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Background: Radiation therapy remains an important treatment modality in cancer therapy, 
however, resistance is a major problem for treatment failure. Elevated expression of glutathione 
is known to associate with radiation resistance. We used glutathione overexpressing small cell lung 
cancer cell lines, SR3A-13 and SR3A-14, established by transfection with γ-glutamylcysteine 
synthetase (γ-GCS) cDNA, as a model for investigating strategies of overcoming radiation resis-
tance. These radiation-resistant cells exhibit upregulated human copper transporter 1 (hCtr1), which 
also transports cisplatin. This study was initiated to investigate the effect and the underlying 
mechanism of iron-platinum nanoparticles (FePt NPs) on radiation sensitization in cancer cells.
Materials and Methods: Uptakes of FePt NPs in these cells were studied by plasma 
optical emission spectrometry and transmission electron microscopy. Effects of the combina-
tion of FePt NPs and ionizing radiation were investigated by colony formation assay and 
animal experiment. Intracellular reactive oxygen species (ROS) were assessed by using 
fluorescent probes and imaged by a fluorescence-activated-cell-sorting caliber flow cyt-
ometer. Oxygen consumption rate (OCR) in mitochondria after FePt NP and IR treatment 
was investigated by a Seahorse XF24 cell energy metabolism analyzer.
Results: These hCtr1-overexpressing cells exhibited elevated resistance to IR and the 
resistance could be overcome by FePt NPs via enhanced uptake of FePt NPs. 
Overexpression of hCtr1 was responsible for the increased uptake/transport of FePt NPs as 
demonstrated by using hCtr1-transfected parental SR3A (SR3A-hCtr1-WT) cells. Increased 
ROS and drastic mitochondrial damages with substantial reduction of oxygen consumption 
rate were observed in FePt NPs and IR-treated cells, indicating that structural and functional 
insults of mitochondria are the lethal mechanism of FePt NPs. Furthermore, FePt NPs also 
increased the efficacy of radiotherapy in mice bearing SR3A-hCtr1-WT-xenograft tumors.
Conclusion: These results suggest that FePt NPs can potentially be a novel strategy to 
improve radiotherapeutic efficacy in hCtr1-overexpressing cancer cells via enhanced uptake 
and mitochondria targeting.
Keywords: FePt nanoparticles, human copper transporter 1, radiation resistance, reactive 
oxygen species, mitochondrial targeting

Introduction
Radiation therapy (RT) is a very important therapeutic modality to treat cancer and 
has been used in more than 50% of all cancer patients worldwide, either in curative 
or palliative aims.1–3 Over the past decades, RT techniques have improved 
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dramatically, thanks to the advancement of imaging and 
engineering technologies that enable a highly tailored dose 
delivery to the tumor with maximum sparing of adjacent 
normal tissues. The overall tumor control rates of RT have 
improved from about 30% two decades ago to about 80% 
nowadays in some malignancies.4,5 Despite the improving 
therapeutic efficacy, many tumors still remain resistant to 
ionizing radiation.6

Platinum (Pt)-based drugs, especially cisplatin, have 
been the mainstay of cancer chemotherapy in many differ-
ent types of human malignancies for the last four decades.7 

In particular, the combination of cisplatin and ionizing 
radiation provides considerable synergistic antitumor 
activities and is the current standard of first-line treatment 
in several advanced cancers, such as lung, head and neck, 
and cervix.8–11 However, many patients eventually relapse 
and develop resistance to concurrent chemoradiation ther-
apy with cisplatin. One major mechanism associated with 
resistance to cisplatin is downregulation of the human 
copper transporter 1 (hCtr1), which is the major copper 
influx transporter and has been convincingly demonstrated 
to transport cisplatin and its analogues, resulting in 
impaired drug intake.12 Although expression of hCtr1 is 
ubiquitous because all the tissues require copper, studies 
showed that expression levels of hCtr1 were highly vari-
able among normal tissues and various major human 
malignancies.13 Studies also found that hCtr1 was over-
expressed in nearly 70% of lung cancer and was both 
predictive and prognostic factors in patients received pla-
tinum-based chemotherapy.14

While multiple mechanisms are involved in radiation 
resistance, one important mechanism is the elevated 
expression of glutathione (GSH), which is an important 
physiological regulator of cellular redox conditions.3 

Likewise, cisplatin-resistant variants are often overex-
pressed GSH. However, overexpressed GSH per se does 
not always result in cisplatin resistance.15 We previously 
demonstrated that the GSH-overexpressing small cell lung 
cancer cell lines, SR3A-13, and SR3A-14, established by 
transfection with γ-glutamylcysteine synthetase (γ-GCS) 
cDNA which encodes the rate-limiting enzyme for GSH 
biosynthesis, confer cisplatin sensitization but not resis-
tance. This is because GSH is a copper chelator, which 
results in cellular Cu(I) depletion. This in turn leads to 
upregulation of hCtr1, which is also a transporter of 
cisplatin.16 These findings underscore the complex role 
of GSH in cisplatin and radiation sensitivities.

Recent advances in nanomedicine have provided 
a great deal of promising materials to improve the out-
come of cancer treatment. Many platinum-based nanopar-
ticles (Pt NPs) have been developed for clinical use,17 and 
some have shown radiation enhancement properties.18–20 

To gain better insights into the roles of Pt NPs in cancer 
therapy, we synthesized iron-platinum metal alloy nano-
particles (FePt NPs) and demonstrated that FePt NPs 
exhibited excellent biocompatibility and great contrast 
ability for both magnetic resonance imaging (MRI) and 
computed tomography (CT) imaging.21 However, the ther-
apeutic roles of FePt NPs have not been explored. Using 
the GSH/hCtr1-overproducing cell lines, we report here 
that radiation resistance in these cells can be overcome by 
FePt NPs. We further demonstrate that upregulation of 
hCtr1 alone can confirm radiation sensitivity by FePt 
NPs, despite the fact that the physical-chemical properties 
between FePt NPs and cisplatin are drastically different. 
Therefore, our results provide a previous undiscovered 
new role of FePt NPs in cancer radiation therapy.

Materials and Methods
Synthesis of 6 nm FePt Nanoparticles
The synthesis of FePt NPs with 6 nm in diameter was in 
accordance with the previous study.21 Briefly, platinum acet-
ylacetonate (Pt(acac)2, ACROS, 97%) and iron pentacarbo-
nyl (Fe(CO)5, Aldrich, 99.99%) 1,2-hexadecanediol 
(Aldrich, 90%), dioctyl ether (ACROS, 90%), oleyl amine 
(Aldrich, 70%), oleic acid (Aldrich, 90%), cysteamine 
(Sigma, 95%). Pt(acac)2 (97 mg), 1,2-hexadecanediol 
(195 mg), dioctyl ether (10 mL), Fe(CO)5 (66 µL), oleyl 
amine (100 µL), and oleic acid (100 µL) were mixed. The 
reaction mixture was heated to 240°C at a heating rate of 15° 
C/min. After 30 minutes under nitrogen, the heating source 
was removed and the product was cooled to room tempera-
ture. Then, the product was precipitated by adding ethanol 
and separated by centrifugation. For ligand exchange to form 
water dispersion, FePt NPs (100 mg) were dispersed in 
ethanol by sonication. Cysteamine (~1 g) was added and 
dissolved into the solution at room temperature. The mixture 
was sonicated at 40−50°C overnight and washed by ethanol 
to remove adsorbent ligands. Finally, the modified particles 
were collected and stored in bottles filled with N2.

Cell Culture
SR3A was a doxorubicin-resistant cell line established 
from human small cell lung cancer (SCLC). SR3A and 
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the development of its γ-GCS stably transfected cell lines, 
SR3A-13 and SR3A-14, were generous gift from Dr. Kuo 
MT and have been described previously.22 hCtr1- 
overexpressing (SR3A-hCtr1-WT) cells were established 
in our lab. All these SR3A series cells used in this study 
were approved by the ethics committee of National Cheng 
Kung University. Cells were cultured in Dulbecco’s 
Modified Eagle’s Medium (DMEM) containing 10% fetal 
bovine serum at 37°C in 5% of CO2 atmosphere. 
Additionally, 400 μg/mL G418 (Thermo Fisher, MA, 
USA) was added for the maintenance of the transfected 
cell lines.

Western Blot Analysis
Cells plated overnight were washed with 1 x PBS twice 
and harvested with NP40 cell lysis buffer [50 mM Tris, 
150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 
and 0.1% sodium dodecyl sulfate containing 1 x protease 
inhibitor cocktail]. Equal amounts of protein (50 μg) were 
loaded to 15% sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis and electrotransferred onto PVDF mem-
branes (Millipore Corporation, Billerica, MA, USA). 
Nonspecific binding sites were eliminated using 5% fat- 
free milk in TBS with 0.1% Tween 20 (TBST) at room 
temperature for 1 hour. The membranes were then incu-
bated with each primary antibody, β-actin (43 kDa, 
MAB1501, Merck Millipore, Darmstadt, Germany), hCtr- 
1 (25 kDa, NB100-402, Novus Biologicals, LLC, USA), 
and γ-GCS (73 kDa, sc-166382, Santa Cruz, CA, USA) at 
4°C for 16 hours. After incubation, membranes were 
washed with TBST buffer three times and reacted with 
the corresponding peroxidase-conjugated anti-rabbit or 
mouse secondary antibodies at room temperature for 
1 hour. The protein signals were detected by chemilumi-
nescence using the HRP Substrate Luminol Reagent 
(Millipore, Billerica, USA) and visualized using the 
BioSpectrum Imaging System (UVP, Upland, CA, USA).

Clonogenic Cell Survival Assay
Cells (4 x 105) were seeded into 5-mL flasks and incu-
bated overnight. FePt NPs were added into cells to yield 
a final concentration of 1 mg/mL for 24 hours before 
irradiation. Then, cells were irradiated with 6 MV 
photons for different doses of X-rays (0, 2, 4, 6, and 8 
Gy), using a linear accelerator (Clinac iX, Varian 
Medical Systems, Palo Alto, CA, USA) at the National 
Cheng Kung University Hospital. Following irradiation, 
cells were incubated at 37°C for 4 hours before washed 

with PBS and trypsinized. After exact cell counting, cells 
of appropriate number were reseeded in triplicates onto 
10-cm dishes and left undisturbed for 7 to 14 days (7 
days for SR3A, and 14 days for other transfected cells) 
under normal culture conditions. Then, cells were fixed 
and stained with crystal violet. Colonies of at least 50 
cells were counted manually and surviving fractions 
were calculated with a correction necessary for plating 
efficiency. The sensitizer enhancement ratio (SER) was 
calculated as the radiation dose needed for radiation 
alone divided by the dose needed for FePt NPs plus 
radiation at a surviving fraction of 37% (D0 in 
radiobiology).

Transmission Electronic Microscopy 
Analysis
Cells were incubated with FePt NPs (1 mg/mL) for 24 
hours, washed with cold PBS three times and fixed with 
2% paraformaldehyde and 2.5% glutaraldehyde for 30 
minutes at room temperature. Cells were then post-fixed 
with 1% osmium tetraoxide in 0.1 M Na-cacodylate buffer, 
pH 7.2, for 1 hour, washed and dehydrated in graded 
concentrations of ethanol (50%, 70%, and 100%) and 
propylene oxide. Cell samples were then embedded in 
Epon (Fluka, Buchs, Switzerland) and ultrathin sections 
were made. Thin sections of 80 nm were collected on 
copper TEM grids and stained with 5% uranyl acetate 
for 20 minutes and lead citrate for 10 minutes. The grids 
were analyzed on a JEOL-1200 Transmitting Electron 
Microscope at an accelerating voltage of 80 kV.

Cellular Uptake Measurements of FePt 
NPs
Cells were incubated with 1 mg/mL FePt NPs for 
24 hours, collected and neutralized in concentrated nitric 
acid for 5 minutes on a heating block. Then, the Fe con-
centrations in the cells in this given volume were mea-
sured by inductively coupled plasma optical emission 
spectrometry (ICP-OES; ThermoFisher iCAPTM 7400, 
MA, USA).

Flow Cytometry Measurements of ROS
Cells were seeded into 6-well plates overnight and treated 
with 1 mg/mL FePt NPs for 24 hours, then with or without 
6 Gy irradiation. Dihydrorhodamine123 (DHR123), used 
as a probe, was added at a final concentration of 1 μM for 
4 hours. A single-cell suspension was then prepared. 
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Rhodamine123 fluorescence intensity resulting from 
DHR123 oxidation was measured by a FACS caliber 
flow cytometry (BD Biosciences, San Jose, CA, USA) 
with excitation at 488 nm and detection at 525 nm. The 
final data were analyzed using FlowJo Software. All sam-
ples were performed in triplicate to acquire the mean 
fluorescence intensity (MFI).

Assessment of Mitochondrial Respiration 
Function by XF24 Cell Analyzer
Cells were seeded with different cell densities according to 
each experiment purpose in XF Flux-Plates with sensor 
cartridges (Agilent, Santa Clara, CA, USA) overnight. 
Then, cells were cultured for 24, 48 and 72 hours in 
medium with FePt NPs (0.03125 ~ 1 mg/mL) or combined 
with irradiation. The oxygen consumption rate (OCR) was 
analyzed by the XF24 cell analyzer (Agilent, Santa Clara, 
CA, USA) during sequential injection of 1 µM oligomy-
cin, 0.5 µM carbonyl cyanide 4-(trifluoromethoxy) phenyl-
hydrazone (FCCP), and 1 µM rotenone/antimycin 
A (Seahorse XF Cell Mito Stress Test Kit 103015–100), 
respectively, into each group. Dynamic OCR profiles were 
obtained and converted into the reserved respiratory capa-
city of mitochondria.

Xenograft Animal Model
SR3A-hCtr1-WT cells (1 × 107 cells) were subcutaneously 
injected into the dorsal flank of SCID mice (6 to 8 weeks 
old; National Cheng Kung University Laboratory Animal 
Center). When the tumor size reached approximately 50 ~ 
80 mm3, the mice were randomly assigned to four groups: 
PBS (control), FePt NPs, 6 Gy X-rays, and FePt NPs plus 
6 Gy X-rays treatments (5 mice per group). PBS or FePt 
NPs (25 mg/kg) were injected into the tail veins of the 
mice every other day (48 hours apart) for total 2 injections 
in each group. Approximately 24 hours after the last 
injection, tumor regions were irradiated with 6 Gy using 
a linear accelerator with customized lead blocks. Tumor 
volumes were measured using digital calipers and calcu-
lated using the formula: 0.5 × (length × width2). All 
experiment procedures and handling of the animals were 
approved by the Institutional Animal Care and Use 
Committee (IACUC) of National Cheng Kung University 
(NO.108212) and followed the Guidelines for the Care and 
Use of Laboratory Animals issued by the Council of 
Agriculture Executive Yuan, Taiwan.

Tissue Stain
The tumor tissues were excised and prepared for immuno-
histochemistry (IHC) tissue stain after 24 hours of admin-
istration of PBS or FePt NPs. Briefly. Formalin-fixed 
paraffin-embedded tissue sections were deparaffinized 
and rehydrated. The tissue sections were counterstained 
with hematoxylin and eosin (H&E), Prussian blue and 
hCtr1 antibody, respectively. Slides were then washed, 
mounted with coverslip, and examined under a digital 
microscope.

Statistical Analysis
All measurements were represented as mean ± standard 
deviation. One-way ANOVA tests were conducted to 
assess the statistical significance between different groups 
at the two-tailed significance level of 0.05.

Results
Elevated Expression of GSH in γ-GCS- 
Transfected Cells Increases hCtr1 
Expression and Exhibits Radioresistance 
Which is Associated with Enhanced FePt 
NPs Transport
We previously established several stable transfected cell 
lines by transfecting human full-length γ-GCS cDNA 
expression recombinant into SR3A cells, designated 
SR3A-13 and SR3A-14 cells, were used as a cell model 
in this study. SR3A-13 and SR3A-14 cells exhibited 1.92- 
and 1.69-fold increases of GSH levels; and 1.85- and 1.81- 
fold increases of hCtr1 levels compared with those in 
SR3A cells (Figure 1A). We previously reported that 
enhanced hCtr1 expression in the GSH-overexpressing 
cells is due to the fact that GSH chelates cellular Cu 
ions, resulting in reduced reduction of cellular bioavailable 
Cu levels and the consequential upregulation of hCtr1 
expression by the mechanism of Cu homeostasis 
regulation.15,16 Intriguingly, SR3A-13 and SR3A-14 cells 
exhibited significant radiation resistance after 8 Gy X-rays 
by colony formation assay as compared with their parental 
cell line SR3A (Figure 1B). This is most likely due to the 
antioxidant properties of GSH that circumvents radiolysis 
associated with irradiation.3 Cell survival curves also 
revealed that SR3A-13 and SR3A-14 were more resistant 
to X-rays than SR3A (Figure 1C). These results demon-
strated that elevated expression of GSH by γ-GCS 
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transfection enhanced hCtr1 expression as well as cellular 
resistance to X-ray irradiation.

hCtr1 has been known to effectively transport cisplatin 
and carboplatin but not oxaliplatin.23 It is unclear whether 
enhanced hCtr1 expression could promote FePt NPs trans-
port. To investigate whether hCtr1 facilitated transport of 
FePt NPs, SR3A, SR3A-13 and SR3A-14 cells were incu-
bated with FePt NPs for 24 hours. Cellular content of FePt 
NPs were measured by ICP-OES (Figure 1D). We found 
that cellular content of FePt NPs in SR3A, SA3A-13 and 
−14 were 33 ± 5.54, 105.4 ± 21.72, and 125.4 ± 15.84 μg 
per 105 cells, respectively, indicating that uptake of FePt 
NPs was 3 to 3.5 folds higher in SR3A-13 and SR3A-14, 
than that of SR3A cells (P <0.001). Higher uptake of FePt 
NPs was evident in SR3A-13 and SR3A-14 cells by visua-
lizing cellular distribution of the NPs by TEM (Figure 1E). 
It is noteworthy that these NPs formed large opaque 
aggregates, mainly located in the cytoplasmic compart-
ment and very few, if any, were observed inside the 
nucleus. Strikingly, we found that these aggregates were 

mainly confined in intracellular vacuoles and seemed to be 
inter-connected (Figure 1E, red squares). This distribution 
was in drastic contrast with that of intracellular distribu-
tions of cisplatin, which is widely distributed in various 
cellular compartments (eg, mitochondria, Golgi-apparatus, 
and nuclei) carried by various Cu chaperons once that 
cisplatin enters the cells.24

The Morphology and Aerobic 
Respiratory Function of Mitochondria are 
Altered in SR3A-13 and SR3A-14 Cells 
After FePt NPs Treatment
The lethal effects of platinum-based antitumor agents are 
mainly executed on DNA damages inside the nucleus. 
However, the absence of nuclear localization of FePt 
NPs prompted us to look for cytoplasmic organelles that 
may be targets of its cytotoxic effects. Strikingly, TEM 
revealed that SR3A-13 and SR3A-14 cells exhibited 
numerous irregularly shaped mitochondria with increased 

Figure 1 γ-GCS overexpressed SR3A-13 and SR3A-14 cells exhibited the radioresistant phenomena and enhanced uptake of FePt NPs. (A) Western blotting analysis of γ- 
GCS and hCtr1 protein levels in SR3A, SR3A-13 and SR3A-14 cells. β-actin was used as a loading control. (B) Representative colony formation photographs of SR3A, SR3A- 
13 and SR3A-14 cells irradiated with or without 8 Gy radiation. Noted that number of cells per dish initially plated varied with the dose so that the number of colonies 
surviving was in the range that could be counted conveniently. (C) Cell survival curves for SR3A series cells exposed to radiation. The surviving fractions of SR3A-13 and 
SR3A-14 cells were significantly higher than that of the control SR3A cells. (D) Total iron and platinum content determined by ICP-OES (***P < 0.001). Error bars represent 
± S.D. (E) Representative TEM images of SR3A, SR3A-13 and SR3A-14 cells treated with FePt NPs. Note that FePt NPs were mainly found in vesicles located in the 
cytoplasm. Shown in the bottom are high power view of images in red squares shown above.
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membrane density and absent ridges following cellular 
uptake/transport of FePt NPs (Figure 2A, red arrowhead), 
compared with those in SR3A (Figure 2A, black arrow) 
and untreated control cells (Supplementary Information, 
Figure S1). We next investigated the mitochondrial 
respiratory function by Seahorse XF24 analyzer, which 

measures OCR in living cells. Three drugs were added 
sequentially. Oligomycin (used in Step 1), an ATP 
synthase inhibitor, reduces the oxygen consumption 
needed to assist ATP synthesis.25 Carbonyl cyanide 4-(tri-
fluoromethoxyphenylhydrazone, FCCP) (used in Step 2), 
behaving like an uncoupling agent for proton reflux, 

Figure 2 Mitochondrial morphology and function were altered in FePt NPs-treated SR3A-13 and SR3A-14 cells. (A) TEM observations of mitochondria in cells as indicated 
treated with 1 mg/mL FePt NPs for 24 hours. Black arrow, normal mitochondrial; red arrowheads, abnormal mitochondria with increasing membrane density and loss of 
ridges. (B) Measurements of mitochondrial respiratory function, OCR, by Seahorse XF24 analyzer in SR3A, SR3A-13 and SR3A-14 cells treated with FePt NPs. The OCR 
values in SR3A-13 and SR3A-14 cells were significantly lower than that in SR3A cells, in a time-dependent manner. (C) Similar findings as in (B), but in concentration- 
dependent manner.
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contributes a great amount of mitochondria oxygen con-
sumption which was validated with different concentra-
tions (0.5, 1.0 and 2.0 μM) to optimize the rate of oxygen 
consumption (Supplementary Information, Figure S2). 
Thus, the increase in oxygen consumption after the addi-
tion of FCCP represents the maximum oxygen consump-
tion capacity of mitochondria.26 Rotenone (used in 
Step 3), an inhibitor of the mitochondrial aerobic respira-
tory chain, inhibits mitochondrial oxygen consumption 
completely.27 Real-time monitoring of mitochondrial 
OCR in SR3A, SR3A-13 and SR3A-14 cells for different 
time and concentrations of FePt NPs were investigated. 
The OCR values in SR3A-13 and SR3A-14 cells treated 
with FePt NPs were significantly lower than that in SR3A 
cells. Moreover, a rapid and pronounced reduction in basal 
and maximal mitochondrial oxygen consumption in 
a time- and concentration-dependent manner was observed 
under the same comparison (Figure 2B and C). Taken 
together, we demonstrated that increased uptake of FePt 
NPs impacts mitochondrial morphology and related 
respiratory function, thus resulting in structural and func-
tional damages of mitochondria.

Combination Treatment of FePt NPs and 
X-Rays Enhances ROS Production and 
Increases Radiation Sensitivity in SR3A-13 
and SR3A-14 Cells
Since mitochondria are the powerhouse of cellular meta-
bolism and the major site of ROS production, proper 
functional mitochondria are essential for cell living. To 
investigate whether FePt NPs enhance ROS production 
after irradiation, we examined the amounts of ROS in 
SR3A, SR3A-13 and SR3A-14 cells treated with FePt 
NPs and X-rays by analyzing the fluorescence of 
DHR123 via flow cytometry. As shown in Figure 3A, 
ROS was increased after X-ray irradiation in all cells as 
compared with control. But ROS production was more 
significantly enhanced when combining X-rays with FePt 
NPs in SR3A-13 and SR3A-14 cells. Moreover, the aero-
bic respiratory function was drastically abolished by FePt 
NPs and X-rays in both SR3A-13 and SR3A-14 cells 
(Figure 3B). Colony formation assay also showed that 
colony number was much reduced in SR3A-13 and 
SR3A-14 cells treated with both FePt NPs and X-rays 
(Figure 3C). The cell survival curve further provided evi-
dence of the radiation sensitizing effect of FePt NPs, with 
the SER values of 0.9, 2.3 and 2.1 in SR3A, SR3A-13, and 

SR3A-14 cells, respectively (Figure 3D). These results 
suggested that FePt NPs induced ROS burst and mitochon-
drial dysfunction, thus overcoming the radiation resistance 
of SR3A-13 and SR3A-14 cells.

Elevated hCtr1 Expression Confers 
Enhanced Uptake/Transport of FePt NPs 
Accompanied with Mitochondria 
Morphology Alteration and Aerobic 
Respiratory Function Loss
All the above experiments were performed using the γ- 
GCS-cDNA-transfected cells which overexpress GSH, 
a potent copper chelator, which then consequently depletes 
the bioavailable copper pool. Reduced copper levels lead 
to up-regulation of hCtr1 to homeostatically maintain 
proper cellular copper levels.16 To further demonstrate 
the causal link between increased expression of hCtr1 
and enhanced uptake/transport of FePt NPs, we used wild- 
type hCtr1-transfected SR3A cells. Several stable clones 
were selected and identified by western bolts and ICP-OES 
for hCtr1 expression and related uptake of FePt NPs. 
Among which, clone #3 was picked and named as SR3A- 
hCtr1-WT for further experiments (Supplementary 
Information, Figure S3A). These cells exhibited higher 
levels of hCtr1 expression (Figure 4A) and FePt NPs 
uptake (Figure 4B and Supplementary Information, 
Figure S3B) as compared with those in the un- 
transfected SR3A cell. ICO-OES results show that 
uptake/transport capabilities of FePt NPs in SR3A-hCtr1- 
WT cells were enhanced 4.9 ± 1.9 fold higher than that in 
SR3A cells (Figure 4B). No significant effect for γ-GCS 
expression was observed in the SR3A-hCtr1-WT cells, 
indicating that hCtr1 and γ-GCS are not mutually regu-
lated. TEM imaging again shows a large amount of FePt 
NPs inside the SR3A-hCtr1-WT cells, and the internalized 
FePt NPs were cytoplasmically localized in vacuoles and 
appeared in clusters (Figure 4C). In addition, mitochon-
drial morphological changes were evident, including vari-
ably shrunken or vanished cristae, and increased 
membrane density (Figure 4C, red arrowhead). Cellular 
OCR in SR3A-hCtr1-WT cells treated with different con-
centrations of FCCP was determined by Seahorse XF24 
analyzer first (Supplementary Information, Figure S4). 
OCR in FePt NPs treated SR3A-hCtr1-WT cells began to 
reduce after 48 hours of treatment and with a minimum 
concentration at 0.0625 mg/mL (Figure 4D). These results 
collectively are reminiscent of those found in SR3A-13 
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and SR3A-14 cells, demonstrating the important roles of 
hCtr1 expression in regulating FePt NPs uptake/transport 
activity and the resulting mitochondrial abnormalities.

hCtr1 Expression Significantly Enhances 
FePt NPs-Induced Radiosensitivity
Whether FePt NPs can affect radiation therapy efficacy by 
regulating hCtr1 expression was investigated here. 
Clonogenic cell survival assay revealed that treating SR3A- 
hCtr1-WT cells with FePt NPs or X-rays irradiation alone 
slightly reduced the surviving colonies, but substantial 

further reduction was attained by the combination treatment 
(Figure 5A, left). Overall, the surviving fractions in these 
treatments were 9.96 ± 3.75%, 34.7 ± 7.19%, and <1%, 
respectively, in reference to the untreated cells (100%) 
(Figure 5A, right). These results indicated that by regulating 
hCtr1 expression alone, the synergistic cell-killing effect 
between the FePt NPs and ionizing radiation is achieved.

To have a better understanding of the effect FePt NPs 
on X-ray irradiation in SR3A-hCtr1-WT cells, the ROS 
production and the function of aerobic respiration were 
also assayed. The intracellular level of ROS in SR3A- 
hCtr1-WT cells was measured by flow cytometry with 

Figure 3 Enhancements of ROS production and radiosensitivity in SR3A-13 and SR3A-14 cells treated with 1 mg/mL FePt NPs for 24 hours and then irradiated with X-rays. 
(A) Flow cytometry analysis of ROS. Note that the combination treatment groups had significantly enhanced ROS levels than X-rays alone or control group especially in 
SR3A-13 and SR3A-14 cells. The result of MFI was presented as mean ± SD of three dependent experiments. ***p < 0.01. (B) Mitochondrial OCR by Seahorse XF24 
analyzer showing mitochondrial functions were nearly totally abolished in SR3A-13 and SR3A-14 cells treated with FePt NPs and X-rays. (C) Representative photographs of 
colony formations of SR3A-13 and SR3A-14 cells treated with FePt NPs without (top row) or with (bottom) radiation (6 Gy). Noted that cell numbers seeded were different 
in 0 Gy and 6 Gy groups (500 vs 15,000 cells). (D) Cell survival curves of SR3A, SR3A-13 and SR3A-14 cells exposed to radiation with or without FePt NPs.
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DHR123 staining. The total intracellular ROS level was 
higher in the combination treatment with FePt NPs and 
X-rays than those in the control, FePt NPs or X-rays alone 
groups (Figure 5B). Moreover, OCR was also attenuated 
in the same combination treatment as well (Figure 5C). 
These results demonstrated that FePt NPs enhanced radia-
tion sensitivity through ROS production and the lost func-
tion of mitochondria and was impacted by hCtr1 
overexpression, which further strengthened the important 
role of hCtr1 in FePt NPs-induced radiation sensitivity 
leading to cell killing.

FePt NPs Increases the Efficacy of 
Radiotherapy in SR3A-hCtr1-WT-Bearing 
Mice
The SR3A-hCtr1-WT cells xenograft tumor-bearing mouse 
model was used to evaluate the therapeutic efficacy of the 
FePt NPs as a radiation sensitizer in vivo. Figure 6A out-
lines the experimental treatment schedule. SR3A-hCtr1- 
WT cells were first injected into the flanks of SCID mice 
at day 0. When the tumor size reached approximately 50 ~ 

80 mm3, animals were randomly divided into four groups: 
groups (i) and (iii) were injected with PBS, whereas 
groups (ii) and (iv) were intravenously injected with FePt 
NPs dispersed in PBS solution. X-ray irradiation (6 Gy) 
was given to groups (iii) and (iv) 24 hours later, whereas 
groups (i) and (ii) were untreated. The tumor tissues were 
collected and evaluated by using H&E, iron and hCtr1 
staining. As expected, hCtr1 in the tumor tissues was 
highly expressed in both PBS and FePt NPs treated 
groups. However, the signal of ferric iron was only detect-
able in tissues from the FePt NPs-treated animals and 
correlated with hCtr1 expression (Figure 6B). In order to 
evaluate the effect of FePt NPs on tumor growth, we 
measured the volume of tumor and the body weight of 
mice daily for 24 days. At the end of experiment, tumor 
volume was increased about 19-fold in the PBS-treated 
mice, whereas in the FePt NPs alone- and X-rays alone- 
treated groups, tumor growth was modestly reduced. 
Tumor volume was most significantly reduced in the 
group of combined treatment with FePt NPs and X-rays, 
as compared with that in the untreated control 
(***P <0.01, Figure 6C). Moreover, since body weight is 

Figure 4 Elevated hCtr1 expression confers enhanced uptake/transport activity of FePt NPs and induces mitochondria dysfunction. (A) Western blotting analysis of γ-GCSh 
and hCtr1 protein levels in SR3A-hCtr1-WT cells. β-actin was used as a loading control. (B) The uptake/transport of 1 mg/mL FePt NPs for 24 hrs was significantly increased 
in SR3A-hCtr1-WT cells as compared with SR3A cells by ICP-OES measurement (***P < 0.001). Error bars represent ± S.D. (C) Representative TEM images of SR3A-hCtr1- 
WT cells treated with FePt NPs (left). Shown in the right is high-power view of image in red square demonstrating abnormal mitochondria in SR3A-hCtr1-WT cells with 
increasing membrane density and losing ridges after FePt NPs treatment (red arrowheads). (D) The OCR levels were significantly decreased in SR3A-hCtr1-WT cells 
treated with FePt NPs, in a time (left)- and concentration (right)-dependent manner.
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a common parameter for evaluating the treatment- 
associated toxicity to the animals, we found no significant 
change in body weight in all groups over the course 
(Figure 6D). The treatments were well tolerated by the 
animals. These results demonstrated that FePt NPs can 
enhance the efficacy of radiotherapy in animal model.

Discussion
In this study, we found the therapeutic value of FePt NPs 
as a radiation sensitizer in cancer cells, particularly in cells 
that overexpress hCtr1. hCtr1 overexpression confers 
enhanced uptake/transport of FePt NPs, accompanied 
with mitochondria morphology alteration and aerobic 

respiratory function loss. We further demonstrated that 
FePt NPs can increase the efficacy of radiotherapy through 
hCtr1 in SR3A-hCtr1-WT-bearing mice. Our current find-
ings of overcoming radiation resistance by FePt NPs 
through hCtr1 and mitochondrial disturbance may provide 
a novel strategy to improve the efficacy of radiation ther-
apy, as illustrated in Scheme 1.

FePt NPs have recently been revealed to be significant 
multifunctional materials. Investigations of the potential 
applications in the diagnostic and therapeutic fields of 
cancer have been carried out due to their excellent physi-
cochemical characteristics. Several studies were conducted 
investigating FePt NPs as dual MRI/CT imaging 

Figure 5 hCtr1 expression significantly enhances FePt NPs-induced radiosensitivity. (A) SR3A-hCtr1-WT cells were treated with 1 mg/mL FePt NPs for 24 hours then 
irradiated with or without X-rays. Clonogenic assay shows significant decrease of surviving colony numbers in the combination treatment (left). Surviving fractions in these 
treatments shown (right). (B) ROS was considerably increased after combined treatment of FePt NPs and X-rays in SR3A-hCtr1-WT cells. (C) OCR measured by Seahorse 
XF24 analyzer was markedly attenuated in SR3A-hCtr1-WT cells treated with FePt NPs and X-rays.
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contrast,21,28 drug delivery system,29 photothermic or 
hyperthermia agent,30 and chemo-radiation 
sensitizers.31,32 Our findings that FePt NPs can overcome 
radioresistance further support their roles in radiotherapy 
of cancer treatments. It was proposed that FePt NPs 
enhance the effect of radiation therapy by triggering apop-
tosis pathway through the augmentation of intracellular 
ROS accumulation.32 Our results suggest that the induced 
ROS may cause overwhelming mitochondrial damages 
that lead to cell death.

Another important observation described here is that 
elevated transport of FePt NPs is associated with mito-
chondrial damages and ROS burst that may serve as its 
major cellular lethal effects, particularly in conjunction 
with ionizing radiation. It has been reported that Fe2+ is 

produced by FePt NPs at lysosome during endocytosis 
which induces cellular stress and increases mitochondrial 
ROS to induce cell death.33 Likewise, exposure to ionizing 
radiation also causes abundant cell stress directly or indir-
ectly, due to the generation of ROS in mitochondria.34 

Excessive levels of ROS can alter mitochondrial mem-
brane permeability to disrupt the electron transport chain 
and cause imbalance of the intracellular redox system.35–37 

Therefore, combination of NPs with ionizing radiation 
triggering ROS burst that leads to mitochondrial dysfunc-
tion may be an effective approach for cancer treatment 
using FePt NPs/radiation strategy.38,39 Given that technical 
advancement of modern radiation therapy uses imaging 
guidance during radiation therapy to improve the precision 
and accuracy of treatment delivery, this is particularly 

Figure 6 Enhancement of radiation therapy efficacy by utilizing FePt NPs in SR3A-hCtr1-WT-bearing mice under various treatments. (A) Schematic drawing of experimental 
design for assessing the efficacy of FePt NPs and irradiation (6 Gy) in vivo. (B) Representative H&E and immunostainings of hCtr1 and iron in tumor tissues of SR3A-hCtr1- 
WT-bearing mice, square was the region magnified 400X in each tumor sections. (C) Tumor growth inhibition of SR3A-hCtr1-WT-subcutaneous xenograft. Growth 
reduction was seen in the FePt NPs- and X-rays irradiation-treated groups (*p < 0.05; **p < 0.01), but greater reduction was seen in the group of combined treatment with 
FePt NPs and X-rays (***P<0.01). Error bars represent ± S.D. (D) No significant changes of body weights of the mice among all the treatment groups.
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intriguing in light that FePt NPs are a perfect and potential 
duo-imagining agent that can be used in both MRI/CT- 
guided radiation therapy.

We took the advantage of using GSH-overproducing 
cells to investigate the roles of ROS in the effect of FePt 
NPs on radiation therapy in this study. GSH is the most 
abundant antioxidant found in living organisms to main-
tain cellular redox homeostasis. Elevated levels of GSH 
also confer resistance of chemotherapy and radiation in 
cancer cells.40,41 Studies revealed that cellular damages by 
radiation-induced ROS can be reduced by GSH.42 We used 
this cell model to entail that the radioresistance in these 
cells was contributed by the overexpressed GSH.43 But 
because these GSH-overproducing cells also upregulate 

hCtr1 expression due to the copper chelating function of 
GSH, this allows us to make an important finding that 
hCtr1 plays an important role in increasing FePt NPs 
uptake. Using cells transfected with hCtr1 recombinant 
alone conferred similar effects, which further supported 
this finding.

While we observed that hCtr1 is responsible for the 
enhanced FePt NPs transport, however, we do not believe 
that FePt NPs enter cells through the channel as described 
above for the following reasons: (i) the size of FePtNPs is 
apparently too big (6 nm) to pass through hCtr1 pore 
(about 8Å),44 and (ii) the unique intracellular behaviors 
and distributions of FePt NPs observed by TEM are also 
not consistent with the channel-related transport 

Scheme 1 The schematic illustration of the GSH-overexpressed small-cell lung cancer cells exhibit elevated expression of hCtr1 and are resistant to X-rays irradiation. 
Radiation resistance can be overcome by enhanced uptake/transport of FePt NPs due to the overexpressed hCtr1 through the mechanisms of ROS outburst and 
mitochondria dysfunction.
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mechanism. Internalization of FePt NPs by hCtr1- 
mediated endocytotic mechanism might result in its cyto-
plasmic confinement.23 Nonetheless, detailed mechanisms 
by which hCtr1-regulated FePt NPs delivery still require 
further investigation.

Finally, our present results that elevated hCtr1 can 
enhance combination therapy of FePt NPs and radiation 
may have important clinical implications. Our previous 
studies demonstrating that overexpression of hCtr1 was 
observed in about 70% of lung cancer tumors and hCtr1 
was a predictor of platinum-based chemotherapy response 
suggest that combination of FePtNPs and radiation may be 
suitable for treating human lung cancers.14 Moreover, 
many copper depletors have been approved for treating 
copper-deficient diseases such as Wilson’s disease. Recent 
clinical studies have shown promising results using Cu 
chelator (trientine) to upregulate hCtr1 in Pt-based cancer 
chemotherapy.45,46 These Cu chelators may improve the 
treatment efficacy of FePtNPs/radiation through enhanced 
hCtr1 expression. Overall, our results have potential for 
improving human cancer treatments.

Conclusion
In this study, we found that FePt NPs can be a radiation 
sensitizer in vitro and in vivo, particularly in tumors, 
which overexpress hCtr1. Overexpression of hCtr1 was 
responsible for the increased uptake of FePt NPs as 
demonstrated by using hCtr1-transfected parental SR3A 
cells. We also observed increased ROS and mitochondria 
morphology alteration with substantial reduction of oxy-
gen consumption rate in FePt NPs and IR-treated cells, 
indicating that structural and functional insults of mito-
chondria are the lethal mechanism of FePt NPs. Our 
results bear important implications that FePt NPs can 
potentially be a novel strategy to improve radiotherapeutic 
efficacy in hCtr1-overexpressing cancer cells via enhanced 
uptake and mitochondria targeting.
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