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Abstract: Frontotemporal dementia is a clinically, genetically and pathologically hetero
geneous neurodegenerative disorder, enclosing a wide range of different pathological entities, 
associated with the accumulation of proteins such as tau and TPD-43. Characterized by 
a high hereditability, mutations in three main genes, MAPT, GRN and C9orf72, can drive the 
neurodegenerative process. The connection between different genes and proteinopathies 
through specific mechanisms has shed light on the pathophysiology of the disease, leading 
to the identification of potential pharmacological targets. New experimental strategies are 
emerging, in both preclinical and clinical settings, which focus on small molecules rather 
than gene therapy. In this review, we provide an insight into the aberrant mechanisms leading 
to FTLD-related proteinopathies and discuss recent therapies with the potential to ameliorate 
neurodegeneration and disease progression. 
Keywords: frontotemporal dementia, frontotemporal lobar degeneration, therapy, TDP-43, 
tau, C9orf72, GRN, MAPT

Introduction
Frontotemporal Dementia (FTD), the second most common cause of early-onset 
dementia,1 is a neurodegenerative disorder enclosing a wide range of different 
neuropathological entities and clinical presentations, sharing a main impact on 
behavioral, linguistic and executive functions, due to the progressive atrophy of 
frontal and temporal lobes. According to the latest criteria, three core clinical 
variants have been recognized, namely the behavioral variant of FTD (bvFTD),2 

the agrammatic/non-fluent variant of primary progressive aphasia (avPPA/nfvPPA) 
and the semantic variant of PPA (svPPA).3 The occurrence of associated motor 
symptoms, as in progressive supranuclear palsy (PSP), corticobasal syndrome 
(CBS) and motor neuron disease (FTD-MND), enriches the spectrum of FTD- 
related disorders.4

Common to all FTD clinical syndromes is the underlying frontotemporal lobar 
degeneration (FTLD) which can be classified according to the predominant con
stituent proteins of cellular inclusions. While until 2006 only FTLD-Tau was well 
characterized, the following discovery of TAR DNA binding protein 43 (TDP-43) 
and FET family proteins within tau-negative, ubiquitin-positive inclusions of a vast 
majority of FTLD cases, led to the introduction, respectively, of FTLD-TDP and 
FTLD-FET neuropathology.5,6

Along with heterogeneity in both clinical presentations and pathological hallmarks, 
an increasing literature depicts the complex figure of the genetic determinants of FTD, 
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with up to 20–30% of the cases with mutations in progranulin 
(GRN), microtubule-associated protein tau (MAPT) and chro
mosome 9 open reading frame 72 (C9orf72) genes.7 This 
heterogeneity,8 as well the lack of a clear-cut relationship 
between clinical phenotypes,9 genetic traits and neuropatho
logical features, represent the main obstacle hampering the 
development of a unifying pathogenetic model and, as con
sequence, of disease-modifying strategies of intervention.

In this paper, we review the most appealing candidates 
for pharmacological and non-pharmacological interven
tions and discuss the current achievements and challenges 
of novel therapeutic approaches in FTD.

FTLD: Crosstalk Between Genetics, 
Pathology and Clinical Features
FTLD is affected by a high heterogeneity, limiting the 
establishment of a one-to-one relationship between genet
ics, neuropathological and clinical correlates.10,11

FTLD-tau, defined by tau-immunopositive inclusions, 
accounts for about 40% of all FTLD cases and 20% of 
those with high heritability, related to mutations in the 
MAPT gene, with more than 60 pathogenic variations 
reported.7,12 According to the predominant species in the 
inclusions, which differ from each other by the number of 
31–32 aminoacidic repeats in the microtubule-binding 
domain (3-repeat or 4-repeat tau),13 the actual molecular 
classification of FTLD-tau accomplishes four main histo
logical subtypes, including Pick’s disease (PiD), cortico
basal degeneration (CBD), progressive supranuclear palsy 
(PSP), and globular glial tauopathy (GGT). Among FTD 
syndromes, there is a strong association with FLTD-tau 
and clinical syndromes of bvFTD and nfvPPA, but espe
cially common in CBS and PSP, while only a few cases of 
FTD-MND have been reported.14,15

Before the discovery of TDP-43 protein in a large 
group of ubiquitin-positive, tau-negative FTLD samples, 
in 2006,16 FTLD-tau was considered the main FTLD neu
ropathological type. To date, FTLD-TDP pathology has 
been recognized as the most common neurobiology, under
lying about 50% of all FTLD cases including both spora
dic and familial forms.6 Despite the common molecular 
substrate, FTLD-TDP covers a wide range of anatomo
pathological changes. As a consequence, and in considera
tion of the important clinicopathological and genetic 
associations, the reviewed criteria for FTLD distinguish 
four subtypes, with respect to morphology, abundance/ 
presence of distinct inclusion types and their distribution 

across cortical laminar layers.17–20 Indeed, unlike FTLD- 
tau, genetic etiology of TDP-43 proteinopathies is com
plex, involving mutations in four main genes, demonstrat
ing an autosomal dominant heritability.21

Mutations in the GRN gene, whose list is enriched with 
more than 110 pathogenic variants,7,12 account for 5–20% 
of familiar and 1–5% of sporadic FTD patients.22,23 In 
spite of the highly phenotypical heterogeneity, most GRN 
mutation carriers receive a clinical diagnosis of FTD, with 
bvFTD as a more frequent presentation than the language 
variant, that is nevertheless more prevalent than in spora
dic forms and consistent with nfvPPA, as well as 
CBS.24–26

The hexanucleotide repeat expansion of GGGGCC in 
a non-coding region of the C9orf72 gene is the most 
common genetic cause of both sporadic and familial 
cases of FTD, MND and FTD-MND.27,28 The expansion 
carrier status influences the susceptibility of specific neu
ronal populations, producing a more severe loss of motor 
neurons.29 Clinical presentation matches with the distribu
tion of TDP-43 pathology, explaining a more widespread 
involvement of frontal and temporal neocortices in cases 
with FTD or FTD-MND rather than MND only.30,31

Accounting for up to 4% of familiar FTD,32 mutations 
in the valosin-containing protein (VCP) gene, have been 
associated with the development of the autosomal domi
nant inherited inclusion body myopathy associated with 
Paget’s disease of bone and FTD (IBMPFD). 
Pathologically classified as FTLD-TDP type D,33 the clin
ical presentation is dominated by myopathy, found in 
about 90% of the patients,34 and FTD or ALS phenotype 
was observed in approximately 30% of the patients carry
ing VCP mutations.35

Finally, mutations in the gene encoding TANK-binding 
kinase 1 protein (TBK1) have been reported as probably 
the fourth most common genetic cause of FTD overall.36 

Few pathological cases have been described that, although 
confirming a TDP-43 pathology recognized both a subtype 
A and B pattern.37,38 ALS is the predominant clinical 
syndrome with the majority of cases having either ALS 
or FTD-ALS syndrome, with a cognitive profile covering 
bvFTD and PPA (both nfvPPA and svPPA).39

Finally, FLDT-FET accounts for about 5–10% of the 
cases, and this histopathological subgroup was defined 
since the identification of the protein fused/translocated 
in sarcoma (FUS) within neural inclusions described in 
some FTLD patients.40 However, the possible coaggrega
tion of proteins belonging to the FET family, including 
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TATA-box binding protein-associated factor 15 (TAF15), 
Ewing’s sarcoma (EWS) and transportin 1, was reported 
only in FTLD-FET cases, not associated with FUS 
mutations.41 Indeed, while FUS-related ALS is mostly 
caused by FUS mutations, FTLD-FET tends to be 
sporadic.42 In turn, within FTLD-FET pathology, three 
subtypes are distinguished, named atypical FTLD-U, neu
ronal intermediate filament inclusion disease (NIFID) and 
basophilic inclusion body disease (BIBD). The corre
sponding clinical spectrum, for each subtype, ranges 
from early-onset bvFTD for atypical FTLD-U to early- 
onset FTD with MND and/or extrapyramidal motor symp
toms for NIFID; it is more heterogeneous for BIBD, 
covering FTD/ALS, parkinsonism, chorea, dysarthria and 
gaze palsy.6

Tau Targeting Strategies
Tau protein, encoded by MAPT gene on chromosome 17, is 
a microtubule-associated protein, mainly enriched in the 
axonal compartment of neurons and primarily involved in 
the regulation of cytoskeletal turnover, by promoting micro
tubule polymerization and stabilization.43 The protein exists 
as six major alternative splicing variants, with the inclusion 
of exon 10 determining whether the protein contains either 
three or four microtubule-binding repeat regions. Variants are 
simply distinguished between three-repeat (3R) and four- 
repeat (4R) isoforms: their relative amount varies in the 
course of human brain development and is related to the 
pathological profile of the different tauopathies, with 3R in 
Pick’s disease, 4R in PSP and FTD while mixed forms in AD 
and chronic traumatic encephalopathy.44 Once synthesized, 
tau undergoes many post-translational modifications that, 
besides phosphorylation, include acetylation, glycation, 
nitration, O-GlcNAcylation, oxidation, polyamination, 
SUMOylation, and ubiquitination.45

With regard to the milestones of tau pathophysiology, 
the actual therapeutical approaches under investigation are 
articulated around five main strategies, including 1) mod
ulation of MAPT expression, 2) post-translational modifi
cation, 3) modulation of protein aggregation and 
clearance, 4) immune neutralization (active and passive 
immunization), and 5) microtubule stabilization (see 
Table 1 and Figure 1).

Modulation of MAPT Expression
MAPT mutations, mainly concentrated in exons 9–12 and 
introns flanking exon 10,12,46–48 affect the ability of tau to 

interact with microtubules and alter the normal ratio 
among isoforms, enhancing its propensity to aggregate.49

Reduction of Tau in pathogenic mouse models has 
been shown to ameliorate seizure phenotypes and prevent 
neurodegeneration,50 identifying antisense oligonucleo
tides (ASOs) as potential therapeutics against Tau. 
Indeed, encouraged by the results achieved in multiple 
neurodegenerative diseases, such as spinal muscular atro
phy and Duchenne muscular dystrophy,51 the use of small, 
single-stranded sequences of DNA in transgenic tauopathy 
mice have been demonstrated to significantly restore the 
balance between tau species and to revert the associated 
neuropathological and clinical phenotypes.52,53 Based on 
the preclinical data of the study by Devos et al, the drug 
BIIB080 is actually being administered in MCI due to AD 
patients in a Phase 1/2 randomized clinical trial (RCT) 
(NCT03186989). Another trial with ASOs (NIO752) is 
currently planned in PSP (NCT04539041).

Moreover, still aimed at modulating MAPT expression, 
novel experimental approaches have been proposed, rely
ing on RNA-guided mechanisms. Based on RNA repro
gramming, spliceosome-mediated RNA trans-splicing 
technique (SMaRT) has provided an alternative method 
to correct the impaired alternative splicing caused by 
MAPT pathogenic mutations.54 Moreover, the use of nat
ural antisense transcripts (NATs) is recently emerging as 
a potential, physiological tool to suppress tau protein 
levels.55,56

Post-Translational Modifications
Phosphorylation
Since the hyperphosphorylated tau state makes the protein 
susceptible to aggregation with the loss of cytoskeletal 
microtubule-stabilizing properties, leading to neural 
toxicity,57 research has strongly focused on compounds 
able to prevent this modification. Tau protein carries 85 
mapped phosphorylation sites,58 which are tightly regu
lated by a plethora of protein kinases and phosphatases, 
which represent potential therapeutic targets.

Among this class of proteins, glycogen synthase kinase 
3 beta (GSK3β) exerts a pleiotropic effect on neural home
ostasis besides the direct action on tau, including axonal 
transport and synaptic function, adult neurogenesis, cell 
survival and neuro-inflammation.59 Moreover, neuropatho
logical evidence has validated the pathogenetic role of 
GSK3β in tauopathies,60 fostering the discovery of several 
chemical classes of GSK3β inhibitors, some of them 
reaching human application. However, despite the results 
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of preclinical studies showing the effect of lithium, a non- 
competitive, non-specific GSK3β inhibitor, on the state of 
tau phosphorylation and aggregation,61 a Phase 2 RCT 
demonstrated no improvement of clinical or biological 
outcomes in AD patients.62 Whilst no data are available, 
due to intolerability, in a phase 1/2 RCT in patients with 
PSP and CBD (NCT00703677), another RCT 
(NCT02862210) is currently ongoing to assess the efficacy 
of lithium for the treatment of neuropsychiatric symptoms 
in bvFTD. Another non-specific inhibitor of GSK3β, 
sodium valproate, demonstrated poor tolerability, with 
a possible clinical worsening when administered to PSP 
patients (NCT00385710),63 in conflict with preclinical 
findings.64 In order to ameliorate their safety profile, new 

specific GSK3β inhibitors have been discovered. Among 
these, tideglusib, a non-ATP-competitive GSK3β inhibitor, 
though failing in achieving primary clinical outcomes, has 
shown to reduce brain atrophy progression in PSP patients 
in the TAUROS study (NCT01049399).65,66

Besides GSK3β, a number of kinases have proved to 
be catalytically active on tau and to be associated with 
pathological epitopes of the phosphorylated protein, 
including CDK5, TAOKs, TTBK.67–69 In this view, 
expanding research in oncology, focused on inhibitors of 
the human kinome, has identified novel therapies that can 
be repurposed for the treatment of neurodegenerative 
disorders,70 making a wide spectrum of target kinase inhi
bitors available. Recently, three small molecules, 

Table 1 Principal Mechanism of Action and Possible Candidate Drugs for the Treatment of FTLD-Tau

Therapeutic Target Mechanism of Action Candidate Drug References

MAPT gene expression ASO targeting MAPT RNA BIIB080 [50]

Spliceosome-mediated RNA trans-splicing technique (SMaRT) [54]

Natural antisense transcripts (NATs) [55]

PTM modulation

Phosphorylation GSK3β kinase inhibition Lithium [61,62]

Sodium valproate [63]

Tideglusib [65,66]

Fyn kinase inhibition Saracatinib [71]

BCR-ABL kinase inhibition Nilotinib [72]

p38 MAP kinase inhibition Neflamapimod [216]

O-GlcNAcylation O-GlcNAcase (OGA) inhibition MK-8719 [76]

ASN120290 [217]

Acetylation Tau acetylation inhibitor Salsalate [83]

Tau aggregation Inhibition of tau polymerization Methylene blue [91]

Tau aggregate clearance Active immunization AADvac1 [96]

ACI-35.030

Passive immunization BIIB092 (Gosuranemab) [102,103]

ABBV-8E12 (Tilavonemab) [104]

UCB0107 (Bepranemab) [108]

Cytoskeletal turnover Microtubule stabilization Epothilone-D [110]

TPI 287 (Abeotaxane) [111]

Davunetide [116]

Abbreviations: MAPT, microtube-associated protein tau; ASO, antisense oligonucleotides; PTM, post-translational modification; GSK3β, glycogen synthase kinase 3 beta; 
MAP, mitogen-activated protein.
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saracatinib (NCT02167256), nilotinib (NCT02947893) 
and neflamapimod (NCT03402659), designed to inhibit 
the tau kinases Fyn, BCR-ABL and p38α, respectively, 
were assessed in AD patients in phase 2 trials. With the 
exception of the former, limited by a low availability of 
CSF samples, nilotinib and neflamapimod provided at least 
a biological proof of efficacy, with an improvement of 
neurodegeneration markers.71,72

Tolfenamic acid, which has been shown to lower tau 
mRNA and protein, as well as the levels of its phosphory
lated form and CDK5,73,74 is currently being planned for 
testing in PSP patients (NCT04253132).

Others Post-Translational Modifications
In addition to the intervention of specific kinases, the state 
of phosphorylation of tau is also regulated by the eventual 
addition of O-linked N-acetylglucosamine (O-GlcNAc) 
moieties. Regulated by two enzymes, O-GlcNAc transfer
ase (OGT) inserts O-GlcNAc, while O-GlcNAcase (OGA) 
removes the moieties on serine and threonine residues, 
thus creating a competition with the phosphorylation 
process.75 In line with the aim of upregulating the 
O-GlcNAcylation, two small OGA inhibitors, MK-8719 
and ASN120290, shown to reduce tau-related 

degeneration hallmarks,76,77 have been announced in clin
ical trials for PSP patients.78

Acetylation, another post-translational modification 
(PTM), is also able to interfere with tau pathogenetic poten
tial, acting on over than 30 lysine residues.79 The high 
acetylation rate found in post-mortem neuropathological 
samples of tauopathy patients80 could promote neurodegen
eration by different mechanisms, such as fibrillar aggrega
tion, microtubule detachment and transneuronal spreading.81 

In this regard, salsalate, an anti-inflammatory salicylate, 
protects against neurodegeneration in FTLD-tau mice by 
the inhibition of p300, an acetyltransferase that targets 
tau.82 An open-label phase 1 study in PSP patients has 
recently been concluded, reporting non-significant effects 
on disease progression, that could be due to the low rate of 
CNS penetrance of salsalate.83

Modulation of Tau Aggregation and 
Clearance
As described above, PTMs can drive tau aggregation by 
oligomerization of non-bound hyperphosphorylated tau 
into pre-tangles, followed by the subsequent formation of 
filaments such as paired helical filaments or straight fila
ments, until the assembly of neurofibrillary tangles 

Figure 1 Principal pathogenic steps toward tau-related neurodegeneration. Pathophysiological transformations leading to tau dysfunction. The related potential therapeutic 
strategies are reported in the boxes. Images created with BioRender.com 
Abbreviations: ASOs, antisense oligonucleotides; AC, acetylation; MAPT, microtubule-associated protein tau; NFTs, neurofibrillary tangles; P, phosphorylation.
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(NFTs). In line with the development of a disease- 
modifying strategy, a direct approach to tau aggregation 
might be more successful, considering the difficulties in 
avoiding the disruption of kinases’ physiological signaling 
pathways, together with the heterogeneity of phosphoryla
tion sites on tau, with some promoting and others inhibit
ing tau aggregation.84

Methylene blue (MB) has gained attention for its anti- 
aggregating properties, achieved by modification of 
cysteine residues critical for aggregation,85 although recent 
studies have broadened its pharmacodynamic spectrum to 
proteosome function,86 autophagy and oxidative 
stress.87,88 Encouraged by the results of a phase 2 trial 
showing an improvement in mild to moderate AD,89 the 
same results were not replicated in two subsequent Phase 3 
trials in AD and bvFTD patients.90,91 The failure of these 
trials, as recently reported,92 could be due to the ability of 
MB to hinder the synthesis of fibrillar species only, 
increasing instead neurotoxic tau granule formation.

Immune Neutralization
Parallel to strategies aimed to prevent tau aggregate for
mation and deposition, the enhancement of clearance sys
tems represents a promising field of research. In this 
regard, anti-tau immunotherapy approaches turned out as 
feasible options for clearing toxic species and specific 
protein epitopes in tauopathies: they can be distinguished 
in active and passive strategies.93

Active Immunization
Given the devastating in vivo results of a first immuniza
tion approach against full-length recombinant human tau, 
the ongoing vaccine development has focused on tau frag
ments and phosphorylated tau peptides.94 Indeed, the first 
vaccine reaching human experimentation (AADvac1), 
which consisted of an antigenic peptide hypothesized to 
trigger misfolding and aggregation,95 reduced tau-related 
pathological alterations with a corresponding behavioral 
improvement in transgenic rats.96 Still confirming its neu
robiological efficacy on neurodegeneration markers in the 
following ADAMANT phase 2 trial (NCT02579252), 
AADvac1 exhibited only a trend to slow the decline in 
mild AD patients.97–100 The same compound is actually 
being administered to nfvPPA patients in a phase 1 trial 
(NCT03174886).

Following this pivotal vaccine, AC Immune developed 
ACI-35, an alternative liposome-delivered agent, different 
from the former, instead directed against tau fragments 

enriched with phosphorylates residues. ACI-35.030, 
a second-generation compound redesigned to increase the 
immune response, is being tested in a phase 1/2 clinical 
trial in AD patients (NCT04445831), now in recruitment 
stage.

Passive Immunization
The consolidated experience in the management of mono
clonal antibody (Ab)-based therapies, along with the 
expanding libraries of targetable altered forms of tau pro
tein has made passive immune clearance one of the main 
areas of intervention in disease-modifying drug research. 
Although Ab can recognize either the N-terminal, the pro
line-rich or C-terminal regions, published results of clin
ical trials came only from Ab against the N-terminal 
region.101 Indeed, BIIB092 (gosuranemab), a humanized 
monoclonal antibody engaging the extracellular 
N-terminal tau sequence, reduced CSF-free N-terminal 
tau in PSP patients in a phase 1 trial.102 Unfortunately, 
two following phase 2 trials, PASSPORT (NCT03068468) 
and TauBasket (NCT03658135), aimed at testing BIIB092 
in PSP and in in four primary tauopathies (CBS, FTLD- 
tau, nfvPPA and traumatic encephalopathy syndrome), 
respectively, were prematurely interrupted due to lack of 
efficacy in the interim analysis.103

Similar characteristics were observed for C2N-8E12 
(ABBV-8E12, tilavonemab), an IgG4 antibody recogniz
ing an epitope mapped on an extracellular N-terminal 
region,104 which was proven safe in a phase 1 trial 
(NCT03413319), but was then discontinued for PSP after 
interim results of a phase 2 study (NCT02985879) show
ing no beneficial therapeutic effects.105 The failure of 
these trials, along with the evidence of a lower extracel
lular/intracellular tau ratio in non-AD tauopathies, sug
gests that targeting extracellular N-terminal fragments 
alone could be futile in this population.106

Moreover, based on spectroscopy studies showing the 
prevalence of terminals-lacking tau fragments in 
CSF,107,108 an extracellularly acting Ab directed against 
a mid-domain region could achieve better results. In this 
direction, UCB0107 (bepranemab), a monoclonal Ab bind
ing to the mid-region of tau, interferes with transneuronal 
propagation and tau seeding activity in vivo and in vitro
108,109 A phase 1 trial with an open-label extension 
(NCT04185415, NCT04658199) to evaluate the safety 
profile on PSP patients is now ongoing and completion is 
expected in November 2021.
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Microtubule Stabilization
In addition to the neurotoxic gain-of-function, also tau 
loss-of-function may lead to neurodegeneration, primarily 
through the detachment from microtubule and consequent 
microtubule disassembly.84 In order to overcome this pro
cess, three microtubule-stabilizing agents have been 
developed.

Epothilone-D (EpoD), a taxol-derived small molecule, 
reduces axonal dystrophy, increased microtubule density 
and, more globally, ameliorated tau-pathology in PS19 tau 
transgenic mice.110 However, although translated to 
a human phase 1/2 clinical trial (NCT01492374) for AD 
patients completed in October 2013, results were not 
published.

More recently, TPI 287 (abeotaxane), another taxol- 
derived compound with a similar mechanism of action to 
EpoD, was tested in two phase 1 RCTs in PSP, CBS 
and AD patients. While being better tolerated in 4R- 
tauopathies, than in mixed 3R/4R pathology of AD, 
a motor and a dose-related worsening in exploratory cog
nitive outcomes was reported.111 Finally, davunetide 
(NAP), a derivative from the endogenous activity- 
dependent neuroprotective protein (ADNP), whose genetic 
deficiency is associated with tau pathology,112 was found 
to improve cognitive function in tau transgenic mice by 
enhancing tau–microtubule interaction.113,114 Firstly 
approved for a phase 2 trial (NCT00422981) in MCI 
patients, it produced an improvement in memory and 
attention-based tasks.115 Unfortunately, a following phase 
2/3 RCT (NCT01110720) on PSP patients did not confirm 
these results,116 possibly explained by a recent in vitro 
study demonstrating the preferential interaction of davune
tide with 3R-tau in comparison with 4R-tau.117

TDP-43 Targeting Strategies
Together with FUS, TDP-43 is a ubiquitous protein 
belonging to the class of nuclear ribonucleoproteins 
(hnRNPs), with whom it shares two N-terminal located 
RNA recognition motifs (RRM1 and RRM2),118 that 
enable the binding and the regulation of several RNA 
processing pathways. The C-terminal sequence is 
a determinant of solubility state, cellular localization and 
interprotein interactions,119 supported by the clustering of 
many pathogenic FTD and ALS mutations in the corre
sponding region of the TARDBP gene.120,121 

Predominantly located within the nucleus, when TDP-43 
is shuttled to the cytoplasm the protein carries out various 

biological functions, including RNA translation, synaptic 
plasticity, autophagy and mitochondrial homeostasis.122 

TDP-43 can drive the formation of stress granules in 
response to environmental stressors like other hnRNPs 
undergoing a liquid–liquid phase separation.123 Both the 
presence of mutations and aberrant post-translational mod
ifications lead to the clearance of nuclear TDP-43, its 
mislocalization and, finally, to the classical TDP-43 cyto
plasmic inclusions.124 In a similar way to tau, it relies on 
a simultaneous loss- and gain-of-function, secondary to the 
sequestration of TDP-43 and to the toxicity of the aggre
gates themselves.125 Paradoxically, if in vitro models show 
that a comparable degree of neural degeneration can be 
achieved in both inclusion-bearing and non-bearing 
neurons,126 it is also possible that aggregates might be 
protective at the early stages of the disease.127 However, 
two main factors have hindered the development of direct 
TDP-43-targeted strategies: 1) the ubiquitous expression 
together with the impairment of different cell type-specific 
pathways discourages the target of the protein in 
a generalized manner; and 2) the complexity of its biolo
gical properties, mostly unexplored, requires the imple
mentation of a function-based intervention.128 As a direct 
consequence, monogenic forms of FTLD-TDP have 
received more attention for research purposes (see Table 
2 and Figure 2).

Targeting TDP-43 Pathophysiology
Still debating whether FTLD pathological mechanisms act 
primarily through gain- or loss-of-function effects, in vivo 
models show that both upregulation and downregulation of 
protein levels result in the triggering of 
a neurodegenerative cascade.129 Not surprisingly, TDP-43 
levels are under tight control, including self-regulation 
based on a nonsense-mediated mRNA decay (NMD) 
mechanism.130 Given the role of its imbalance and the 
importance in maintaining protein levels, harnessing the 
NMD system might be a conserved, promising mechanism 
for TARDP-43 regulation, as recently reported.131

A hallmark of TDP-43 proteinopathies is the presence 
of aggregates predominantly composed of a protein exten
sively modified by post-translational mechanisms, not 
observed in healthy neurons and including ubiquitination, 
acetylation, SUMOylation, and phosphorylation and 
cleaved to generate C-terminal fragments (CTFs).124 As 
the most consistent feature of aggregates, also linked to 
disease-associated mutations,132 TDP phosphorylation 
represents a major area of research in FTLD therapy. 
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Whilst this post-translational modification can occur in 
over 50 potential sites, some of them (especially at the 
C-terminus, with regard to serine residues at position 409/ 
410)133 are believed to contribute to the aberrant behavior 
of TDP-43. The first TDP-directed kinase family 
described,134 casein kinase 1 (CK-1), has been recently 
identified as a potential therapeutic target to be an inter
esting molecular target. Its inhibition was shown to reduce 
TDP-43 phosphorylation and to restore its cellular nuclear 
localization in human-based cell models from FTLD-TDP 
patients.135

The impairment of cellular clearance mechanisms repre
sents a core pathogenetic element in FTLD, as supported by 
the possible occurrence of mutations in genes encoding cri
tical proteins in the ubiquitin–proteasome system (UPS) and 
autophagy–lysosome pathway (ALP) mediated degradation, 
such as VCP, CHMP2B, TBK1, OPTN, p62/SQSTM1 and 
UBQLN2.125 Both these processes regulate the clearance of 
TDP-43, although soluble and aggregated TDP are degraded 
primarily by UPS and ALP, respectively.136 Among modules 
within the autophagy system, the dysfunction of the endoso
mal sorting complexes required for transport (ESCRT) 
machinery results in TDP-43 accumulation and mutations 

of CHMP2B, a key component of this system, have been 
identified as causative of familiar FTD.137,138 While the 
disruption of CHMP2B perturbs endo-lysosomal trafficking, 
vesicle fusion and autophagic degradation, it also promotes 
TDP-43 hyperphosphorylation and insolubility by the control 
of the UPS-dependent turnover of CK-1.139,140 Given that 
therapeutics have been identified for CHMP2B this could 
represent a promising therapeutic axis.139

On the contrary, TDP-43 itself plays an active role in the 
regulation of these mechanisms, modulating the expression 
of the phagosome machinery.141 Indeed, TDP-43 depletion 
disrupts the fine control on the mTOR-complex overwhelm
ing the last stages of autophagic discharge and the accumu
lation of immature autophagic vesicles, ultimately inducing 
neurotoxicity as pointed out in animal models.142

Targeting Progranulin Protein Levels
Progranulin is synthesized in the CNS by different cells, 
including neurons, astrocytes, microglia, endothelial 
cells.143 It is a secreted protein and biologically active on 
its own or as a cleavage product (granulins), possibly 
having opposite effects, with anti-inflammatory properties 
for the former and pro-inflammatory for the latter.144,145 

Table 2 Principal Mechanism of Action and Possible Candidate Drugs for the Treatment of FTLD-TDP

Therapeutic Target Mechanism of Action Candidate Drug References

PTM modulation

Phosphorylation Kinases inhibition (CK-1, CDC7, TTBK-1/2, GSK3β, CDK-2) [135,218–220]

Recruitment to SGs Topoisomerase inhibitor Mitoxantrone [221]

PARPs inhibitors Veliparib [222]

Exportin inhibition [223]

TDP aggregate clearance Inhibition of mTOR and enhancing of autophagic pathway Rapamycin [224]

Enhancing lysosomal biogenesis Trehalose [225]

Increase PGRN levels Inhibition of SORT-1-mediated endocytosis AL001 [147]

Histone deacetylase inhibitor Vorinostat [153]

FRM-0334 [155]

Gene therapy AAV-9 vector [157]

C9orf72 expansion ASO targeting G4C2 containing RNA BIIB078 [160]

RNA interference [162]

RAN translation Inhibition Metformin [164]

Abbreviations: CK-1, casein kinase 1; CDC7, cell division cycle 7; TTBK-1/2, tau tubulin kinase 1/2; GSK3β, glycogen synthase kinase 3 beta; CDK-2, cyclin-dependent 
kinase 2; SG, stress granules; PARP, poly ADP ribose polymerase; TDP, TAR-DNA binding protein; mTOR, mammalian target of rapamycin; PGRN, progranulin; PTM, post- 
translational modification; SORT-1, sortilin-1; C9orf72, chromosome 9 open reading frame 72; ASO, antisense oligonucleotides.
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Therefore, as well as acting as microglial modulator, pro
granulin is also involved in neuronal survival, by trophic 
and neuroprotective functions, synaptogenesis and lysoso
mal dynamics.146

Besides the already known high prevalence of GRN 
mutations in the FTD population, since haploinsufficiency 
of PGRN is the predominant mechanism leading to FTD, 
the rescue of its deficiency is an attractive objective for 
drug development. Both in vitro and in vivo models, 
targeting sortilin-1 (SORT-1) have identified SORT-1 inhi
bition as a positive regulator of progranulin protein levels. 
SORT-1, a Vps10 family member, is a PGRN binding 
protein involved in the extracellular uptake and delivery 
to the endolysosomal compartment.

Targeting cellular pathways addressing progranulin to 
lysosomal degradation by inhibition of SORT-1 has demon
strated, in vitro and in vivo models, to influence progranulin 
brain and serum plasma levels.147,148 According to the 
results in preclinical settings, healthy subjects and GRN 
mutation carriers were enrolled in a phase 1 trial 

(NCT03636204) testing anti-human SORT-1 monoclonal 
IgG1 antibodies (AL001). The study showed a dose- 
dependent effect of AL001 in increasing progranulin levels 
to normal ranges.149 While the study of AL001 in FTD 
patients carrying GRN mutation is ongoing in a phase 2 
trial (INFRONT-2, NCT03987295), in July 2020 a phase 3 
trial (INFRONT-3, NCT04374136) started enrolling both at 
risk and symptomatic FTD patients.

A different protein involved in lysosome trafficking, 
prosaposin, has been identified as a regulator of progranu
lin levels.150 AZP2006, a compound thought to prevent 
tau-phosphorylation and to stabilize prosaposin- 
progranulin complexes, was approved for a phase 2 trial 
(NCT04008355) in PSP patients, which is currently 
ongoing.151

Also aimed at enhancing progranulin levels, the epi
genetically active class of histone deacetylase inhibitors 
has emerged as a possible disease-modifying agent in 
FTD.152 The first of this class identified as a possible 
modulator of progranulin levels, suberanilohydroxamic 

Figure 2 Aberrant TDP-43 biology in FTLD. Pathological model of TDP-43-associated neurodegeneration and the corresponding potential therapeutic approach (in blue 
boxes). Note the pathways involving C9Orf72 expansions and progranulin. Images created with BioRender.com. 
Abbreviations: C9orf72, chromosome 9 open reading frame 72; DPRs, dipeptide repeat proteins; LLPS, liquid–liquid phase separation; PGRN, progranulin; RAN 
translation, repeat-associated non-AUG translation.
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acid (vorinostat), was shown to normalize both the mRNA 
and protein levels in cellular models of GRN 
haploinsufficiency.153,154

Still belonging to the same pharmacological class, but 
characterized by a better distribution within the CNS,155 

FRM-0334 was assessed in a phase 2 trial (NCT02149160) 
in 28 individuals with GRN mutations. The treatment did 
not produce significant changes in progranulin concentra
tions, although this failure might be explained by an 
insufficient FRM-0334 exposure.156

Finally, genetic cases of FTD related to GRN haploin
sufficiency represent an ideal field of application for vec
tor-based gene therapies. Recently, the results of an 
intraventricular adeno-associated viral (AAV) vector 
administration in nonhuman primates paved the way for 
the development of AAV-based gene therapy in genetic 
FTD.157 A phase 1/2, multicenter study (PROCLAIM, 
NCT04408625) is currently ongoing, evaluating the safety 
and efficacy of intra-cisternal PR006 administration, an 
AAV-9 vector designed to deliver the GRN gene.158

Targeting the C9orf72 Expansion
The exact way by which the pathological length C9orf72 
repeat expansions drives neurodegeneration is still 
debated, but three pathomechanisms are being suggested, 
including loss of physiological functions and gain of toxi
city by RNA foci and DPRs, both derived by repeat- 
containing RNAs.159

Directly affecting the production of ribonucleoprotein 
toxic species, the first in vivo study employing ASOs 
directed against repeat-enriched RNAs, showed their abil
ity to mitigate RNA foci and DPR burden, with 
a corresponding improvement of phenotypical 
signatures.160 From these encouraging results, a phase 1 
trial (NCT03626012, NCT04288856) started enrolling 
C9orf72 repeat expansion carrying ALS patients, to 
assess BIIB078, an ASO specifically designed to reduce 
only the repeat-containing C9orf72 transcripts. Other 
efforts, focused on contrasting repetitions-containing 
RNAs, engage small molecules that stabilize G4C2 
RNA repeats reducing RNA foci and RAN 
translation.161 Furthermore, some strategies are meant to 
target aberrantly upregulated components of the transcrip
tion machinery, while others work by harnessing RNA 
interference.162,163 Interestingly, the diabetes drug metfor
min has recently expanded its pharmacodynamic profile 
as a potential treatment in FTD-ALS. In C9orf72 trans
genic mice, metformin was shown to inhibit the RNA- 

dependent protein kinase (PKR) phosphorylation, 
decreasing RAN translation and downregulating the 
effects of eukaryotic initiation factor 2α (eIF2α) phos
phorylation, which is known to impair protein 
synthesis.164 Since January 2020 a phase 2 trial 
(NCT04220021) is ongoing to evaluate metformin safety 
and efficacy in C9orf72 ALS-FTD patients.

Therapeutic Approaches Based on 
Non-Invasive Brain Stimulation
Considering the high clinical and pathological heterogene
ity of FTD, exacerbated by the lack of biomarkers accu
rately predicting in vivo tau or TDP pathology, an 
alternative approach to pharmacological treatments may 
be found in non-invasive brain stimulation.165 Several 
techniques have been recently developed to enhance cor
tical plasticity, including repetitive transcranial magnetic 
stimulation (rTMS), transcranial direct current stimulation 
(tDCS), or to entrain and modulate cerebral rhythms with 
transcranial alternate current stimulation (tACS).

Repetitive Transcranial Magnetic 
Stimulation
rTMS is a method in which externally produced repetitive 
magnetic pulses lead to depolarization of cortical neurons. 
rTMS can be applied at various stimulation frequencies or 
as a patterned train of pulses, and has a modulatory effect 
on cortical excitability and may induce long-term potentia
tion (LTP)-like cortical plasticity.166

There are only few reports describing the efficacy of 
this technique as a treatment in FTD.

In an open-label study, Antczak et al delivered 10 daily 
sessions of 10 Hz rTMS over the dorsolateral prefrontal 
cortex bilaterally in 11 patients with FTD (9 bvFTD, 2 
nfvPPA), and observed an improvement in cognitive func
tions and frontal behavioral inventory scores.167

In another study, Cotelli et al applied a 20 Hz stimula
tion to both dorsolateral prefrontal cortices (DLPFC) in 10 
patients with nfvPPA, in a sham-controlled design. They 
observed an improvement in action-naming possibly due 
to the modulation of DLPFC pathways and a facilitation 
effect on lexical retrieval processes.168

Other small case studies have shown similar positive 
effects of rTMS or deep rTMS in PPA patients.169–171

Several trials with rTMS are currently underway and 
awaiting completion in PPAs (NCT04188067, 
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NCT03580954, NCT03153540, NCT04431401, NCT03 
406429).

Transcranial Direct and Alternate 
Current Stimulation
tDCS is a method based on the modulation of cortical 
excitability by a weak electrical current, which is delivered 
through scalp electrodes by a portable battery-powered 
stimulator. Repeated stimulation sessions are thought to 
generate long-lasting effects on cortical structures, induced 
by cortical plasticity.172

tDCS has shown initial positive effects in a sham- 
controlled trial in 13 patients with bvFTD. By stimulating 
frontotemporal cortices bilaterally for 5 days, researchers 
showed an improvement in neuropsychiatric symptoms and 
visual reaction times up to 1 month after stimulation.173

A recent much larger study, performed in 70 partici
pants, has shown that a 2-week course with left prefrontal 
cortex stimulation may improve several clinical scores, 
particularly attention and executive functions, compared 
to sham stimulation, for up to 6 months.174 Moreover, 
tDCS restored intracortical connectivity measures, evalu
ated with TMS, which have been shown to be impaired 
early in the disease course.175–191 Interestingly researchers 
found that presymptomatic mutation carriers improved in 
cognitive tests after tDCS.175

tDCS has been found to enhance theory of mind, the 
ability to understand and predict other people’s behavior 
by attributing independent mental states to them, in 
patients with bvFTD.192

Several smaller studies have also shown an improve
ment in language in patients with PPA and PSP, also 
combined with individualized speech therapy, compared 
to sham stimulation.193–208

In a recent meta-analysis, tDCS was shown to be more 
effective than rTMS in the treatment of PPA.209 Overall, 
the meta-analysis suggested significant benefits of both 
methods in PPA patients, with the optimal treatment pro
tocol remaining unknown.

Several trials with tDCS are currently underway and 
awaiting completion in PPAs (NCT04046991, 
NCT02606422, NCT03728582, NCT04486586, NCT03 
887481, NCT04566731, NCT03805659).

Another approach is being used in the GIFTeD trial, 
which is currently evaluating the effects of alternate cur
rent stimulation at gamma frequencies (40 Hz) with tACS 
in patients with FTD (NCT04425148). So far, reports of 

tACS as the clinical disease modifier in FTD have not 
been published.

Conclusions
The last few years have seen an improvement in the 
histological comprehension of FTLD, allowing a more 
detailed classification among the main underlying protei
nopathies. Moreover, the strong genetic footprint has 
enriched the understanding of the disease mechanisms. 
Together with the results of genome-wide association stu
dies (GWAS),210,211 new potential pathogenetic mechan
isms have emerged, enhancing the arsenal of possible 
therapeutic strategies, including new insights from the 
role of autoimmunity.191,212–214

However, despite this progress, a precise definition of 
the specific pathogenetic path is still far from reach. 
Indeed, as depicted in this review, although the biological 
cascades leading to the specific protein (ie, Tau, TDP-43, 
FET)-driven neurodegeneration are still to be fully eluci
dated, they occur along common pathophysiological path
ways. These premises have prompted the development of 
strategies aimed at the recovery of the disrupted proteo
static microenvironment (ie, kinome, UPS, ALP), an 
alternative approach to the removal of pathological spe
cies through selective antibody-based therapies. Indeed, 
the multitargeted properties of small molecules are emer
ging as promising in reversing or correcting several 
pathological pathways involved in neurodegeneration, 
highlighting the role of a “one drug, many targets” 
approach.215 The persistent failure of therapies based on 
clearance of deposited pathological species, adopted from 
the experience in different diseases, such as AD, high
lights how future therapies should not only target the 
epiphenomenon of the pathological cascade but also 
understand and prevent the lack of physiological func
tions too. In support of this concept, the best results have 
been achieved by strategies targeting well-defined patho
genetic pathways (ie, GRN regulation), even if based on 
a more traditional “one drug, one target” paradigm.

In this perspective, given the possible convergence in 
the same clinical phenotypes, another challenging point in 
clinical trial settings is the availability of biomarkers able to 
distinguish between different underlying neuropathologies.

While in these landscape new treatments (ie, TMS and 
tDCS) are also emerging to reverse the secondary disrup
tion of neuronal functioning, basic mechanistic and diag
nostic research still holds the key to success in 
understanding and effectively treating this disease.
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