apeutic levels of asparaginase may lead to higher risk of 
relapse, and in cases of relapse, a higher risk for remis-
sion failure.3,18–20 Pegaspargase (Oncaspar®), 
a pegylated form of native Escherichia coli (E. coli) 
derived L-asparaginase, is the preferred first-line aspar-
aginase preparation in the multiagent chemotherapy 
regimens for treatment of childhood ALL in the 
United States (US) and European Union (EU).21–23 We 
provide an overview on the use of pegaspargase in 
pediatric ALL.

Pharmacological Characteristics of 
Pegaspargase
In comparison to healthy cells, leukemic cells have low 
levels of asparagine synthetase and hence, reduced 
ability to manufacture the essential amino acid aspar-
agine needed for DNA, RNA and protein synthesis.24,25 

Asparaginase hydrolyzes asparagine into aspartic acid 
and ammonia in the plasma, thus denying the lympho-
blast an essential element needed for cell survival.26 

Asparaginase was identified as a potential chemother-
apeutic in 1961 when it was first isolated as an anti- 
lymphoma component of guinea pig serum.27 Studies 
in the 1960s used bacteria as alternate sources of 
asparaginase, leading to clinically available asparagi-
nase derived from E. coli and Erwinia 
chrysanthemi.28,29

Pegaspargase is a conjugate of monomethoxypo-
lyethylene glycol (mPEG) and L-asparaginase pro-
duced endogenously by E. coli. These mPEG 
molecules increase solubility and stability of the pro-
tein conjugate in the plasma and prevent proteolytic 

cleavage of the enzyme, consequently increasing its 
half-life.22,30 They also provide an additional benefit 
of reduction in the risk of anaphylaxis and hypersensi-
tivity reactions.

Dosage and Administration
Pegaspargase is supplied as a sterile, preservative-free 
solution in vials containing 3750 International Units (IU) 
of pegaspargase per 5 mL solution.21,22 The FDA- 
approved dose for pediatric leukemia is 2500 IU/m2 

given either intramuscularly (IM) or intravenously (IV) 
over 1–2 hours, not more often than every 14 days.21,22 

Increased toxicity due to higher doses of pegaspargase is 
controversial. Lebovic et al reported a retrospective chart 
review of patients 1–21 years of age with B-ALL on 
pegaspargase and found that doses higher than 3750 IU 
were associated with higher rates of venous thromboem-
bolism (VTE), pancreatitis, and hyperglycemia.31 Dose 
capping is frequently employed in the adult population, 
particularly in obese patients; however, it has not been 
standard practice in pediatrics and further studies should 
investigate the potential for toxicity in this subset of 
patients.

Pharmacokinetic (PK) Comparison 
Between IV and IM Administration
The goal of asparaginase therapy is to achieve com-
plete asparagine depletion. Quantification of asparagine 
directly is biologically and logistically challenging, 
particularly in the clinical setting, so serum asparagi-
nase activity (SAA) levels are accepted as the most 
reliable modality to measure asparaginase efficacy.32 

While there has been recent debate regarding optimal 
SAA levels for adequate asparagine depletion, an SAA 
of  >0.1 IU/mL is generally considered optimal.24,32–35 

Both Children’s Cancer Group (CCG) 1962 and 
Children’s Oncology Group (COG) AALL07P4 studies 
have provided important PK data on IM and IV admin-
istration, respectively.24,34 After an IM dose of 2500 
IU/m2, the maximum concentration of asparaginase 
activity peaked at 1 IU/mL compared to 1.6 IU/mL 
for IV on day 5 with a half-life absorption estimated 
at 1.7 days.21,22,24 The replacement of native asparagi-
nase with pegaspargase in the treatment of pediatric 
ALL has come about due to its prolonged terminal 
half-life. The average half-life is estimated at 5.5 
days for both IM and IV administration and is 4–8 
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times longer than those of the native and Erwinia- 
derived products.22,36 Silverman et al also confirmed 
that enzyme activity is maintained for a minimum of 2 
weeks after a single IV dose, thus supporting the 
recommendation that dosing not occur more frequently 
than 2-week intervals.22,37

Comparison with Other Pegylated 
Products
Calaspargase (CALASP) was developed using the same 
asparaginase enzyme and PEG molecule as pegaspar-
gase. However, whereas pegaspargase has 
a succinimidyl succinate (SS-PEG) molecule which 
combines the two, CALASP consists instead of 
a succinimidyl carbonate (SC-PEG) linkage which 
enables greater biologic stability. This stability is rea-
lized in the much longer shelf life of CALASP, 36 
months, versus pegaspargase at 8 months. COG 
AALL07P4 investigated the PK and pharmacodynamic 
(PD) properties of calaspargase pegol (Asparlas®).38 

The results demonstrated a potential advantage to its 
use with CALASP having a more prolonged SAA 

compared with pegaspargase through both induction 
and consolidation.38 The mean half-life SAA was 2.5 
times longer with CALASP than with pegaspargase, 
representing a more prolonged suppression of aspara-
gine in the plasma.38 Although not statistically signifi-
cant, adverse effects were similar between both groups 
other than CALASP had increased hyperglycemia in 
induction and hyperbilirubinemia in delayed intensifi-
cation (DI).38 Dana-Farber Cancer Institute (DFCI) 
11–001 randomized patients to either pegaspargase 
every 2 weeks or CALASP every 3 weeks during 
intensification (Table 1). There were no significant 
differences in treatment outcomes or toxicities between 
the two arms, but PK data showed more prolonged 
SAA after CALASP in the induction phase.39 As the 
DFCI protocols have 3-week cycles during intensifica-
tion, CALASP is an ideal fit for the asparagine deple-
tion prescribed in their chemotherapeutic backbone. 
This new pegylated product, as well as the yet unpro-
ven pegylated Erwinia asparaginase (pegcrisantaspase), 
may offer future alternate treatment options to 
pegaspargase.38,40,41

Table 1 Pediatric Acute Lymphoblastic Leukemia Trials with Pegaspargase Associated Objectives

Cooperative Group/ 
Study

Enrollment Period 
(N)

Asparaginase 
Objective(s)

Asparaginase Associated Findings

Upfront studies

DFCI 91–013 1991–1995 (377) ASP intensification ● Intensification improves outcomes
PEG (IM) vs. L-asp (IM) ● No significant difference in EFS with ASP preparation

CCG 196224 1997–1998 (187) PEG (IM) vs. L-asp (IM) ● PEG: increased clearance of blasts, decreased antibodies

AIEOP ALL 200050 2002 (20) PEG (IV) as first line 
therapy

● Adequate SAA and ASN depletion

DFCI 05–00133 2005–2010 (463) PEG (IV) vs. L-asp (IM) ● PEG: increased ASP course completion success and 
increased SAA

● No significant difference in DFS with ASP preparation

COG AALL07P434,38 2008–2010 (166) PEG (IV) vs. CALASP (IV) ● CALASP: prolonged SAA

DFCI 11–00139 2012–2015 (230) PEG (IV) vs. CALASP (IV) ● CALASP: prolonged SAA

Relapsed studies

CCG 194118 1995–1998 (93) PEG (IM) in relapse ● Decreased ASN led to increased second remission

CHMC 100151 1997–2001 (28) PEG (IM) in relapse ● Adequate SAA and ASN depletion

Abbreviations: DFCI, Dana-Farber Cancer Institute; CCG, Children’s Cancer Group; AIEOP, Associazione Italiana di Ematologia e Oncologia Pediatrica; COG, Children’s 
Oncology Group; CHMC, Children’s Hospital and Regional Medical Center; PEG, pegaspargase; L-asp, L-asparaginase; CALASP, calaspargase; ASP, asparaginase; IM, 
intramuscular; IV, intravenous; EFS, event-free survival; DFS, disease-free survival; SAA, serum asparaginase activity level; ASN, asparagine.
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Pegaspargase in Newly Diagnosed 
ALL
In the US there are different types of commercially 
available asparaginase formulations, an E. coli-derived 
pegylated asparaginase (pegaspargase) and an Erwinia 
derived asparaginase. The native E. coli derived 
L-asparaginase was removed from the US market by 
the manufacturer in 2012 but still plays an important 
historical role. The pegylated form of the drug, 
approved in 1994 for use in patients with ALL, 
increases the plasma retention time, decreases proteo-
lysis and renal excretion, and protects from immune 
detection.

Standard Risk (SR) ALL
CCG 1962 was a randomized trial to evaluate safety, 
efficacy, and PK of a single IM dose of pegaspargase 
versus multiple IM doses of native E. coli asparaginase 
in each of 3 phases: a 4-week induction and 2, 8-week 
DI phases as part of a multiagent chemotherapeutic 
regimen.24 One hundred eighteen children in 8 CCG 
centers with SR ALL were enrolled between 
1997–1998. Patients were randomly assigned to receive 
either 2500 IU/m2 of pegaspargase IM on day 3 of 
induction and each DI phase, or 6000 IU/m2 of native 
asparaginase IM 3 times per week for 9 doses in 
induction and 6 doses in each DI phase (Table 1). 
Patients assigned to the pegaspargase arm had signifi-
cantly more rapid clearance of lymphoblasts from days 
7 and 14 bone marrow aspirates (p ≤ 0.05). Twice (n = 
16) as many patients in the native asparaginase arm 
had M3 bone marrow (>25% blasts) on day 7 than in 
the pegaspargase arm (n = 8). Four patients had M3 
marrow on day 14, all were in the native asparaginase 
arm. The study postulated that the difference could be 
from more persistent, higher SAA in the pegaspargase 
patients.24 Half-lives of asparaginase were 5.5 days and 
26 hours for pegaspargase and native asparaginase, 
respectively. Studies have shown when antibody titers 
are high, the asparaginase activity is often low.42 Low 
SAA in the native arm (26%) compared to the pegas-
pargase arm (2%) during the first DI phase established 
the primary endpoint of this study that incidence of 
high anti-asparaginase antibody titers in children trea-
ted with pegaspargase would be decreased by at least 
50% in the first DI compared with those treated with 
native asparaginase. Three-year EFS was similar for 

both arms, 85% for pegaspargase and 78% for native 
asparaginase.24

High Risk (HR) ALL
DCFI 91–01 protocol was designed to improve the out-
come of children with newly diagnosed ALL while 
minimizing toxicity.3 Three hundred and seventy-seven 
patients (137 SR and 240 HR), aged 0–18 years, were 
enrolled between 1991–1995.3 Apart from substituting 
dexamethasone for prednisone, the duration of high dose 
asparaginase intensification was extended from 20 
weeks (in prior protocols) to 30 weeks, and patients 
were randomized to receive either native or pegylated 
E. coli asparaginase (Table 1). Patients were adminis-
tered either 2500 IU/m2 pegaspargase IM every other 
week for 15 doses or 25,000 IU/m2 native E. coli aspar-
aginase IM every week for 30 doses during the intensi-
fication phase of therapy. Though the study did not find 
a significant difference in 5-year EFS based upon risk 
group (87% ± 3% for SR and 81% ± 3% for HR, p = 
0.24), asparaginase intolerance (failure to receive at 
least 26 weeks of asparaginase) was an independent 
predictor of adverse outcome in multivariate analysis 
(p < 0.01). This finding suggested that the prolongation 
of asparaginase therapy may have contributed to the 
improved overall outcome of 5-year EFS (83% ± 2%) 
compared to previous protocols.3

DFCI 05–001, conducted between 2005–2010, 
enrolled 551 newly diagnosed ALL patients aged 
1–18 years, with the aim to compare the relative toxi-
city and efficacy of IV pegaspargase and IM native 
E. coli L-asparaginase in both SR and HR ALL 
patients.33 Those patients who achieved complete 
remission (CR) after induction therapy were assigned 
to a final risk group and randomized to IV pegaspar-
gase (15 doses of 2500 IU/m2 every 2 weeks) or IM 
native L-asparaginase (30 doses of 25,000 IU/m2 

weekly), beginning at week 7 after study entry (Table 
1). The primary endpoint of the study was to evaluate 
asparaginase-related toxicities, while EFS, SAA, and 
quality of life during therapy as assessed by PedsQL 
surveys were secondary endpoints. The two treatme7nt 
groups did not have statistically significant difference 
in overall frequency of asparaginase-related toxicities; 
28% in the IV pegaspargase group versus 26% in IM 
native L-asparaginase group (p = 0.60). A significantly 
higher proportion of pegaspargase than native 
L-asparaginase recipients completed all 30 weeks of 
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treatment (82 vs. 74%; p = 0.015). The median nadir 
SAA of ≥0.1 IU/mL was significantly higher in patients 
who received IV pegaspargase than in those who 
received IM native L-asparaginase (99 vs. 71%; p <  
0.0001).33 Significantly more anxiety was reported by 
both patients and parent-proxy in the IM native 
L-asparaginase group than in the IV pegaspargase 
group (p ≤ 0.03). With a median follow-up of 6 years, 
5-year EFS was 90% for IV pegaspargase versus 89% 
for IM native L-asparaginase (p = 0.58).33

Pediatric Oncology Group (POG) study POG 8704 
(T-3) established in 357 patients with T ALL and 195 
patients with advanced-stage T lymphoblastic lymphoma 
(LLy) that high dose asparaginase consolidation therapy 
improves survival in pediatric patients.13

Associazione Italiana di Ematologia e Oncologia 
Pediatrica (AIEOP) ALL 2000 protocol, utilizing an 
intensive multiagent Berlin-Frankfurt-Munster (BFM) 
chemotherapy backbone, studied the pharmacological 
effects of pegaspargase as the first-line product in chil-
dren with ALL.43 Twenty patients with SR, intermedi-
ate-risk (IR), and HR ALL on the protocol were given 
2 doses and 1 dose of pegaspargase during induction 
and reinduction phases, respectively (Table 1). The 
investigators studied the asparagine depletion and clin-
ical outcomes against a comparison cohort of 37 
patients treated with the same chemotherapy schedule 
but with native asparaginase. This study demonstrated 
pegaspargase effectively substituted for the native 
asparaginase product in regard to serum activity levels 
and asparagine depletion. Additionally, allergic reac-
tions and immunologically mediated silent inactivation 
were drastically minimized despite multiple exposures 
to the drug.43

Adolescents and Young Adults (AYA) ALL
Survival rates in AYA ALL are poor compared with those 
in younger children. Surveillance epidemiology and end 
results (SEER) data from 2000–2004 in ALL, reported 
a 10-year OS of 80% in children <15 years, falling to 
60% in adolescents aged 15–20 years, and 30% in young 
adults aged 20–30 years.44,45 Multiple studies have looked 
at adopting pediatric protocols for AYA with improved 
overall outcomes. Asparaginase, as it does in younger 
children, plays an important role in AYA ALL therapy. 
Ram et al conducted a systematic review and meta- 
analysis of all comparative trials on AYA patients given 
chemotherapy with either pediatric-inspired regimens or 

conventional adult protocols, reviewing 11 trials and 
2489 patients.46 AYA patients given pediatric inspired 
regimens had a statistically significant lower mortality 
rate at 3 years (RR 0.58; 95% CI 0.51–0.67), lower relapse 
rate (RR 0.51; 95% CI 0.39–0.66), superior CR (RR 1.05; 
95% CI 1.01–1.10) and EFS (RR 1.66; 95% CI 
1.39–1.99).46 The German Multicenter Study Group For 
Adult ALL (GMALL) protocols were originally based on 
pediatric BFM protocols and designed for AYA ALL.47 

GMALL 07/03 enrolled 877 patients, utilized intensified 
shortened induction with dexamethasone rather than with 
prednisone, pegaspargase rather than native asparaginase 
in induction and consolidation, plus incorporated changes 
in the management of minimal residual disease with stem 
cell transplant. GMALL 07/03 had significant improve-
ments in 5-year OS compared with previous protocol 
GMALL 05/93 (65% in GMALL 07/03 vs 46% in 
GMALL 05/93).47 A French study examined the outcomes 
of 177 AYAs aged 15–20 years comparing those who were 
treated on a pediatric inspired protocol FRALLE-93, or an 
adult protocol LALA-94A.48 FRALLE-93 showed signifi-
cant better CR (98% v 81%; p =0.002) and EFS (p 
=0.0002) in B-ALL, and EFS (p =0.05) in T-ALL. The 
cumulative doses of chemotherapies, most notably aspar-
aginase, were higher in the pediatric protocol: 180,000 IU/ 
m2 in the pediatric regimen versus 9000 IU/m2 in the adult 
regimen.48 Italian and Dutch retrospective studies com-
pared outcomes in adolescents aged 14–18 years treated 
on pediatric AIEOP ALL 95 and 2000 protocols with those 
treated on the adult Gruppo Italiano per le Malattie 
Ematologiche dell’Adulto (GIMEMA) ALL 0496 and 
2000 protocols, and Dutch Children’s Oncology Group 
(DCOG) pediatric regimen with the Hemato-Oncologie 
voor Volwassenen Nederland (HOVON) adult protocols 
in AYAs. Both comparisons showed improved outcomes 
in patients treated on pediatric protocols. The primary 
differences between the regimens were shorter intervals 
between courses (≤1 week versus ≤4 weeks) and more 
asparaginase (mean cumulative dosage: 101,000 IU/m2 

vs. 70,000 IU/m2) in the pediatric regimens.49,50

Pediatric inspired regimens use higher doses of 
chemotherapeutic agents at shorter intervals, including 
pegaspargase, which have demonstrated superiority to 
conventional adult regimens in AYA ALL patients. 
Dosing scheme is not the only reason for improved 
outcomes as there are biological differences in AYAs 
that also play a role. Not only do AYAs have more 
toxicity to the intensive chemotherapies, they also have 
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reduced prevalence of genetic subtypes associated with 
favorable outcome and simultaneously an increase in 
subtypes associated with poor outcome.51 There is 
near-universal consensus from prior studies supporting 
the use of pegaspargase as the front-line asparaginase 
product in children and AYAs with newly diagnosed 
ALL (Tables 2 and 3).

Relapsed ALL
Apart from becoming an integral component of therapy 
regimens for first-line treatment of pediatric ALL, 
pegaspargase has also established a critical role in 

Table 2 Standard Risk B-ALL Regimen (Adapted from Children’s 
Oncology Group AALL0932)

Phase Chemotherapy 
Agents

Schedule

Induction  

(35 days)

Dexamethasone PO Days 1–28
Vincristine IV Days 1, 8, 15, 22

Pegaspargase IV Day 4

Cytarabine IT Day 1 (CNS2 require more)

Methotrexate IT Days 8, 29

Consolidation  

(28 days)

Mercaptopurine PO Days 1–28
Vincristine IV Day 1

Methotrexate IT Days 1, 8, 15

Interim 

Maintenance 

(IM 1)  

(56 days)

Vincristine IV Days 1, 11, 21, 31, 41
Methotrexate IV 

(escalating dose)

Days 1, 11, 21, 31, 41

Methotrexate IT Day 31

Delayed 

Intensification  

(56 days)

Dexamethasone PO Days 1–7 and 15–21
Thioguanine PO Days 29–42

Vincristine IV Days 1, 8, 15

Doxorubicin IV Days 1, 8, 15

Pegaspargase IV Day 4

Cyclophosphamide IV Day 29

Cytarabine IV Days 29–32 and 36–39

Methotrexate IT Days 1, 29

Interim 

Maintenance 

(IM 2)  

(56 days)

Vincristine IV Days 1, 11, 21, 31, 41
Methotrexate IV 

(escalating dose)

Days 1, 11, 21, 31, 41

Methotrexate IT Days 1, 31

Maintenance  

(12-week 

cycles for 2 years 

from IM 1)

Dexamethasone PO Days 1–5, 29–33, and 57–61
Mercaptopurine PO Days 1–84

Methotrexate PO Weekly starting Day 8

Vincristine IV Days 1, 29, 57

Methotrexate IT Day 1

Abbreviations: PO, oral; IV, intravenous; IT, intrathecal; CNS, central nervous 
system.

Table 3 High-Risk B and T-ALL Regimens (Adapted from 
Children’s Oncology Group AALL1131, AALL0431)

Phase Chemotherapy 
Agents

Schedule

Induction  

(35 days)

Dexamethasone PO 

(< 10 years of age)a
Days 1–14

Prednisone PO (≥ 10 

years of age)a
Days 1–28

Vincristine IV Days 1, 8, 15, 22

Daunorubicin IV Days 1, 8, 15, 22

Pegaspargase IM/IV Day 4

Cytarabine IT Day 1 (B-ALL CNS2 require 

more)

Methotrexate IT Days 8, 29 (also Days 15, 22 

for CNS3)

Consolidationb  

(56 days for 

B-ALL;  

77 days for 

T-ALL)

Mercaptopurine PO B-ALL: Days 1–14 and 29–42
T-ALL: Days 8–21 and 50–63

Cyclophosphamide IV B-ALL: Days 1, 29

T-ALL: Days 8, 50

Cytarabine IV B-ALL: Days 1–4, 8–11, 

29–32, 36–39

T-ALL: Days 8–11, 15–18, 

50–53, 57–60

Vincristine IV B-ALL: Days 15, 22, 43, 50

T-ALL: Days 22, 29, 64, 71

Pegaspargase IM/IV B-ALL: Days 15, 43

T-ALL: Days 22, 64

Methotrexate IT B-ALL: Days 1, 8, 15, 22
T-ALL: Days 15, 22, 57, 64 

(CNS3 omit d22)

Interim 

Maintenance 

(IM)c  

(63 days for 

B-ALL;  

56 days for 

T-ALL)

Mercaptopurine PO B-ALL only: Days 1–56
Vincristine IV B-ALL: Days 1, 15, 29, 43

T-ALL: Days 1, 11, 21, 31, 41

High Dose 

Methotrexate IV

B-ALL only: Days 1, 15, 29, 43

Escalating Dose 

Methotrexate IV

T-ALL only: Days 1, 11, 21, 

31, 41

Methotrexate IT B-ALL: Days 1, 29

T-ALL: Days 1, 31

Pegaspargase IV/IM T-ALL only: Days 2, 22

Delayed 

Intensification  

(56 days for 

B-ALL;  

63 days for 

T-ALL)

Dexamethasone PO Days 1–7 and 15–21
Thioguanine PO B-ALL: Days 29–42

T-ALL: Days 36–49

Vincristine IV Days 1, 8, 15, 43, 50 (T-ALL 

omit d43)

Doxorubicin IV Days 1, 8, 15

Pegaspargase IM/IV B-ALL: Days 4, 43

T-ALL: Days 4, 50

Cyclophosphamide IV Day 29

Cytarabine IV Days 29–32 and 36–39

Methotrexate IT Days 1, 29, 36 (T-ALL d29 

given on d43)

(Continued)
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treatment regimens for relapsed ALL. CHMC 1001 
enrolled 28 pediatric patients with relapsed ALL at 3 
pediatric institutions to study PK after pegaspargase 
therapy.52 Patients received induction therapy (includ-
ing pegaspargase 2500 IU/m2 IM weekly on days 2, 9, 
16, and 23) and intensification therapy (including 
pegaspargase 2500 IU/m2 IM once on day 7) (Table 
1). Adequate serum and CSF asparagine depletion with 
SAA of >0.1 IU/mL was observed and maintained 
during induction and intensification in the majority of 
samples. CCG 1941 utilized 2 doses of pegaspargase 
on days 2 and 16, in combination with multiagent 
chemotherapy during re-induction, to explore possible 
relationships among SAA, asparagine depletion, anti- 
asparaginase antibody titers, and response to re- 
induction therapy in children and adolescents with 
early first bone marrow ALL relapse (Table 1).18 The 
study enrolled 214 patients between 1995–1998. The 
difference in asparagine levels between M1 and M3 
response at end of re-induction was statistically sign-
ificant (p = 0.01). Lesser asparagine depletion was 
associated with failure to achieve second 
remissions.18 ALLR3 enrolled 216 patients aged 1–18 
years in centers throughout Europe, Australia and New 
Zealand, on an open-label randomized trial for first 
ALL relapse, with a conventional four-drug induction 
and continuous asparagine depletion throughout the 
first 3 months. ALLR3 has since become the standard 
chemotherapy regimen for many relapsed ALL re- 
induction protocols.53

Pegaspargase is an important chemotherapy for treating 
pediatric ALL relapse and is included in the majority of US 
and European re-induction protocols with the ALLR3 or 
vincristine, dexamethasone, pegaspargase and doxorubicin 
(VXLD) inspired backbones (Tables 4 and 5).

Table 3 (Continued). 

Phase Chemotherapy 
Agents

Schedule

Maintenanced  

(12-week 

cycles for 2 years 

from IM)

Prednisone PO Days 1–5, 29–33, and 57–61

Mercaptopurine PO Days 1–84

Methotrexate PO Weekly starting Day 8

Vincristine IV Days 1, 29, 57

Methotrexate IT B-ALL: Days 1, 29 (first 4 

cycles only) 

T-ALL: Day 1 only

Notes: aT-ALL patients receive prednisone only Days 1–28. bT-ALL patients receive 
nelarabine Days 1–5 and 43–47. cT-ALL patients receive nelarabine on Days 29–33. 
dT-ALL patients receive an additional 3 cycles of nelarabine-based therapy prior to 
the start of maintenance (each cycle 84 days). 
Abbreviations: PO, oral; IM, intramuscular; IV, intravenous; IT, intrathecal; CNS, 
central nervous system.

Table 4 Relapse ALL Regimen (Adapted from UKALLR3)

Phase Chemotherapy 
Agents

Schedule

Induction  

(28 days)

Dexamethasone PO Days 1–5, 15–19
Vincristine IV Days 3, 10, 17, 24
Mitoxantrone IV Days 1, 2

Pegaspargase IM/IV Days 3, 18

Methotrexate IT Days 1, 8 (also Days 
15, 22 for CNS3)

Consolidation  
(28 days)

Dexamethasone PO Days 1–5
Vincristine IV Day 3

Methotrexate IV Day 8
Pegaspargase IM/IV Day 9

Cyclophosphamide IV Days 15–19

Etoposide IV Days 15–19
Methotrexate IT Day 8

Intensification  
(28 days)

Dexamethasone PO Days 1–5
Vincristine IV Day 3

Cytarabine IV, every 

12 hours

Days 1, 2, 8, 9

Erwinia ASP IM Days 2, 4, 9, 11, 23

Methotrexate IV Day 22

Methotrexate IT Days 1, 22

Before SCT Fludarabine IV Days 1–5
Cytarabine IV Days 1–5

Liposomal 

Daunorubicin IV

Day 1

Before 

Maintenancea  

(weeks 14–29)

Dexamethasone PO Days 1–5, 57–61
Vincristine IV Days 3, 59
6-mercaptopurine PO Days 1–42, 57–98

Methotrexate PO Days 10, 17, 31, 38, 

67, 74, 88, 95
Etoposide IV Days 42, 49, 99, 106

Cyclophosphamide IV Days 42, 49, 99, 106
Cytarabine IV Days 43–46, 50–53, 

100–103, 107–110

Methotrexate IT Days 1, 43, 57, 99

Maintenancea  

(4-week cycles 
from weeks  

30–104)

Dexamethasone PO Days 1–5
Mercaptopurine PO Days 1–28
Methotrexate PO Weekly

Vincristine IV Day 1

Methotrexate IT Day 1

Note: aPhase given to patients who did not go to SCT. 
Abbreviations: PO, oral; IV, intravenous; IM, intramuscular; IT, intrathecal; CNS, 
central nervous system; SCT, stem cell transplant; ASP, asparaginase.
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Toxicity of Pegaspargase
In addition to its multiple clinical benefits, pegaspargase is 
notable for significant toxicity in up to 20–25% of all 
patients.54,55 These toxicities include hypersensitivity, pan-
creatitis, hyperglycemia, hyperlipidemia, liver dysfunc-
tion, hyperbilirubinemia, thrombosis, bleeding, and 
osteonecrosis (Figure 1).

Hypersensitivity to Pegaspargase
Allergic and infusion-related reactions in patients receiving 
asparaginase therapy are among the most common toxicities, 
ranging between 3–71% (Figure 1).56 Asparaginase hyper-
sensitivity is mediated by antigen-specific IgG and/or IgE 
through the immunoglobulin receptors FcγRIII and FcεRI, 
respectively.57 Hypersensitivity reactions to E. coli derived 
asparaginase, necessitate a switch to an alternative prepara-
tion such as Erwinia asparaginase.8,56,58 The incidence of 
hypersensitivity reactions depends on the number of prior 
exposures, interval between doses, type of asparaginase, use 

of premedication, and concomitant corticosteroid therapy. 
There are two types of true hypersensitivity reactions, anti-
body production with clinical manifestations and neutraliz-
ing antibody production reflected by a day 7 SAA below 0.1 
IU/mL and/or a day 14 level below the lower limit of quanti-
fication with an absence of a clinical reaction, referred to as 
silent inactivation or subclinical hypersensitivity.32 The anti-
body formed to the naïve asparaginase or polyethylene glycol 
portion of the pegaspargase alters the PK of the drug.59,60 

The presence of these antibodies can inhibit asparaginase 
from depleting asparagine and ultimately decrease efficacy. 
Several studies suggest that pegaspargase is less immuno-
genic than the native E. coli formulation.3,60–62

The above referenced DFCI 91–01 study reported 
allergic reaction in 15% of patients; however, pegaspar-
gase was associated with a lower incidence of allergic 
reactions (p = 0.02).3

The Nordic Society of Paediatric Haematology and 
Oncology (NOPHO) ALL2008 protocol enrolled 106 
pediatric patients from 2008–2012. Six patients experi-
enced a clinical allergic reaction to pegaspargase, 
a cumulative risk of 13.2%. Reactions usually occurred 2 
hours after IM administration with symptoms ranging 
from mild to severe anaphylaxis.63 Additionally, NOPHO 
ALL2008, through a genome-wide association study 
(GWAS), correlated several genetic variants to an 
increased incidence of pegaspargase hypersensitivity.64

The Dutch Childhood Oncology Group (DCOG) ALL- 
10 study enrolled children ages 1–18 years with newly 
diagnosed ALL from 2009–2012.65 Patients were stratified 
into 3 risk groups after induction therapy (standard, med-
ium and high) and all received 8 doses of native E. coli 
asparaginase (5000 IU/m2 per dose) every 3 days in induc-
tion. Eighty-nine patients considered medium risk were 
given pegaspargase as first-line agent (2500 IU/m2 per 
dose every other week) for a total of 15 doses during 
first 30 weeks of intensification. In the setting of allergy 
or silent inactivation, pegaspargase was replaced with 
Erwinia asparaginase. The investigators found a high inci-
dence of inactivation of pegaspargase (22% clinical allergy 
and 8% silent inactivation) in the intensification phase due 
to antibody development against native E. coli asparagi-
nase used in induction. They concluded that if a second 
pegaspargase course was administered, the allergy rate of 
pegaspargase would increase.65 DCOG ALL-11 study 
reported 14 allergic-like reactions or infusion reactions, 5 
were to pegaspargase and 9 to Erwinia asparaginase. 
Allergic-like reactions occurred relatively late after the 

Table 5 Relapse ALL Regimen* (Adapted from VXLD Re- 
Induction)

Phase Chemotherapy 
Agents

Schedule

Induction  

(28 days)

Dexamethasone PO Days 1–14
Vincristine IV Days 1, 8, 15, 22

Doxorubicin IV Day 1

Pegaspargase IM/IV Days 2, 16
Methotrexate IT Day 1

Cytarabine IT Day 1

Consolidationa  

(28 days)

Dexamethasone PO Days 1–5
Vincristine IV Day 3
Methotrexate IV Day 8

Pegaspargase IM/IV Day 9

Cyclophosphamide IV Days 15–19
Etoposide IV Days 15–19

Methotrexate IT Day 8

Consolidationb  

(56 days)

Mercaptopurine PO Days 1–14 and 29–42

Cyclophosphamide IV Days 1, 29

Cytarabine IV Days 1–4, 8–11, 29–32, 
and 36–39

Vincristine IV Days 15, 22, 43, 50

Pegaspargase IM/IV Days 15, 43
Methotrexate IT Days 1, 8, 15, 22

Notes: *Regimen used as backbone for relapsed ALL after window with novel 
agents eg, Bortezomib, Carfilzomib, Pevonedistat, Daratumumab, Blinatumomab, 
and Nivolumab. a, b Depending on study protocol. bConsolidation based on mod-
ified BFM. 
Abbreviations: VXLD, vincristine, dexamethasone, pegaspargase, doxorubicin; 
PO, oral; IV, intravenous; IM, intramuscular; IT, intrathecal.
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start of infusion when compared to real allergies. They 
also were distinguished from real allergies by the absence 
of antibodies in all but one patient with an allergic-like 
reaction, while antibodies were detected in all patients 
with a real allergy. The study recommended if clinically 
tolerated, formulations should not be switched in case of 
allergic-like reactions.66

POG 8866 enrolled 76 patients <21 years with ALL 
in second bone marrow relapse from 1988–1992, with the 
aim of comparing efficacy and toxicity of pegaspargase to 
native E. coli asparaginase in the standard re-induction 
regimen.67 It was noted that all patients hypersensitive to 
native asparaginase tolerated at least 2 doses of pegaspar-
gase given during induction phase. In those with known 
hypersensitivity to native asparaginase, increased clear-
ance and decreased efficacy of pegaspargase were 
observed.67 Recently multiple studies have shown moni-
toring of ASNase activity ≥0.1 IU/mL, measured on days 
7 and 14 post pegaspargase administration, during treat-
ment of children with ALL is feasible and informative, 
demonstrating median trough PEG-ASNase activity being 
high in all patients without hypersensitivity.32,68,69

COG AALL1421 results suggest pre-existing anti-PEG 
antibodies with the increased use of pegylated products in 
food processing and cosmetics may also play a role in 
hypersensitivity reactions.40,41,70

Pegaspargase is a critical component of the chemother-
apeutic backbone in upfront ALL protocols (Tables 2 and 
3), and those patients who experience hypersensitivity to 
pegaspargase should discontinue any further dosing and 
switch to Erwinia asparaginase.71 However, during an 
Erwinia asparaginase shortage, Verma et al conducted 
a successful prospective study of pegaspargase desensitiza-
tion in 10 patients with ALL/LLy who had experienced 
prior grade 3 or higher hypersensitivity reactions to either 
pegaspargase (6) or both pegaspargase and Erwinia aspar-
aginase (4). A 13-step rapid desensitization protocol was 
utilized and SAA levels were measured between days 4–7 
and days 10–14.72 Seven patients had sustained SAA activ-
ity, one achieved therapeutic levels but showed accelerated 
clearance, while two did not achieve adequate levels con-
sistent with neutralizing antibodies. Although three of the 
10 patients had mild to moderate hypersensitivity reactions, 
all were able to receive full protocol doses after clinical 
intervention. Others have since duplicated the safe admin-
istration of pegaspargase, while maintaining sustained SAA 
levels, utilizing a desensitization protocol in patients experi-
encing prior hypersensitivity reactions.72–74

An additional area of investigation for patients who 
experience hypersensitivity is the COG protocol 
AALL1931 (NCT04145531) an open-label, multicenter 
study for patients with ALL/LLy following hypersensitivity 

Figure 1 Pegaspargase toxicity. *Due to lack of reported percentages for specific toxicities, hyperglycemia is not included.
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to E. coli derived asparaginase with the objective to deter-
mine the efficacy, safety, and tolerability of IM recombinant 
crisantaspase Pseudomonas fluorescens.

Pancreatitis
Asparaginase-associated pancreatitis (AAP) was first 
reported in patients receiving the native L-asparaginase for-
mulation. The origin, formulation, dosage and method of 
administration do not seem to influence the risk of 
pancreatitis.75 The exact pathophysiology of AAP is 
unknown, but it is believed to be caused by a systemic 
depletion of asparagine and thus reduction of protein synth-
esis. Organs with increased protein turnover such as the 
pancreas and liver are most at risk. Incidence of AAP is 
between 7–18% with it being more frequent in the AYA 
ALL population (Figure 1) and is one of the most common 
causes of truncation of asparaginase therapy, mostly due to 
the high chances of recurrence of AAP after rechallenge.76–78

Kearney et al reviewed the clinical course of all 
children with ALL diagnosed with pancreatitis at DFCI 
from 1987–2003.79 A total of 1583 patients aged 0–18 
years were enrolled in DFCI ALL consortium protocols 
(87–01, 91–01, 95–01, 00–01). Twenty-eight (7%) out 
of 403 patients treated at Boston Children’s Hospital 
and 74 (6.4%) of 1155 patients in 10 other centers 
were diagnosed with at least one episode of AAP. 
Those patients with AAP had a higher median age, 
indicating patients 10–18 years of age have 2.4 times 
increased risk of developing pancreatitis. There was 
a non-statistically significant trend towards inferior 
5-year EFS, with 29% of patients with history of AAP 
subsequently relapsing compared to only 14% without 
AAP.79 UKALL 2003 enrolled 3101 patients aged 1–25 
years on 3 risk-stratified arms.80 SR and IR patients 
were exposed to a relatively small amount of pegaspar-
gase (3000–4000 IU/m2) and HR patients received 
12,000 IU/m2. Pancreatitis was more common in aspar-
aginase-containing blocks versus non-asparaginase con-
taining blocks (83% vs. 17%; p < 0.0001). The median 
interval between receiving pegaspargase dose and devel-
oping AAP was 10 days. There was significant morbid-
ity in the setting of AAP evidenced by increased 
readmission rates (29%), pseudocysts (25%), diabetes 
mellitus (13%), pleural effusions (8%), and renal failure 
(2%). Further pegaspargase was omitted in patients with 
higher grade AAP. The risk for pancreatitis was asso-
ciated with increasing intensity of asparaginase treat-
ment and dose, as well as increasing age.80 Similar 

results were observed by the NOPHO ALL2008 study 
with incidences of AAP higher in AYAs (10.1%) com-
pared to in children (7%, p = 0.03) and 44% developed 
recurrence of AAP on rechallenge with asparaginase.81 

An observational Ponte di Legno Toxicity Working 
Group reviewed patients on 26 trials conducted by 18 
trial groups with children (1–18 years) between 
1996–2016, to investigate the risk of complications and 
risk of re-exposing patients with AAP.82 Complications 
noted in the 465 patients with AAP included mechanical 
ventilation (8%), pseudocysts (26%), acute insulin need 
(21%), and death (2%). Older age was associated with 
more complications (10.5 years vs. 6.1 years without 
complications; p < 0.0001). One year after diagnosis 
of AAP, 11% of patients continued to need insulin, 
had recurrent abdominal pain, or both. Ninety-six 
patients were re-exposed to asparaginase, including 59 
after severe AAP, and 44 (46%) patients developed 
a second episode, 22 (52%) being severe, suggesting 
a high risk of recurrence.82

Patients with Common Terminology Criteria for 
Adverse Events (CTCAE) grade 1/2 AAP can be re- 
challenged after resolution, whereas it is recommended to 
omit further pegaspargase therapy in severe grades 3/4 
AAP, as 44–63% have risk of recurrence on re- 
exposure.75,79,81,82

Hyperglycemia
Pegaspargase-induced hyperglycemia is believed to be due 
to decreased insulin production and modification or defi-
ciency of insulin receptors.83 The use of concomitant 
steroids and pegaspargase is believed to cause potentiation 
of hepatic gluconeogenesis and insulin resistance, thereby 
worsening hyperglycemia.84,85

POG 9203 enrolled 34 patients between the ages of 
1–21 years from 1992–1993. This study’s aims included 
feasibility determination of 29 biweekly doses of pegas-
pargase on a backbone of intense multiagent antimetabo-
lite consolidation and maintenance in HR B-ALL. 
Excessive toxicities attributed to pegaspargase and myelo-
suppression were encountered during consolidation, caus-
ing the early closure of this study. Six patients developed 
hyperglycemia. The greatest risk factor appeared to be 
concomitant use of steroid therapy (Figure 1).86

Although insulin therapy may be required in severe 
cases, severe hyperglycemia is usually transient and does 
not require truncation of pegaspargase therapy.87
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Hyperlipidemia
Asparaginase and steroids during ALL therapy lead to 
abnormalities in lipid metabolism, most notably resulting 
in hypertriglyceridemia and/or hypercholesterolemia.88 

The exact mechanism for lipid dysregulation with aspar-
aginase therapy is not known, but it is postulated to be due 
to an increase in the endogenous hepatic synthesis of very 
low-density lipoproteins. Another reason may be 
decreased activity in lipoprotein lipase, an enzyme 
involved in the removal of triglyceride-rich lipoproteins 
from the plasma.89 St. Jude Children’s Research Hospital 
evaluated different asparaginase formulations in patients 
≤18 years of age with ALL on two trials; Total XV con-
ducted from 2000–2007 and Total XVI from 2007–2017, 
enrolling 498 and 598 patients, respectively. SR/HR 
patients treated with pegaspargase had more severe hyper-
triglyceridemia compared to native L-asparaginase, and 
the highest increase occurred when pegaspargase was 
given in combination with dexamethasone.90 DCOG 
ALL 10 reported 47% of patients receiving pegaspargase 
developed hypertriglyceridemia compared to 0% receiving 
Erwinia asparaginase, thereby suggesting prolonged expo-
sure to asparaginase therapy was associated with hypertri-
glyceridemia (Figure 1).91

Most patients have transient, asymptomatic hypertri-
glyceridemia. Omission or alteration of pegaspargase ther-
apy is not recommended, though hypertriglyceridemia 
greater than 2000 mg/dL can enhance risk of AAP due 
to severe chylomicronemia.89 Preventive measures like 
dietary restrictions, fibrates, insulin infusions, heparin 
infusions, and plasmapheresis have been attempted, but 
their success in preventing AAP or other morbidities is 
not established.92,93

Hepatotoxicity
Hepatic toxicities encountered with pegaspargase include 
direct damage to hepatocytes (elevated hepatic trans-
ferases), cholestatic injury (elevated alkaline phosphatase 
and bilirubin), and impaired synthetic function (decreases 
in antithrombin, fibrinogen, and albumin with increases in 
cholesterol, phospholipids and triglycerides). The hepato-
toxicity caused by asparaginase is believed to be due to 
abnormal mitochondrial function in the liver, alterations in 
lipoprotein metabolism, and secretion.94

Though 75% patients had grade 1/2 elevation in bilir-
ubin, sinusoidal obstructive syndrome (SOS) was noted in 
27%, during NOPHO ALL2008 in patients undergoing 

maintenance treatment for ALL after the introduction of 
extended pegaspargase treatment. These findings prompted 
the hypothesis that pegaspargase in combination with 
other medications, such as mercaptopurine used during 
maintenance, might trigger SOS.95 DCOG ALL-11 study 
noted more patients developed grade 1–2 increases in ALT 
and AST (91%) during asparaginase with high dose meth-
otrexate courses, but not grade 3–4 hepatotoxicity (9%) 
(Figure 1).96

Most protocols do not recommend alteration in pegas-
pargase therapy due to hepatotoxicity, although this is 
another reason to consider dose capping in AYA patients. 
There are case reports of improvement in hepatic function 
with use of levocarnitine, a mitochondrial co-factor and 
vitamin B therapy.97

Thrombosis and Bleeding
Asparaginase has simultaneous effects on procoagulant 
and thrombolytic proteins causing an increase in both 
thrombosis and bleeding. Asparaginase-induced depletion 
of asparagine in the serum leads to decreased synthesis of 
fibrinogen, plasminogen, anti-coagulation factor antith-
rombin III (ATIII), protein C, and protein S leading to 
increased thrombin formation.98 Additional factors contri-
buting to the risk include concomitant steroid therapy 
particularly prednisone, indwelling central venous cathe-
ter, genetic thrombophilia, and underlying ALL itself.99,100

DFCI studied 501 patients between 1991–2008 with 
newly diagnosed ALL. These patients were enrolled in 
four pediatric ALL protocols (91–01, 95–01, 00–01, and 
05–01) and adult protocol 01–175.101 Five percent of pedia-
tric patients and 34% of adult patients experienced throm-
bosis during treatment (Figure 1). The risk of thrombosis 
was noted to increase with age, with further risk stratifica-
tion indicating a high risk for those >10 years of age and 
extremely high risk for those >30 years of age. CCG 1962 
studied efficacy and PK of a single IM dose of pegaspargase 
instead of multiple IM doses of native E. coli asparaginase in 
3 phases of SR ALL therapy. An incidence of cerebral 
venous sinus thrombosis (CVST) of 2–3% was observed 
for both regimens.24 DCOG ALL-10 enrolled 778 ALL 
patients between 2004–2013 and demonstrated VTE in 
7.6% of patients with CVST in 44.1% of these VTE 
patients.102 Age >7 years, T-ALL, steroids, and length of 
exposure to pegaspargase were the main risk factors. The 
presence of VTE did not impact EFS or OS.101,102

Patients with non-catheter-associated VTE should have 
asparaginase therapy withheld until imaging shows VTE and 
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CVST resolution. Patients should be treated with anticoagu-
lation, preferably low-molecular-weight heparin, and upon 
resolution or stabilization of thrombus, consideration may be 
given to rechallenging with pegaspargase.100,101

Osteonecrosis
Osteonecrosis is a known complication in 15–45% of 
patients, especially AYA patients, undergoing treatment for 
ALL.103,104 Glucocorticoids, notably dexamethasone, are 
believed to induce inhibition of angiogenesis, bone marrow 
adipogenesis, hypercoagulation, and apoptosis of endothelial 
cells and osteocytes.105 Asparaginase decreases the clearance 
of dexamethasone due to its hypoproteinemia effect. 
Additionally, the immunosuppressive effects of glucocorti-
coids inhibit the antibody response against asparaginase and 
prevent a neutralizing effect causing higher SAA.105 The 
potentiated effect of asparaginase on glucocorticoid- 
induced osteonecrosis is believed to be in the setting of 
a hypercoagulable state which can lead to impaired circula-
tion, vascular damage, and subsequent osteonecrosis.106

Liu et al were the first to study the effects of asparagi-
nase treatment on dexamethasone-induced osteonecrosis 
utilizing a mouse model.105 St. Jude’s Total XV protocol 
noted that patients with antibodies against asparaginase 
had a lower risk of developing osteonecrosis than those 
without the antibodies.107

Osteonecrosis 5-year cumulative incidence (CI) was 
6.3% on NOPHO ALL2008 and the patients in the experi-
mental arm who did not receive pegaspargase during dex-
amethasone containing DI had reduced frequency of 
osteonecrosis (Figure 1).108 NOPHO ALL2008 also corre-
lated hyperlipidemia with osteonecrosis.109 Prolonged hyper-
lipidemia was associated with a significantly higher 
osteonecrosis specific hazard ratio (HR) per mmol/L for 
hypertriglyceridemia (HR=1.08, p=0.038) as well as for cho-
lesterol levels (HR=1.26, p=0.039), and a tendency towards 
an inverse association with higher HDL (HR=0.22, 
p=0.053).109 The COG AALL0331 SR trial enrolled 5261 
patients between 2005–2010.110 Osteonecrosis 5-year overall 
CI was 2.7%. Extended exposure to pegaspargase was 
a likely contributing factor, possibly by potentiating dexa-
methasone exposure during DI. The study concluded the risk 
for osteonecrosis can be significantly reduced by using alter-
nate week dexamethasone during DI, which is now standard 
on all COG ALL protocols.110

Further studies are needed to elucidate whether low-
ering triglycerides and cholesterol during combined 

pegaspargase and dexamethasone therapy can reduce the 
risk of osteonecrosis.

Conclusion
Pegaspargase is an essential chemotherapeutic agent in all 
newly diagnosed pediatric and AYA ALL protocols, as well 
as most re-induction protocols for relapsed ALL. It is impera-
tive to be aware of its toxicities and their management, so as 
to improve survival and decrease long-term morbidities in 
pediatric and AYA ALL. Areas of focus for future research 
should include asparaginase PK/PD of newer preparations, 
dosing regimens, interventions to mitigate toxicity, and role 
of genetics as it relates to asparaginase dosing and toxicity.
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