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Abstract: Breast cancer stem cells (BCSCs), also known as breast cancer initiating cells, are 
reported to be responsible for the initiation, progression, therapeutic resistance, and relapse 
of breast cancer. Conventional therapeutic agents mainly kill the bulk of breast tumor cells 
and fail to eliminate BCSCs, even enhancing the fraction of BCSCs in breast tumors 
sometimes. Therefore, it is essential to develop specific and effective methods of eliminating 
BCSCs that will enhance the efficacy of killing breast tumor cells and thereby, increase the 
survival rates and quality of life of breast cancer patients. Despite the availability of an 
increasing number of anti-BCSC agents, their clinical translations are hindered by many 
issues, such as instability, low bioavailability, and off-target effects. Nanosized drug delivery 
systems (NDDSs) have the potential to overcome the drawbacks of anti-BCSC agents by 
providing site-specific delivery and enhancing of the stability and bioavailability of the 
delivered agents. In this review, we first briefly introduce the strategies and agents used 
against BCSCs and then highlight the mechanism of action and therapeutic efficacy of 
several state-of-the-art NDDSs that can be used to treat breast cancer by eliminating BCSCs. 
Keywords: breast cancer stem cells, nanosized drug delivery systems, BCSCs, NDDSs, 
surface markers, signaling pathway, target

Introduction
Despite many advances in breast cancer therapy with the development of drugs 
targeting breast cancer cells, breast cancer still remains one of the major causes of 
patient deaths worldwide.1 Therapeutic resistance, recurrence, and metastasis are 
the leading challenges in breast cancer treatment.2 Accumulating evidence has 
demonstrated that breast cancer stem cells (BCSCs), also known as breast cancer 
initiating cells, are responsible for the poor prognosis of breast cancer; as they play 
key roles in the initiation, progression, therapeutic resistance, and recurrence of 
breast cancer.3–8 BCSCs possess specific markers that distinguish them from bulk 
tumor cells, such as the high expression of surface antigen cluster of differentiation 
44/low or negative expression of cluster of differentiation 24 (CD44+/CD24low/-),9 

high expression of CD133 (CD133+)10 and positive expression of aldehyde dehy
drogenase 1 (ALDH1+).11 Moreover, BCSCs are intrinsically drug resistant and 
often display high expression levels of drug efflux transporters and over-activation 
of anti-apoptotic signaling pathways.12–14 Besides, breast cancer treatment with 
conventional chemotherapy or radiotherapy can kill only bulk tumor cells and fail 
to eliminate BCSCs, possibly even enhancing the fraction of BCSCs in breast 
tumors. These residual BCSCs will become cancer cells in the future, and 
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consequently lead to tumor recurrence.15–17 In addition, 
BCSCs facilitate the metastasis of breast cancer by indu
cing the transformation of epithelial cancer cells to 
mesenchymal cancer cells, allowing them to spread easily 
to distant lesions.18 Therefore, it is crucial to eliminate 
BCSCs to enhance the efficacy of breast cancer treatment.

In recent years, many strategies have been proposed to 
eradicate BCSCs by blocking the signaling pathways 
related to BCSCs self-renewal such as Wnt/β-catenin,19 

Hedgehog (Hh),20 Notch,21 Hippo22 and transforming 
growth factor-β (TGF-β).23 Blockage of these pathways 
is designed to inhibit the proliferation and growth of breast 
tumors, target the breast tumor microenvironment to 
destroy the communication between BCSCs and 
cytokines,24–26 target the BCSC surface markers to locate 
and destroy BCSCs,27–30 and interfere with the 
differentiation31 or metabolism32,33 of BCSCs to render 
them more sensitive to conventional therapy. An increas
ing number of anti-BCSC agents have been proposed to 
treat breast cancer based on the above strategies, such as 
quercetin,34 sulforaphane,35 curcumin,36 salinomycin 
(SAL),37 nuclear factor-kappa B (NF-κB) short hairpin 
ribonucleic acid (shRNA),38 octamer 4 (Oct-4) small inter
fering RNA (siRNA),39 and microRNA-100 (miR-100).6 

However, similar to conventional chemotherapeutic drugs, 
most currently reported anti-BCSC agents have disadvan
tages such as poor solubility, low stability, high toxicity, 
unfavorable pharmacokinetics, and lack of tissue selective 
distribution,3 that restrict their clinical applications. In 
addition, these agents are potentially toxic to normal 
stem cells as BCSCs share properties with normal stem 
cells and conventional anti-BCSC agents cannot distin
guish them from normal stem cells.

Because of their site-specific delivery and enhanced drug 
stabilization, nanosized drug delivery systems (NDDSs) 
have shown significant promise in the delivery of anti- 
BCSC agents and have the potential to overcome the limita
tions of conventional anti-BCSC agents mentioned above. 
There are an increasing number of NDDSs used to deliver 
anti-BCSC agents, including polymeric nanoparticles,40 

micelles,41 liposomes,42 nanocomplexes,38 nanoprodrugs,43 

aptamer–conjugated deoxyribonucleic acid (DNA) 
nanotrains,16 single-walled carbon nanotube (SWCNT) 
nanocarriers,44 nanoexosomes,45 lipid–polymer hybrid 
nanoparticles,46 and nanocages.47 However, the clinical 
translation of these NDDSs is tough, as many challenges 
still remain unaddressed. In this review, we briefly introduce 
the strategies and agents used against BCSCs and then 

highlight the mechanism of action and therapeutic efficacy 
of several state-of-the-art NDDSs that can be used to treat 
breast cancer by eliminating BCSCs.

Current Treatment Strategies 
Against Breast Cancer by Inhibition 
of BCSCs
A growing body of research has shown that BCSCs 
account for breast cancer initiation, progression, recur
rence, and therapeutic resistance. In addition, BCSCs can 
self-renew and give rise to non-tumorigenic cancer 
cells.48,49 Therefore, it is necessary to completely elimi
nate BCSCs to successfully eradicate breast cancer. In 
recent years, many strategies to treat breast cancer by 
targeting BCSCs have been proposed, such as targeting 
BCSC surface markers,27,28,50 inhibiting BCSC-dependent 
signaling pathways,19–21,23 interfering with BCSC 
differentiation,31,51 targeting metabolism in BCSCs,52–54 

and targeting the breast tumor microenvironment.55,56 

Therapeutic strategies against breast cancer according to 
the characteristics of BCSCs are shown in Figure 1.

Targeting BCSC Surface Markers
The surface markers on cancer stem cells play a crucial role 
in the isolation, identification, diagnosis, and targeted ther
apy of cancer stem cells. Commonly used surface markers 
of BCSCs include CD44, CD133, and epithelial cell adhe
sion molecule (EpCAM). CD44 is a transmembrane protein 
that has been identified in many cancer stem cells, including 
BCSCs, and it plays a very important role in regulating the 
properties of BCSCs that involve self-renewal, tumor initia
tion, therapeutic resistance, and metastasis.27,50 The char
acteristic CD44 overexpression in BCSCs indicates that 
CD44 is a potential target in the treatment of BCSCs. 
Therefore, anti-CD44 with monoclonal antibodies or 
ligands may be promising strategies for eliminating 
BCSCs. P245, an anti-CD44 antibody, has been demon
strated to inhibit breast cancer growth and eliminate 
BCSCs in xenograft mouse models.57 Treatment with 
P245 prevented tumor recurrence in human breast cancer 
xenografts after treatment with doxorubicin (DOX) and 
cyclophosphamide.57 CD133, also known as prominin-1, 
is a five-transmembrane glycoprotein that is overexpressed 
in several types of cancers, such as breast cancer, ovarian 
cancer, and gastric carcinoma.28,58 As one among several 
surface markers of BCSCs, CD133 is critical for the survi
val and growth of BCSCs, and antibodies against CD133 
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can reduce the growth of BCSCs. It was demonstrated that 
the fusion protein dCD133KDEL represents a new biologi
cal assessment tool that can be used to determine the clinical 
significance of eradicating CD133+ cells.59 EpCAM (also 
known as CD326/ESA), a glycoprotein, is another molecu
lar target of BCSCs, and its overexpression may facilitate 
the proliferation, metastasis, and drug resistance of breast 
cancer cells.29,30 Kubo et al30 found that catumaxomab, an 
EpCAM antibody, combined with activated T-cells could 
eliminate EpCAM-positive triple-negative breast cancer 
cells and overcome the chemoresistance induced by these 
cells in vitro.

Inhibition of BCSC-Dependent Signaling 
Pathways
Dysregulation of signaling pathways plays an important 
role in rendering BCSCs capable of maintaining stem cell 
characteristics and facilitates the role of BCSCs in the 
development and progression of breast tumors.60,61 The 
major signaling pathways related to the maintenance, self- 
renewal, survival, and differentiation of BCSCs are Wnt/β- 
catenin,19 Hh,20 Notch,21 Hippo22 and TGF-β.23 Blocking 
these signaling pathways using inhibitors may be 
a potential strategy for BCSC-targeted therapies.

Wnt/β-Catenin Pathway
The Wnt/β-catenin signaling pathway regulates many phy
siological processes, such as self-renewal, growth, and 
regeneration of cells.62 After a Wnt ligand binds to a Wnt 
receptor, such as heterodimeric frizzled-7 (Fzd7) or low- 
density lipoprotein receptor-related protein 6 (LRP6), the 

Wnt pathway is activated and the signal is transferred to β- 
catenin through several downstream processes. Upon activa
tion, the dephosphorylated β-catenin enters the nucleus to 
activate Wnt target genes.63 This signaling pathway is upre
gulated in many cancers, including breast cancer, and is 
considered to be a key factor in the maintenance and self- 
renewal of BCSCs. Thus, selective targeting of Wnt/β- 
catenin signaling may be a strategy to eliminate BCSCs 
and reduce breast cancer aggressiveness. For instance, Jang 
et al7 demonstrated that Wnt/β-catenin signaling is relatively 
more active in BCSCs than in bulk tumor cells, which results 
in the therapeutic resistance of BCSCs. These investigators 
also designed CWP232228 (a small-molecule inhibitor) to 
antagonize β-catenin that binds to T-cell factor in the 
nucleus. Their results showed that CWP232228 can inhibit 
the growth of both BCSCs and bulk tumor cells. However, 
an interesting observation was that the BCSCs exhibited 
decreased growth than the bulk tumor cells, indicating that 
CWP23228 has some degree of selectivity toward BCSCs. 
In addition to small-molecule inhibitors, macromolecular 
agents such as antibodies have been reported to block the 
Wnt/β-catenin pathway. For example, Gurney et al64 

reported that vantictumab (a monoclonal antibody) inhibits 
tumor growth and reduces tumor-initiating cell frequency by 
interacting with five Fzd receptors to block canonical Wnt 
signaling.

Notch Signaling Pathway
An activated pathway in breast cancer cells namely, Notch 
signaling, plays a vital role in stem cell retention and 
differentiation and has attracted much attention in recent 

Figure 1 Strategies against breast cancer stem cells: (1) targeting BCSC surface markers; (2) inhibition of BCSC-dependent signaling pathways; (3) interfering the BCSC 
differentiation; (4) targeting metabolisms in BCSCs; (5) targeting the breast tumor microenvironments. 
Abbreviations: TAMs, tumor-associated macrophages; CAFs, cancer-associated fibroblasts; MSCs, mesenchymal stem cells.

International Journal of Nanomedicine 2021:16                                                                          submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
1489

Dovepress                                                                                                                                                                Lv et al

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


times, as a target to inhibit breast cancer relapse and 
metastasis by eradicating BCSCs.48,65 The Notch signal
ing pathway is activated by ligands (eg, Delta-like [DLL] 
1, 3, and 4; and Jagged [JAG]1 and 2) that binding to 
Notch receptors (Notch1-4).66,67 This binding results in 
cleavage of the Notch receptor by the enzyme γ-secretase 
to release the Notch intracellular domain (NICD). The 
released NICD translocates to the nucleus to activate 
Notch target genes. Therefore, inhibitors of γ-secretase 
and antagonists of Notch receptors or ligands have the 
potential to inhibit Notch activity in BCSCs. For example, 
Grudzien et al67 reported that BCSCs possess greater 
Notch signaling than bulk tumor cells, and they demon
strated a reduction in sphere formation, proliferation, and/ 
or colony formation in soft agar by blocking Notch sig
naling using pharmacological and genomic approaches 
(eg, by using MRK003, a γ-secretase inhibitor). 
Moreover, McClements et al68 reported that specific pep
tides (ALM201 and AD-01) inhibited BCSCs in both ER+ 

and ER− breast cancer by downregulating DLL4 and 
Notch 4;68 this study was the first to demonstrate the 
preclinical systemic activity of ALM201 and AD-01on 
breast cancer.

Hh Signaling Pathway
The Hh signaling pathway essentially regulates the main
tenance, self-renewal, survival, and proliferation of 
BCSCs.12,69,70 In this pathway, the binding of Hh ligand 
to the patched receptor of a neighboring cell reduces the 
inhibition of the transmembrane receptor protein 
Smoothened (Smo). Smo activation then leads to the 
release of the glioma-associated oncogene (Gli) family of 
transcription factors (Gli1/2/3), which undergo nuclear 
translocation to regulate the expression of Hh target 
genes. The overexpression of both Smo and Gli has been 
found in the BCSC subpopulation, therefore, Smo and Gli 
are potential targets for inhibiting the Hh signaling path
way to eliminate BCSCs.12,71 In this regard, GANT61, 
a Gli1/2 inhibitor, was reported to decrease the percentage 
of cancer stem cells and enhance the anti-mitogenic activ
ity of paclitaxel in several triple-negative breast cancer 
(TNBC) cell lines.72 This result implicated that GANT61 
as a potential therapeutic agent in TNBC. In addition, 
cyclopamine, the first Hh inhibitor to be identified, 
reduced the growth of breast cancer cells by binding to 
and inactivating Smo to suppress Gli1 expression.73 These 
results demonstrate that therapeutic agents with the ability 

to inhibit Smo and Gli exhibit the potential to reduce the 
percentage of BCSCs in breast tumor tissue.

Hippo Signaling Pathway
Hippo signaling is regulated by a network of core kinase 
cascades and is a key regulator of tumorigenesis and stem 
cell renewal.74 It was demonstrated that the dephosphor
ylation of yes-associated protein 1 (YAP1) and transcrip
tional co-activator with PDZ-binding motif (TAZ) results 
in their nuclear translocation, leading to the activation of 
Hippo target gene transcription.74 YAP1 and TAZ are 
reported to be overexpressed in BCSCs of metastatic 
breast cancer, and thus, could be potential targets for 
inhibiting the Hippo signaling pathway and reduce the 
percentage of BCSCs.75 Interestingly, Li et al76 reported 
that inhibiting the transcriptional activities of YAP1 and 
TAZ with apigenin, a naturally occurring compound, 
reduced the stemness of TNBC cells. This indicates that 
apigenin is a promising therapeutic agent for the treatment 
of TNBC patients showing high YAP/TAZ activity.

TGF-β Signaling Pathway
TGF-β is the prototype of the TGF-β family of growth and 
differentiation factors. TGF-β can facilitate the transforma
tion of cancer cells into cancer stem cells by the activation of 
epithelial–mesenchymal transition (EMT)–inducing tran
scription factors, resulting in drug resistance.77–80 Li et al78 

showed that the pleiotropic effects of TGF-β influence che
motherapeutic drug resistance by modulating EMT, stem
ness, and apoptosis. TGF-β signaling has also been reported 
to play a vital role in the maintenance and functioning of 
BCSCs.62,81 Therefore, targeting TGF-β signaling may be an 
effective strategy to treat breast cancer by inhibiting BCSCs. 
It was demonstrated by Liu et al81 that Gd–metallofullerenol- 
based nanomaterial could eradicate BCSCs by inhibiting 
TGF-β signaling under normoxic conditions and suppressing 
both hypoxia-inducible factor (HIF)-1α and TGF-β activities 
under hypoxic conditions. An even more exciting fact is that 
the metallofullerenol nanomaterial Gd@C82(OH)22 is 
essentially nontoxic to normal mammary epithelial cells 
and can inhibit breast tumor initiation and metastasis by 
eliminating BCSCs.

Inducing BCSC Differentiation
Differentiation was demonstrated by Warrel et al82 as an 
effective method of treating acute promyelocytic leukemia. 
In this study, after the patients were treated with all-trans 
retinoic acid (ATRA), it was found that their leukemic 
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promyelocytes failed to differentiate into mature granulo
cytes, indicating that preventing cancer stem cell differen
tiation maybe useful in the treatment of other cancers. 
Differentiation therapy targets cancer stem cells and alters 
their stemness to reduce the therapeutic resistance of can
cer. Sun et al31 demonstrated that a drug delivery system 
encapsulating ATRA and DOX effectively suppressed 
breast cancer by inducing BCSCs to differentiate into non- 
BCSCs, reducing their tumor initiation abilities and enhan
cing their sensitivity to DOX under the effect of ATRA. 
Pham et al51 showed that the knockdown of CD44 with 
shRNA using lentivirus particles differentiated BCSCs 
into non-BCSCs, increasing their susceptibility to both 
chemotherapy and radiation. This indicated that CD44 
knockdown is an effective strategy to eliminate the stem
ness of BCSCs and can be a potential strategy to treat 
breast cancer by targeting these cells.

Targeting Metabolism in BCSCs
Cancer stem cells exhibit specific metabolic properties, 
such as the metabolism of glucose and 
mevalonate.32,52,70 For example, hexokinase 2 (HK2), 
a very important kinase involved in glucose metabolism, 
is overexpressed in BCSCs.33,70 Thus, inhibiting HK2 is 
a potential method to eradicate BCSCs. In studies con
ducted previously, metformin (MET) has displayed anti- 
BCSC activity and enhanced the efficacy of chemotherapy 
in breast cancer by inhibiting HK2.53 Moreover, inhibiting 
the mevalonate metabolic pathway with hydroxy- 
3-methylglutaryl coenzyme A (HMG-CoA) reductase 
blockers apparently suppressed the growth of BCSCs.32 

As another example, SAL was reported to reduce the 
stemness of BCSCs by inhibiting the Wnt pathway, 
which is a known regulator of cell metabolism.83 It has 
also been reported that iron metabolism plays an essential 
role in cancer stem cells; therefore targeting iron metabo
lism may improve the therapeutic effect against many 
cancers, including breast cancer.54 These examples 
demonstrate that the characteristic metabolic properties 
of BCSCs could be used as targets to treat them.

Targeting the Tumor Microenvironment
The microenvironment in which BCSCs are located plays 
an essential role in maintaining the functions of these 
cells.24,84 This specific microenvironment is regulated by 
many factors such as mesenchymal stem cells (MSCs), 
immune cells, cancer-associated fibroblasts (CAFs), auto
crine signals, the extracellular matrix and vascular 

network, oxygen pressure, and nutrient levels. In addition, 
this microenvironment can generate BCSCs by inducing 
the characteristics of cancer stem cells in non-BCSC.55 It 
was reported that MSCs in breast tissue could expand from 
bone marrow-derived MSCs to regulate BCSCs by cyto
kine loops involving interleukin (IL)-6 and C-X-C motif 
ligand 7 (CXCL7) to expedite the growth of breast 
cancer.85 CAFs were found to produce high levels of 
chemokine (C-C motif) ligand 2 (CCL2) to stimulate 
stem cell-specific features in breast cancer cells,25 and 
CAFs were also found to regulate BCSCs via IL-6 and 
IL-8.26 Tumor-associated macrophages (TAMs), a type of 
immune cell, were reported to facilitate the generation of 
cancer stem cells by secreting tumor necrosis factor-α 
(TNF-α) and TGF-β,56 and promote BCSC phenotypes in 
murine breast cancer cells by affecting the epidermal 
growth factor receptor (EGFR)/signal transducer and acti
vator of transcription 3 (STAT3)/sex-determining region 
Y-box 2 (SOX2) signaling pathway.86 Mammary adipose 
tissues secrete adipokines to augment the features and 
proliferation of BCSCs.87 Thus, factors affecting the 
BCSC microenvironment are potential targets for eliminat
ing BCSCs to reduce the relapse, therapeutic resistance, 
and metastasis of breast cancer.

Agents Against BCSCs
Considering the effects of BCSCs on the initiation, main
tenance, development, relapse, therapeutic resistance, and 
metastasis of breast cancer, many agents have been pro
posed to eliminate BCSCs. These agents are divided into 
three categories according to their physicochemical prop
erties: small-molecule inhibitors/drugs, nucleic acid drugs, 
and protein drugs (Table 1).

Small-Molecule Inhibitors/Drugs
Small-molecule inhibitors/drugs account for the majority 
of current anti-BCSC agents. Quercetin suppressed the 
proliferation, self-renewal, and invasiveness of BCSCs in 
MDA-MB-231 cells by downregulating the expression of 
ALDH1 family, member A1 (ALDH1A1), 
C-X-C chemokine receptor type 4 (CXCR4), mucin 1 
(MUC1), and EpCAM.34 Sulforaphane inhibited BCSCs 
both in vitro and in vivo, as demonstrated by 
a mammosphere formation assay, ALDEFLUOR assay, 
and secondary tumor growth in mice; one potential 
mechanism is by downregulation of the Wnt/β-catenin 
pathway in BCSCs.35 It was reported that curcumin inhib
ited BCSCs by suppressing both the sonic hedgehog 
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Table 1 Agents Against BCSCs

Type Agents Mechanism of Action Status References

Small-molecular 
inhibitors/drugs

Lovastatin Inhibit SOX2 promoter transactivation In vitro [88]

Quercetin Low the expression of ALDH1A1, CXCR4, MUC1 and EpCAM In vitro [34,89]

Curcumin Suppress SHH and Wnt/β-catenin pathways In vitro [36]

Tocopherols Estrogen-dependent and Oct-4 mediated mechanisms In vitro [90]

Valproic acid An inhibitor of histone deacetylases In vitro [91]

GANT61 A Hh inhibitor In vitro [20]

Actinomycin D Down-regulation of Sox-2 In vitro [92]

Forskolin Activation of protein kinase A system (PKA) leads to mesenchymal-to- 
epithelial transition and loss of tumor-initiating ability

In vitro [93]

S2E Glutathione S-transferase omega 1 inhibitors In vitro [94]

Niclosamide Targets NF-κB, Wnt/β-catenin and Notch pathway of BCSCs In vivo [95]

Simvastatin Inhibition of mevalonate metabolism In vivo [32]

Sulforaphane Downregulate the Wnt/β-catenin pathway In vivo [35]

Cyclopamine Inhibitor of the Hh pathway In vivo [96]

Iadademstat Inhibitor of the lysine-specific demethylase 1 In vivo [97]

KU758, KU711 C-terminal heat shock protein 90 inhibitors In vivo [98]

Dasatinib A Src kinase family inhibitor In vivo [5]

BKM120 Inhibit the PI3K/Akt signaling pathway in SCs In vivo [99]

Pyrvinium pamoate WNT pathway inhibitor In vivo [100]

Mifepristone By down-regulating kruppel-like factor 5 expression In vivo [101]

Chloroquine Deregulation of janus kinase 2 and DNA methyltransferase 1 In vivo [102]

Kazinol-E Inhibitor of extracellular regulated protein kinases In vitro [103]

Salinomycin Result in the loss of expression of BCSC genes In vivo [37]

CWP232228 Inhibiting β-catenin-mediated transcription In vivo [7]

Apigenin Hippo pathway inhibitor In vivo [76]

Metformin Inhibit cellular transformation In vivo [104]

Thioridazine Targets dopamine receptor of BCSCs In vivo [105]

Vitamin D compounds (1α, 
25 (OH) 2D3, BXL0124)

Noth signaling pathway inhibitor In vivo [106]

Doxycycline Inhibitor of mitochondrial biogenesis Clinical pilot 
study

[107]

(Continued)
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Table 1 (Continued). 

Type Agents Mechanism of Action Status References

Nucleic acid miRNA-200c Reduce BCSCs by targeting B cell-specific moloney murine leukemia 
virus integration site1(BMI1)

In vitro [108]

miR-141 Reduce BCSCs by targeting signal transducer and activator of 
transcription 5 a (Stat5a)

In vitro [109]

miR-34c Inhibit BCSCs by targeting Notch4 In vitro [110]

miR-128 Inhibit BCSCs by targeting BMI1 and ATP Binding Cassette 
Transporter C5 (ABCC5)

In vitro [111]

miR-140 Inhibit BCSCs by targeting ALDH1 and SOX9 In vitro [112]

NF-κB shRNA Decrease mammosphere and colony formation and lower ALDH+ 

CSCs population
In vitro [38]

Let-7 Reduce BCSCs by targeting High mobility group AT-hook 2(HMGA2) In vivo [113]

miRNA-100 Attenuate expression of the CSCs regulatory genes SMARCA5, 
SMARCD1, and BMPR2.

In vivo [6]

miR-200b Inhibit BCSCs by targeting SUZ12, H3K27me3 of E-cadherin and other 
genes

In vivo [114]

miR-30 Inhibit BCSCs by targeting Ubc9 and ITGB3 In vivo [115]

miR-27a Inhibit BCSCs by targeting ZBTB10 In vivo [116]

miR-27b Inhibit BCSCs by targeting ENPP1 In vivo [117]

miR-7 Inhibit BCSCs by targeting KLF4, SETDB1 In vivo [118]

miR-34a Reduce BCSCs by targeting Notch1 In vivo [119]

integrin α9 gene Knockout of integrin α9 using CRISPR/Cas9 technology reduced 
TNBC cell cancer stem cell (CSC)-like property

In vivo [120]

YB-1 gene Knockout of YB-1gene using CRISPR/Cas9 technology inhibited the 
proliferation of BCSCs

In vivo [121]

Protein Cholera toxin Activation of PKA leads to mesenchymal-to-epithelial transition and 
loss of tumor-initiating ability

In vitro [93]

Trastuzumab Inhibit the HER-2 related BCSC-activating pathways In vivo [122]

PF-06647020 Inhibit Wnt signaling pathway In vivo [123]

OMP-18R5 Inhibit Wnt signaling pathway In vivo [64]

Cirmtuzumab Reduce activation of Rho-GTPases, Hippo-YAP/TAZ, or BMI1 In vivo [124]

Anti-CDH11 antibody Inhibit epithelial-to-mesenchymal transition and repressed cancer stem 
cell-like phenotype

In vivo [18]

TmSm(T34A) Down-regulating the expression of Cyclin D1 In vivo [125]

P245 Against the CD44 cell surface receptor In vivo [57]

RO5429083/RG7356 Modifications of the mitogen-activated protein kinase pathway In vivo [126]

B6H12.2 Blockade the function of CD47 In vivo [127]

dCD133KDEL Inhibition of CD133 In vivo [59]
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(SHH) and Wnt/β-catenin pathways, which play essential 
roles in maintaining the stemness of BCSCs.36 

A noncanonical Hh inhibitor, GANT61, was reported to 
downregulate the expression of GLi1, GLi2, and/or SHH 
to decrease the levels of BCSCs induced by estradiol in 
ER-positive breast cancer cells.20

Vitamin D compounds (1α,25[OH]2D3; BXL0124) 
were found to effectively reduce BCSCs in TNBC by 
repressing Notch1, Notch2, Notch3, JAG1, and JAG2 to 
inhibit the Notch signaling pathway in BCSCs106 Apigenin 
suppresses the stemness of BCSCs by targeting YAP and 
TAZ, two main downstream effectors of the Hippo path
way. This inhibits YAP/TAZ-TEAD complex activity, 
which is essential for tumor initiation and maintenance 
of the self-renewal ability of BCSCs.76 Simvastatin, an 
inhibitor of HMG-CoA reductase, blocks the biosynthesis 
of mevalonic acid to reduce BCSCs both in vitro and 
in vivo.32

Chloroquine, an autophagic inhibitor, reduces BCSCs 
in TNBC by inhibiting the Janus-activated kinase 2 
(JAK2)-STAT3 signaling pathway, which sensitizes 
TNBC stem cells to paclitaxel by inhibiting 
autophagy.102 By activating protein kinase A, forskolin 
induces EMT in mammary epithelial cells, which causes 
them to lose the ability to initiate tumors and sensitizes 
them (in vitro) to conventional chemotherapeutic agents, 
such as DOX.93 SAL was shown to inhibit mammary 
tumor growth and reduce the proportion of BCSCs, and 
its effect was more than 100 times that of paclitaxel.37 

A clinical pilot study by Scatena et al107 found that dox
ycycline, an Food and Drug Administration (FDA)- 
approved antibiotic, could reduce BCSC markers (CD44 
and ALAH1) and eliminate BCSCs in breast cancer 
patients by inhibiting the mitochondrial-related proteins 
that were overexpressed in many cancer stem cells, includ
ing BCSCs. However, the authors emphasized that addi
tional clinical studies with larger numbers of patients will 
be needed to validate this promising pilot study. In gen
eral, there have been many reports about small-molecule 
agents with anti-BCSC capabilities, but most of these 
studies were in the preclinical stages. More research is 
needed to confirm the anti-BCSC effects of these agents 
and reduce the toxicities induced by their nonselective 
distribution in vivo.

Nucleic Acid Drugs
Gene therapy is a potential method to target BCSCs. In 
theory, downregulation of BCSC surface markers or 

blockade of signaling pathways using siRNA, shRNA, or 
miRNA agents has the potential to suppress the function of 
BCSCs. For example, NF-κB shRNA was reported to 
decrease the percentage of ALDH+ BCSCs and mammo
sphere colony formations.38 Hu et al39 found that Oct-4 
gene suppression by Otc-4 siRNA induced BCSC apopto
sis via inhibition of the Oct-4/Tcl1/Akt1 signaling path
way. miRNAs, post-transcriptional regulators of various 
cellular functions, have also been reported as potential 
anticancer agents. Elevating the expression of miR-100 
was shown to decrease the production of BCSCs by 
attenuating the expression of the cancer stem cell regula
tory gene (SWI/SNF-Related Matrix-Associated Actin- 
Dependent Regulator of Chromatin Subfamily D Member 
1, SMARCD1) and bone morphogenetic protein receptor 
type 2 (BMPR2).6 miR-34a, a tumor-suppressor miRNA, 
has the capacity to affect the properties of BCSCs and 
enhance their susceptibility to doxorubicin treatment by 
targeting Notch1.119

In addition to siRNA, shRNA, and miRNA, gene edit
ing technologies, especially the CRISPR/Cas9 genome- 
editing system, have generated enormous interest in the 
field of gene therapy.128,129 This technology provides 
a robust tool to generate knockout cells or animal models 
quickly, exhibiting great potential for applications in the 
treatment of cancer.130 For instance, Wang et al120 

knocked out integrin α 9 (ITGA9) in TNBC cells using 
CRISPR/Cas9 technology and found that ITGA9 knockout 
noticeably attenuated the properties of BCSCs in TNBC 
cells and the angiogenesis, growth, and metastasis of 
tumors by promoting β-catenin degradation. Yang et al121 

using CRISPR/Cas9 to knock out the Y-box binding pro
tein 1 (YB-1) gene, found that YB-1 deletion inhibited the 
proliferation of BCSCs, leading to cell cycle arrest and 
apoptosis, and induced irreversible differentiation of can
cer stem cells. This indicates that YB-1 plays an important 
role in maintaining the stemness of BCSCs and reverting 
the differentiated tumor cells back to cancer stem cells.

Protein Drugs
Protein drugs, especially antibodies, are being explored to 
suppress BCSCs by targeting their surface markers or 
various signaling pathways. For instance, OMP-185R, 
a monoclonal antibody, suppressed canonical Wnt signal
ing by blocking the Fzd receptor family to reduce the 
growth of many tumors (including breast cancer tumors) 
and the frequency of tumor-initiating cells.64 P245 mAb, 
which targets CD44, reduced the growth and prevented 
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recurrence of tumors in human breast cancer xenografts. 
These effects were believed to be attributed to the induc
tion of antiproliferative cytokines.57 The recombinant pro
tein TmSm (T34A) was demonstrated to prevent the 
proliferation and growth of BCSCs by downregulating 
the expression of cyclin D1 and significantly inducing 
the apoptosis of BCSCs.125

Problems of Current BCSC-Specific 
Agents
Although obvious progress has been achieved with 
BCSC-specific agents, some serious challenges still 
remain. First, similar to conventional chemotherapeutic 
drugs, BCSC-specific agents may possess characteris
tics that are undesirable in vivo. For instance, accu
mulating evidence has demonstrated that miRNA, 
siRNA, and shRNA have great potential to be used 
as anti-BCSC agents; however, RNA-based therapies 
are limited by many obstacles in vivo including their 
degradation in blood, poor cellular uptake, and poten
tial systemic toxicity, the latter of which results from 
poor tissue targeting.38,132,133 The clinical applications 
of certain anti-BCSC agents, such as curcumin and 
quercetin, have been limited because of their poor 
absorption and rapid metabolism.34,41,89,134 Second, 
BCSCs share many characteristics (such as self- 
renewal and quiescence) with normal stem cells. 
Moreover, none of the presently reported anti-BCSC 
agents can distinguish BCSCs from normal stem cells; 
therefore, these agents are potentially toxic to normal 
stem cells. For instance, although most γ-secretase 
inhibitors show anti-BCSC properties, they may con
comitantly damage normal stem cells.12,60,63,135,136

NDDSs Against BCSCs
There is an urgent need to solve the problems of current 
anti-BCSC agents, such as poor solubility, instability, 
unfavorable biodistribution, and high toxicity induced 
by off-target effects.3,130,137 NDDSs have the potential 
to address this need. NDDSs can passively target tumor 
tissues owing to their enhanced permeability and reten
tion (EPR) effects. Moreover, the BCSC-targeted effects 
of NDDSs can be further enhanced by their surface 
modification with suitable ligands that interact with 
overexpressed receptors on the surface of BCSCs. 
A deeper understanding of the biology of BCSCs and 
numerous advances in nanotechnology have resulted in 

increasing numbers of NDDSs being developed to treat 
breast cancer by eliminating BCSCs. The delivery stra
tegies of NDDSs against BCSCs mainly include: deliv
ery of anti-BCSC agents to tumors; combinational 
delivery of chemotherapeutics and anti-BCSC agents to 
tumors; active-targeted delivery of anti-BCSC agents 
and/or chemotherapeutics agents to tumors. In this sec
tion, NDDS-targeted BCSCs are summarized and cate
gorized in Tables 2–4, according to their cargo delivery 
and modifications.

Delivery of Chemotherapeutic Agents to 
BCSCs
Most properties of the currently reported BCSC-specific 
chemotherapeutic agents are undesirable in vivo and are 
similar to those of traditional chemotherapeutic agents. 
One application of NDDSs is to qualify therapeutic agents 
and drug candidates; Table 2 displays an overview of the 
NDDSs that have been used to deliver BCSC-specific 
chemotherapeutic agents. For example, curcumin, 
a polyphenol derived from the ancient Asian spice tur
meric, has been reported to target cancer stem cells by 
downregulating signaling pathways such as Wnt, Notch1, 
and NF-κB, and reducing the expression of ALDH, 
a marker of cancer stem cells.171–173 However, its clinical 
development has been restricted by its hydrophobicity, 
poor in vivo stability, and rapid metabolism. Gülçür et al41 

developed a novel nanomicellar formulation of curcumin 
to overcome these shortcomings. Encapsulating curcumin 
in sterically stabilized micelles (C-SSM) significantly 
enhanced its aqueous solubility and stability. 
Furthermore, curcumin-encapsulated C-SSM clearly 
enhanced the efficacy of curcumin against both breast 
cancer cells and BCSCs.

Wedelolactone, an active polyphenolic compound of 
Sphagneticola calendulacea and Eclipta prostrata,174 was 
demonstrated to kill many cancer cells—including breast 
cancer cells—but its disadvantages, such as poor solubility 
and bioavailability, restrict its clinical application.40,175 

Das et al40 formulated wedelolactone-encapsulated poly 
(lactic-co-glycolic acid) (PLGA) nanoparticles (nWdl) to 
target BCSCs and overcome their shortcomings. nWdl was 
shown to sensitize BCSCs to the effects of wedelolactone 
by downregulating SOX2 and adenosine-triphosphate 
(ATP)-binding cassette super-family G member 2 
(ABCG2).
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SAL, a polyether ionophore antibiotic, has demon
strated great potential in eliminating BCSCs, but its clin
ical application is hindered by its poor aqueous solubility 
and severe systemic toxicity.83,139,176,177 Considering the 
need for an efficient drug while reducing potential damage 
to normal tissues, Zhao et al139 developed biocompatible 
gold nanoparticles coated with poly(ethylene glycol) 
(PEG) that were conjugated with SAL. These SAL- 
loaded gold nanoparticles enhanced the therapeutic 

efficacy of SAL against BCSCs derived from a CD24low/ 
CD44high subpopulation.

MET, an anti-type 2 diabetic drug, was reported to affect 
breast cancer at low dosages by targeting BCSCs; however, its 
anti-breast cancer efficacy is hindered by its low bioavailabil
ity and nonselective biodistribution. Lee et al42 demonstrated 
that MET-encapsulated trastuzumab-conjugated immunolipo
somes (Her-LP-MET) could target BCSCs and inhibit both 
their proliferation and migration. The combination of Her-LP- 

Table 2 Delivery of BCSC-Specific Small Molecular Agents

Ligand/Receptor Therapeutic 
Agent

Drug Delivery System Status References

Chloroquine Triphenylphosphonium-functionalized hyperbranched 

polymer nanocarrier

In vitro [138]

Salinomycin Gold nanoparticles (AuNPs) coated with poly(ethylene 

glycol)

In vitro [139]

Doxorubicin DOX-Hyd@AuNPs nanoparticles In vivo [13]

CRLX101 Camptothecin-containing nanoparticle-drug conjugate In vivo [140]

Wedelolactone PLGA nanoparticle In vivo [40]

Zileuton™ Pluronic® F127 polymer micelles In vivo [141]

Cyclopamine Liquid–lipid nanoparticles In vivo [96]

Doxorubicin Pluronic polymeric micelles In vivo [142]

All-trans retinoic 

acid

Stealth liposomes In vivo [143]

Vasoactive intestinal peptide/VIP 

receptors

Curcumin DSPE-PEG2000 nanomicelles In vitro [41]

Ferritin/transferritin receptor 1 Mertansine Biomimetic nanocages of apoferritin In vitro [144]

Chitosan/CD44 Doxorubicin Pluronic F127 cross-linked and surface-decorated with 

chitosan nanoparticles

In vivo [145]

Glucose/glucose transporter 1 γ-secretase 

inhibitors

MSN-PEI-Gluc Nanoparticle In vivo [146]

HA/CD44; DCLK1 monoclonal 

antibody/DCLK1

Doxorubicin HA and DCLK1monoclonal antibody modified PLGA 

nanoparticles

In vivo [147]

Anti-CD133;TAT peptides/CD33 Tirapazamine Mesoporous silica nanoparticle (MSN) In vivo [148]

RGD/integrin alpha5 (ITGA5) Diacidic 
norcantharidin

Lipid-polymer hybrid (LPH) nanoparticle In vivo [46]

CD44 antibody/CD44 Hsp90 inhibitor CD44-Fe3O4@SiNPs In vivo [149]

F3 peptide/nucleolin Doxorubicin Liposomes functionalized with the nucleolin-binding F3 

peptide

In vivo [150]

EpCAM aptamer/EpCAM protein Aspirin Nanoexosomes In vivo [45]

Herceptin/Her-2 Metformin Herceptin-Conjugated Liposome In vivo [42]
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MET with free DOX resulted in better breast tumor remission 
than treatment with only free DOX.

It was suggested by Sun et al13 that rationally 
designed drug delivery systems could significantly 
enhance the cancer stem cell therapy of conventional 
chemotherapeutic drugs such as DOX by delivering 
these drugs into cancer stem cells. They formulated 
DOX-tethered gold nanoparticles (DOX-Hyd@AuNPs) 
and demonstrated that DOX-Hyd@AuNPs could inhibit 
the growth of breast cancer without increasing the 
BCSC subpopulation in the tumor by delivering more 
DOX into the BCSCs. This process overcame the 
intrinsic resistance of BCSCs arising from 
P-glycoprotein (P-gp) drug efflux.

Delivery of Nucleic Acid Therapeutics to 
BCSCs
In addition to increasing the solubilization of low- 
solubility drugs, NDDSs have the capacity to enhance 
the stability and cellular uptake of macromolecules such 
as siRNA, shRNA, and miRNA which could potentially 
treat cancer.130,178 AKT2, a major downstream effector of 
the phosphatidylinositol 3-kinase (PI3K) pathway, was 
reported to be associated with cancer stem cell tumorigeni
city and the malignant phenotype of cancer cells.179–181 

The silencing of AKT2 with siRNA has the potential to 
inhibit the development and recurrence of tumors. 
Nevertheless, the rapid degradation and poor cellular 
uptake of siRNA are challenges for siRNA-based thera
pies. Using NDDSs to deliver siRNA may be a promising 
strategy to increase the stability and cellular delivery of 
siRNA. Rafael et al152 developed an innovative nanocar
rier system composed of Pluronic® F127-based micelles 
associated with polyethylenimine (PEI)-based polyplexes 

to deliver AKT2 siRNA. This AKT2-siRNA delivery sys
tem displayed strong suppressive effects on BCSCs migra
tion and invasion in breast cancer.

NF-κB plays an important role in maintaining the 
properties of BCSCs in various types of breast 
cancer.182,183 Therefore, it is possible to target BCSCs by 
downregulating the expression of NF-κB proteins using 
RNA interference, including siRNA and shRNA. 
Compared to siRNA, shRNA is more stable; it is a double- 
stranded RNA molecule with a tight hairpin structure.184 

Ke et al38 synthesized a carbamate-mannose-modified PEI 
(CMP) for the targeted delivery of NF-κB shRNA to 
BCSCs. These CMP/NF-κB-targeted shRNA nanocom
plexes were demonstrated to reduce the percentage of 
BCSCs, inhibit the formation of mammospheres and colo
nies, suppress the migration and invasion of breast cancer 
cells, and sensitize breast cancer cells to treatment with 
doxorubicin-loaded micellar nanoparticles.

miRNAs are essential post-transcriptional regulators of 
many cellular functions. miR-34a is a tumor-suppressor 
miRNA that has been reported to have the capacity to 
attenuate the properties of BCSCs.119 Lin et al151 estab
lished a human telomerase reverse transcriptase (hTERT) 
promoter-driven VP16-Gal4-WPRE integrated systemic 
amplifier (VISA) delivery system for miR-34a (TV-miR 
-34a) plasmid. They demonstrated that TV-miR-34a 
clearly eliminated BCSCs both in vitro and in vivo in 
a safe and efficient way and showed increased therapeutic 
efficacy toward breast cancer cells in combination with 
docetaxel. Further mechanistic studies revealed that TV- 
miR-34a attenuated BCSC properties, promoted adher
ence, and boosted the differentiation of BCSCs by directly 
targeting chromosome 22 open reading frame 28 
(C22ORF28).

Table 3 Delivery of BCSC-Specific Nucleic Acid Drugs

Ligand/Receptor Therapeutic Agent Drug Delivery System Status References

NF-κB shRNA Carbamate-mannose modified PEI In vitro [38]

miR-34a hTERT promoter-driven VISA nanoparticle In vivo [151]

AKT2 siRNA Pluronic® F127 micelles with polyplexes In vivo [152]

Anti-HER2 nanobody/ 

HER2

Apoptosis-inducing tBid 

gene

Anti-HER2 nanobody (Nb)-conjugated polyamidoamine 

(PAMAM) polyplexes

In vitro [153]

APTEDB/EDB-FN EDBsiRNA Liposomal system (APTEDB-LS-siRNAEDB) In vivo [154]

Glucose/glucose 
transporter 1

Polo-like kinase 1 (PLK1) 
siRNA

Glucose-installed targeted nanoparticles In vivo [155]
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Combinational Delivery of 
Chemotherapeutics and Cancer Stem 
Cell-Specific Agents
An increasing amount of evidence indicates that tumors 
are heterogeneous tissues with different types of cells, 
such as cancer stem cells and non-cancer stem cells.137 

Some therapeutic agents have been reported to eliminate 
cancer stem cells; however, cancer cells can also sponta
neously transition to cancer stem cells; thus, the depletion 
of cancer stem cells alone is neither sufficient nor effective 
as a therapeutic measure.3,130,185 Instead of targeting only 
cancer stem cells or non-cancer stem cells, combination 
strategies designed to simultaneously eradicate both cell 

Table 4 Combinational Delivery of Chemotherapeutics and CSC-Specific Agents

Ligand/Receptor Therapeutic Agent Drug Delivery System Status References

GANT61+Curcumin PLGA NPs In vitro [156]

Camptothecin+GRP78 

siRNA/CLUsiRNA

DOTAP liposomes In vitro [157]

miRNA-200c+Paclitaxel Solid lipid nanoparticles In vitro [158]

Salinomycin+Doxorubicin Cross-linked multilamellar liposomal In vivo [159]

All-trans-retinoic acid 

+Doxorubicin

Poly(ethylene glycol)-block-polylactide (PEG-b-PLA) In vivo [31]

Staurosporine+Epirubicin PEG-b-poly(aspartate-hydrazide-epirubicin) copolymer In vivo [160]

siBMI-1+Docetaxel Ationic-lipid-assisted nanoparticles PEG5Kb- 
PLGA12K;cationic lipid BHEM-Chol

In vivo [17]

Doxorubicin+SN38 PEG-CH=N-DOX prodrug In vivo [43]

Curcumin+Doxorubicin mPEG-PLGA-Pglu nanoparticle In vivo [15]

Docetaxel+Salinomycin PLGA/TPGS nanoparticle In vivo [161]

Doxorubicin+Hymoquinone Cockle shell-derived aragonite CaCO3 nanoparticles In vivo [162]

Paclitaxel+Thioridazine 

+HY19991

Enzyme/pH dual-sensitive nanoparticle with a micelle- 

liposome double-layer structure

In vivo [163]

HA/CD44 Salinomycin+Paclitaxel PLGA nanoparticle In vitro [164]

HA/CD44 Doxorubicin+ tariquidar dendritic polyglycerol-conjugated, mesoporous silica-based 

targeting nanocarriers

In vitro [165]

oHA/CD44 Curcumin+Paclitaxel Double pH-sensitive nano-eggs In vivo [166]

HA/CD44 Doxorubicin+irinotecan Hyaluronic acid-decorated dual responsive nanoparticles In vivo [167]

CD44 antibody/CD44 Paclitaxel+Salinomycin Single-walled carbon nanotubes In vivo [44]

HA/CD44 Doxorubicin+ICG HA-hyaluronan-decorated fullerene-silica In vivo [168]

HA/CD44 Paclitaxel+Curcumin HA-HAD-PLGA nanoparticles In vivo [169]

Ferritin/Transferritin 

receptor 1

Epirubicin+DIR Biomimetic nanocages of apoferritin In vivo [47]

CD44 aptamer TA6/ 
CD44

Doxorubicin+AKT inhibitor 
peptide

Aptamer-conjugated DNA nanotrain TA6NT-AKTin-DOX In vivo [16]

HA/CD44 Doxorubicin+Cyclopamine Hyaluronic acid functional amphipathic and redox-responsive 
polymer particles

In vivo [170]
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types may have the potential to improve therapeutic out
comes. Table 4 shows representative reports about combi
nation strategies that target both cancer and non-cancer 
stem cells.

To eradicate both breast cancer cells and BCSCs, 
Kim et al159 developed cross-linked multilamellar liposomal 
vesicles (cMLVs) to co-deliver DOX (a conventional che
motherapeutic drug) and SAL (an inhibitor of BCSCs), produ
cing cMLV(DOX+SAL) particles. The antitumor results of 
cMLV(DOX+SAL) in vitro and in vivo demonstrated that 
the co-delivery of DOX and SAL in a single cMLV greatly 
inhibited both breast cancer cells and BCSCs, which may be 
attributed to the simultaneous delivery of the two drugs to the 
tumor tissue by cMLV(DOX+SAL).159 Similarly, Zhang et al
160 evaluated the therapeutic efficacy of micelles that were co- 
loaded with the cytotoxic drug epirubicin (EPI) and the BCSC 
inhibitor staurosporine (STS) to treat breast cancers, especially 
when the tumors recurred after traditional chemotherapy. 
Theses results demonstrated that the STS/EPI-loaded micelles 
can potentially treat naïve orthotopic 4T1-luc breast tumors 
and their recurrent EPI-resistant counterparts by suppressing 
breast cancer cells together with the BCSC-associated subpo
pulation, such as the ALDH+ and CD44+/CD24− 

subpopulations.
NDDSs have co-delivered various traditional che

motherapeutic drugs with different antitumor mechanisms 
and exhibited the potential to eliminate both BCSCs and 
non-BCSCs. For instance, Sun et al43 developed a cargo- 
free and pH-responsive nanomedicine for the co-delivery 
of a pH-responsive prodrug of DOX and 7-Ethyl-10- 
hydroxycamptothecin (SN38) to target breast cancer. The 
results showed that this nanomedicine significantly 
increased drug accumulation at the tumor site and simul
taneously eradicated both BCSCs and non-BCSCs to 
achieve a superior antitumor efficacy in vivo. The excel
lent anti-BCSC capability of this developed nanomedicine 
may be attributed to the suppression of topoisomerase 
I (TOP I) and TOP II by DOX and SN38, respectively. 
Similarly, Wang et al167 developed a nanoparticle loaded 
with DOX and irinotecan to inhibit both TOP I and TOP 
II, and the results showed that this co-delivery system 
noticeably enhanced the eradication of BCSCs with no 
evident systemic toxicity both in vitro and in vivo.

NDDSs can also be used for the co-delivery of traditional 
chemotherapeutic agents and nucleic acid agents such as 
siRNA, shRNA, and miRNA. For example, Chen et al17 

designed cationic-lipid-assisted nanoparticles to co- 
encapsulate docetaxel (DTXL, a traditional 

chemotherapeutic agent) and an siRNA targeting BMI-1 
(siBMI-1, a nucleic acid agent) by the double emulsion 
method, producing DTXLNPsiBMI-1 nanoparticles. These 
nanoparticles could effectively deliver therapeutic agents to 
both bulk cancer cells and BCSCs to produce combinational 
effects in the treatment of breast cancer. The bulk cancer cells 
were killed by DTXL and the expression of BMI-1 in the 
BCSCs was downregulated by siBMI-1, thereby eliminating 
them by enhancing their chemosensitivity to DTXL by redu
cing stemness. In the MDA-MB-231 xenograft model, DTX 

LNPsiBMI-1 completely inhibited tumor growth and prevented 
recurrence, which was attributed to its capacity to kill both 
bulk cancer cells and BCSCs. Similarly, Samson et al157 

developed glucose-regulated protein 78 (GRP78)-targeted 
1,2-dioleoyloxy-3-trimethylammoniumpropane (DOTAP) 
liposomes to deliver either camptothecin (CPT) and GRP78 
siRNA (named DOTAP-CPT-siGRP78) or CPT and clusterin 
(CLU) siRNA (named DOTAP-CPT-siCLU). Both DOTAP- 
CPT-siGRP78 and DOTAP-CPT-siCLU exhibited stronger 
breast cancer cell- and BCSC-targeted activities than free 
CPT, confirming the synergistic effects of co-delivering 
anticancer drugs and siRNAs.

Additionally, NDDSs were explored to co-deliver pro
tein agents targeting BCSCs and traditional chemothera
peutic agents to treat breast cancer. For instance, Xu et al16 

designed and prepared an aptamer-conjugated DNA nano
train for the co-delivery of DOX and AKTin (an AKT 
inhibitor peptide); this drug delivery system was named 
TA6NT-AKTin-DOX. The efficacy of TA6NT-AKTin- 
DOX was evaluated on MCF-7 BCSCs and tumors gener
ated by injecting BCSCs into nude mice. The results 
demonstrated that TA6NT-AKTin-DOX exhibited better 
efficacy than free DOX and various DNA nanotrains 
both in vitro and in vivo. The synergistic response of 
TA6NT-AKTin-DOX may be explained by AKTin, 
which can overcome the drug resistance of BCSCs via 
inhibition of the AKT signaling pathway.16

Moreover, multiple therapeutic agents with various antic
ancer mechanisms can be co-encapsulated in a single NDDSs 
with a high capacity to synergistically kill tumors. For exam
ple, paclitaxel (PTX, a chemotherapeutic agent), thioridazine 
(THZ, an anti-BCSC agent), and HY1991 (HY, 
a programmed cell death 1 [PD-1]/programmed cell death 
ligand 1 [PD-L1] inhibitor) were incorporated into an 
enzyme/pH dual-sensitive nanoparticle with a micelle- 
liposome double-layer structure. This PTX/THZ/HY-co- 
loaded drug delivery system displayed excellent anti-breast 
cancer efficacy and prolonged the lifespan of tumor-bearing 
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mice. This observation was attributed to the combination of 
chemotherapy, anti-BCSC therapy, and immune checkpoint 
blockade therapy.163

Active-Targeting NDDSs
The BCSC-targeting capacity of NDDSs can be further 
increased by surface modification of the NDDSs with 
suitable ligands that can interact with overexpressed cell- 
surface proteins on the BCSCs, such as CD44, EpCAM, 
integrin α5 (ITGA5), extra domain B of fibronectin (EDB- 
FN), transferrin receptor 1 (TfR1), and scavenger receptor 
class A membrane 5 (SCARA5). This should achieve 
active-targeting drug delivery, by enhancing the accumula
tion of drugs in targeted cells and reducing off-target 
effects.

For instance, Al Faraj et al44 demonstrated that mod
ification with CD44 antibody significantly enhanced SAL 
and PTX-conjugated SWCNT nanocarrier accumulation in 
both breast cancer cells and BCSCs in a xenograft murine 
model, providing a potential method for the effective 
treatment of breast cancer by targeting and eliminating 
both tumor cell and BCSC populations. Hyaluronic acid 
and chitosan were also reported to be CD44 ligands and 
could be used for the active targeting of CD44- 
overexpressing cells. For example, Yang et al169 fabri
cated a hyaluronic acid lipoid by attaching a lipoid to the 
surface of PLGA nanoparticles to construct a vehicle for 
co-delivering PTX and curcumin to BCSCs. Owing to the 
interaction between hyaluronic acid of the fabricated 
lipoid and the cell-surface CD44 receptors on the 
BCSCs, it was shown that the BCSC-targeting ability of 
the fabricated hyaluronic acid lipoid were significantly 
enhanced, which allowed the fabricated lipoid to suppress 
the proliferation and migration of BCSCs. Moreover, the 
fabricated hyaluronic acid lipoid displayed excellent antic
ancer effects against MCF-7 xenograft tumor models by 
simultaneously suppressing the growth of breast cancer 
cells and BCSCs. Similarly, Rao et al145 formulated DOX- 
loaded polymeric nanoparticles decorated with chitosan 
on their surface to target the overexpressed CD44 recep
tors on tumor reinitiating cancer stem-like cells. The nano
particles enhanced six times of cytotoxicities compared 
with free doxorubicin for the eradication of CD44+ cancer 
stem-like cells in 3D mammary tumor spheroids, and 
reduced tumor size with no obvious systemic toxicity in 
an orthotopic xenograft model by significantly increasing 
DOX accumulation in the tumors while reducing it in 
normal organs.

EpCAM is a surface marker on cancer stem cells that 
can be used to target them.29,30 For instance, Tran et al45 

comprehensively studied the antitumor effects of nanoa
morphous aspirin-loaded exosomes and showed that they 
had an unprecedented cancer stem cell eradication capa
city. These authors also modified the exosomes with an 
aptamer specifically targeting EpCAM, which they found 
could further enhance the active-targeting ability of the 
exosomes.

The canonical Wnt/β-catenin pathway plays essential 
roles in the generation and maintenance of both cancer and 
normal stem cells. Thus, cancer therapy using inhibitors of 
the Wnt/β-catenin pathway may be toxic to normal stem 
cells. To achieve the specific inhibition of β-catenin in 
cancer cells, Li et al46 proposed a strategy to suppress 
the stemness and metastasis of TNBC by developing an 
ITGA5-targeting lipid–polymer hybrid (LPH) nanoparticle 
modified with an ITGA5 ligand (a commercialized RGD 
motif, Arg-Gly-Asp) for the TNBC-targeted delivery of 
diacidic norcantharidin (NCTD). The developed RGD- 
decorated LPH nanoparticles significantly enhanced the 
accumulation of the delivered drug in orthotopic mam
mary TNBC tumors and lung metastatic tumors in nude 
mice. The nanoparticles also reduced the growth and 
metastasis of TNBC compared to that of free NCTD and 
non-modified LPH nanoparticles by downregulating β- 
catenin.

EDB-FN plays essential roles in the maintenance and 
growth of BCSCs, as well as in the expression of genes 
encoding surface markers on BCSCs and controlling their 
self-renewal.154 Therefore, EDB-FN may be used as 
a biomarker for both targeting and treating BCSCs. 
APTEDB, an EDB-FN-specific peptide, was used as 
a cancer-targeting ligand by Sun et al154 to modify lipo
somes encapsulating EDB-FN siRNAs, forming 
a liposomal system (APTEDB-LS-siRNAEDB) with the 
potential to simultaneously target and knockdown EDB- 
FN in breast cancer treatment. It was found that APTEDB- 
LS-siRNAEDB significantly increased the accumulation 
and cellular uptake of the delivered EDB-FN siRNA in 
EDB-FN-positive BCSCs in cultured cells and tissues 
compared to those in non-targeted liposomes. Moreover, 
APTEDB-LS-siRNAEDB could knockdown EDB-FN both 
in vitro and in vivo, effectively treating EDB-FN-positive 
BCSC-derived tumors by eradicating the self-renewal abil
ity of BCSCs.

Because of specific binding to the highly expressed TfR1 
and SCARA5, ferritin is a promising nanoplatform for the 
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efficient targeting and deep penetration of tumors.47 

Recently, Tan et al47 formulated ferritin nanocages loaded 
with 1.1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine 
iodide (DBN) and EPI for the targeted treatment of breast 
cancer. Both DBN and EPI collected in large numbers at the 
tumor site, permeated throughout the tumor mass, and 
accessed the BCSCs in a metastatic 4T1-induced tumor 
model, which was attributed to the tumor-homing and bio
mimetic properties of the ferritin nanocages. It was noted that 
the DBN and EPI-loaded, BCSC-accessing nanocages con
siderably suppressed primary tumor growth with the notable 
elimination of BCSCs in the tumor mass, and significantly 
suppressed lung metastasis under the combined effect of 
photothermal and chemo therapies.

In addition to BCSC-specific surface proteins, some 
membrane proteins that are overexpressed on both 
BCSCs and non-BCSCs could be utilized to enhance the 
targeting ability of NDDSs. The identification of surface 
receptors overexpressed on both cancer and non-cancer 
stem cells is important for successful cancer treatment 
because the latter can transform into cancer stem cells 
via plastic EMT. For example, Fonseca et al150 demon
strated that nucleolin receptors are overexpressed in both 
the BCSCs and non-BCSCs found in TNBC. These 
authors developed DOX and C6-ceramide co-loaded lipo
somes coated with nucleolin-binding F3 peptides to reduce 
the plasticity and adaptability associated with BCSCs and 
non-BCSCs. The developed F3 peptide-targeted liposomes 
exhibited significantly increased cellular toxicity against 
both BCSCs and non-BCSCs compared to that of the 
liposomes without F3 peptides.150 Similarly, glucose trans
porter (GLUT) is overexpressed in many cancer cells and 
cancer stem cells owing to the Warburg effect.146,186,187 

Thus, GLUT is a potential target for cancer treatment. 
Recently, Yi et al155 created a glucose-installed nanocarrier 
by conjugating unimer polyion complexes on Au nanopar
ticles for the targeted delivery of polo-like kinase 1 
(PLK1) siRNA to BCSCs via the interaction of glucose 
ligands with the glucose transporter 1 (GLUT1) overex
pressed on their surface. Glucose nanoparticles loaded 
with PLK1 siRNA have the capacity to efficiently reduce 
the percentage of BCSCs in cancer stem cell-rich orthoto
pic MDA-MB-231 tumor tissue by enhancing gene silen
cing, indicating that modification with glucose could 
significantly enhance the BCSC-targeted delivery of 
nanocarriers.

Surface ligand density also plays an essential role in 
cancer cell-specific delivery. Thus, dual-targeted NDDSs 

appear to be an efficient strategy for enhancing the BCSC- 
targeting capacity of NDDSs. For example, Qiao et al147 

developed an NDDS for the highly selective targeting of 
BCSCs by binding hyaluronic acid and doublecortin-like 
kinase 1 (DCLK1) monoclonal antibody on the surface of 
PEG–PLGA nanoparticles (PEG–PLGA NPs). The formed 
NPs were named DCLK1–HA–PEG–PLGA NPs, and they 
targeted BCSCs both in vitro and in vivo by the specific 
interaction of the DCLK1 monoclonal antibodies and HA 
molecules with the DCLK1 protein and CD44 receptors 
overexpressed on the surface of BCSCs, respectively. 
Similarly, nucleus-targeted drug delivery systems hold 
great potential to reverse cancer stem cell-mediated drug 
resistance. Because of this, Li et al148 designed and 
synthesized a nanosystem with a core/shell structure of 
mesoporous silica nanoparticles loaded with the anticancer 
drug tirapazamine (TPZ). The surface of the silica was 
also modified with anti-CD133 antibody and TAT peptide. 
This nanosystem possessed three stages of drug deliv
ery: 1) target BCSCs with the anti-CD133 antibody; 2) 
target the nucleus with the TAT peptide; and 3) release the 
TPZ in the nucleus to eliminate hypoxic BCSCs. It was 
revealed that the synthesized nanosystem significantly 
inhibited BCSC survival in vitro and suppressed tumor 
growth in a breast tumor xenograft model without obvious 
side effects. Mechanistically, this nanosystem was found to 
attenuate the hypoxia signaling pathway by suppressing 
the expression of HIF-1α.148

Advantages and Limitations of Current 
NDDSs Against BCSCs
The overview of the current state suggests that NDDSs are an 
effective treatment solution that can overcome the disadvan
tages of conventional therapeutic agents against BCSCs and 
speed up the development of potential drugs against breast 
cancer via anti-BCSCs. Compared to the conventional 
agents, NDDSs have some potential advantages against 
BCSCs. For example, NDDSs can overcome many of the 
undesirable properties of conventional agents against 
BCSCs.3,130,137 Moreover, although normal stem cells and 
BCSCs may have similar properties, such as self-renewal,80 

NDDSs could reduce, at least to some extent, the toxicity on 
normal stem cells by selectively accumulating in tumor tissue 
with the help of the EPR effect to minimize any impact on 
normal stem cells.131 In addition, the targeting capacity of 
NDDSs to BCSCs could be further enhanced by the modifi
cation of NDDSs with BCSCs surface marker-specific 
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ligands/antibodies, resulting in a further increase in the anti- 
BCSC ability of NDDSs while reducing toxicity on normal 
tissue.131 Furthermore, NDDSs could encapsulate agents 
used against the large numbers of breast cancer cells, agents 
against the less abundant BCSCs, and/or agents targeting the 
breast tumor microenvironment into the same nanoparticle, 
enabling these drugs to target the tumor tissue as a single 
drug. This can solve the potential problems arising from 
these drugs due to the fact that they possess different bio
pharmaceutical parameters in vivo, which prevents them 
from producing the desired synergistic effect.163 

Nevertheless, the research and development of NDDSs 
against BCSCs is in its infancy, and many problems need to 
be overcome. Further research on the biological characteris
tics of BCSCs and the design of more efficient NDDSs is 
needed to overcome the limitations identified during the 
practical application of NDDSs. First, to eliminate BCSCs 
within breast cancer tissue, the targeted NDDSs need to 
penetrate the sites where BCSCs are located. Indeed, some 
subpopulations of BCSCs are located in poorly vascularized 
regions, which are extremely difficult for NDDSs to reach.3 

Another limitation of NDDSs is that although many solutions 
have been proposed to reduce the reticuloendothelial system 
(RES) uptake of NDDSs, the retention of NDDSs in bypass
ing organs and their cellular uptake by RES macrophages is 
still a significant problem.163

Conclusion
Through their involvement in the relapse, metastasis, and 
therapeutic resistance of breast cancer, BCSCs can make its 
treatment challenging. However, with a greater understanding 
of the biological properties of BCSCs, an increasing number of 
strategies, such as targeting surface markers, specific signaling 
pathways, metabolism, and the microenvironment of BCSCs, 
have been proposed to treat breast cancer by eradicating 
BCSCs. In this review, we summarized the current develop
ment of anti-BCSC strategies to treat breast cancer using con
ventional agents and NDDSs against BCSCs. Although many 
agents, including small-molecule inhibitors/drugs, proteins, 
and nucleic acids, have the potential to eliminate BCSCs, 
their clinical translation is limited because of their poor solu
bility, instability, unfavorable biodistribution, and high toxicity 
induced by off-target effects. This overview of the recent 
utilization of NDDSs to target BCSCs suggests that NDDSs 
have the capacity to address many shortcomings of current 
anti-BCSC agents and exhibit various advantages to treat 
breast cancer by eliminating BCSCs. However, the application 
of NDDSs for BCSC targeting is in its infancy, and many 

issues require further elucidation to develop more efficient 
NDDSs for targeting BCSCs with low systemic toxicities.
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