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Abstract: Gender and sex hormones can influence a variety of mental health states, including 

mood, cognitive development and function, and vulnerability to neurodegenerative diseases 

and brain damage. Functions of neuronal cells may be altered by estrogens depending upon 

the availability of different physiological estrogenic ligands; these ligands and their effects 

vary with life stages, the genetic or postgenetic regulation of receptor levels in specific tissues, 

or the intercession of competing nonphysiological ligands (either intentional or unintentional, 

beneficial to health or not). Here we review evidence for how different estrogens (physiological 

and environmental/dietary), acting via different estrogen receptor subtypes residing in alternative 

subcellular locations, influence brain functions and behavior. We also discuss the families of 

receptors and transporters for monoamine neurotransmitters and how they may interact with 

the estrogenic signaling pathways.

Keywords: estrogen receptor α, estrogen receptor β, GPR30, GPER, xenoestrogens, phytoe-

strogens, transporters, brain function, neurotransmitter receptors

Estrogens, or the immediate downstream products that they induce, have long been 

known to alter reproductive behaviors. Prime examples are sexual receptivity and 

maternal behavior.1,2 However, estrogens can also modify nonreproductive behaviors 

and cellular responses including mood, affect, anxiety, fear, locomotor activity,3–5 tumor 

susceptibility,6 and vulnerability to addictive drugs.7 In some cases these estrogenic 

influences on behavior have been localized to specific brain areas. For example, estro-

gens alter locomotor activity via actions in the medial preoptic area,8 while anxiety 

and conditioned fear appear to be controlled by the amygdala,9 and developmental and 

tumor growth effects have been documented in the cerebellum.10 Each of these brain 

regions expresses both α and β subtypes of estrogen receptors (ERs),11 although their 

balance varies between locations. Other, more novel ER candidates found in multiple 

brain areas12–14 are also beginning to be examined.

Life stage-specific, fluctuating levels of several 
physiological estrogens, and their relationship  
to diseases and vulnerabilities in women
There are major sex-based differences in diseases in which neurotransmitters, and their 

transporters and receptors, play a role. For example, depression is more prevalent in 

women,15 especially during periods of fluctuating estrogen levels.16,17 Diseases involv-

ing the dopamine transporter (DAT) such as Parkinson’s, Alzheimer’s, Tourette’s, and 

attention-deficit hyperactivity disorder (ADHD), worsen in women after menopause,18 
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or are different in premenopausal versus postmenopausal 

females,19–25 suggesting a protective effect of estrogens, or 

altered vulnerabilities. Receptors and transporters for other 

catecholamines [notably the serotonin transporter (SERT) and 

the norepinephrine transporter (NET)] may also be involved 

in these sex-biased diseases.26–28

Because estrogen actions can alter the function of these 

machineries for neurotransmission, it is important to review 

the fluctuations in hormone levels that affect women. 

Levels of the most prominent physiological estrogens rise 

dramatically during pregnancy (see Figure 1), and return to 

prepregnancy levels very rapidly after parturition; this abrupt 

change can be correlated with the onset of postpartum depres-

sion.29 Levels of these hormones also vary widely between 

the sexes, and between women’s cycle stages and life stages 

(Figure 2). These changes are a likely basis for age- or preg-

nancy status-specific disease biases in women.30–32 Ovarian 

hormones fluctuate in perimenopause, followed eventually 

by chronically lower levels33 that can be correlated with the 

onset of mood disorders and reward circuit-based or other 

behavioral disturbances. Likewise, pubertal and menstrual 

cycle-based fluctuations can also lead to phase-dependent 

mood disorders.34–40 Females are more vulnerable to cocaine 

use disorders than males,4,7,41,42 and depressive states associ-

ated with drug addiction vulnerability or lack of recovery 

success can coincide with the rise and decline of estrogens.43 

Crises in schizophrenia/bipolar disorders can sometimes 

be directly correlated to menstrual cycle-related hormonal 

fluctuations.17,44 Estradiol (E
2
) can rapidly reverse the effects 

of selective serotonin reuptake inhibitors (SSRIs) used to treat 

depression.45 Estrogens may also be involved in cognitive 

function and attention.46,47 These observations suggest that 

dramatic fluctuations in estrogens or their downstream effec-

tors are key to our understanding of these life stage-specific 

disease biases in women.

Is there evidence that treatment with estrogens can 

alleviate some of these conditions and diseases caused by 

deficits or dramatic decreases in estrogens? Although it has 

been proposed that a more rapid decline in E
2
 is associated 

with postpartum depression, some recent evidence does not 

fully support this notion.48 However, treatment with estrogens 

can relieve some cases of postpartum depression,31,49–51 and 
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Figure 1 Hormone level changes in predominant physiological estrogens in the nonpregnant state versus the trimesters of pregnancy. 
Note: The levels of the estrogens estrone, estradiol, and estriol (E1, E2, and E3, respectively) drop rapidly to nonpregnant levels at parturition. Graphed from published data 
tables.226
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some experimental designs that simulate pre- and postpartum 

estrogen levels also support this conclusion.52 Yet E
2
 therapy 

in humans can be ineffective in reversing mood depression 

or other purportedly estrogen-influenced diseases.50,52–56 One 

explanation for these discrepancies could be the involvement 

of other prominent estrogen metabolites [eg, estrone (E
1
) and 

estriol (E
3
); see Figures 1 and 2] that have not been studied 

nearly as extensively for these activities. They can have 

potent nongenomic actions,57,58 in contrast to their previously 

determined minor role in genomic responses as “weak” estro-

gens. A few studies have looked at the effects of E
1
 or E

3
 on 

behavior,59–61 but most have focused on treatments with E
2
, 

with substrates for several estrogens (DHEA), or mixtures of 

estrogens such as Premarin®, making it difficult to interpret 

effects of individual estrogens in those preparations.

The primary physiological estrogens (E
1
, E

2
, and E

3
) are 

predominantly synthesized in the ovaries, though they can also 

be synthesized in placenta (especially E
3
),62 brain,63,64 and fat 

cells.65 The levels of these hormones are therefore affected by 

the quantity and state of such non ovarian tissues. In addition, 

reports that only large doses of estrogens can improve mood 

disorders66 may suggest the involvement of metabolites of the 

administered compound (usually E
2
); these would be present 

in smaller amounts and could only accumulate to active levels 

after a large dose of the precursor estrogen is given. 

Effects mediated by peptide 
hormones downstream of estrogens
Besides direct actions of estrogens on behavior, there are 

also indirect effects that cause synthesis of other receptors,67 

or synthesis and secretion of peptide hormones which act 

downstream. A classic example of such indirect action is 

production and secretion of the hormone prolactin (PRL). 

In the pituitary, estrogens facilitate both synthesis and regu-

lated secretion of PRL.68 PRL and its receptors are widely 

distributed throughout the body. Most actions elicited by 

this hormone are directly or indirectly related to reproductive 

processes (such as lactation). However, behavioral changes 

that facilitate reproductive success also result. Behavioral 

hallmarks associated with high PRL levels are diverse, and 

can be elicited in both pregnancy and pseudopregnancy 

(when PRL levels rise without a pregnancy). These include 

maternal behavior (including aggressiveness associated with 

protectiveness and territoriality) and sexual dysfunction 

(which may prevent a subsequent pregnancy during a critical 

infant developmental period). PRL overstimulation can also 

be correlated with depression, changed affect, and abnormal 

responses to stress.69 As dopamine of hypothalamic origin pro-

vides D
2
 dopamine receptor-mediated inhibitory control over 

PRL secretion,70 and PRL and/or estrogens may also affect 

dopamine71 and serotonin signaling,72 there is clear interplay 

Cycle phase

p
g

/m
L

0

100

200

300

400

E2

E2

E2

E1

E1

E3
E3

5 15 MP PMEF PO

p
M

1500

1000

500

0

10

Age in years

Figure 2 Hormone level changes in predominant physiological estrogens with increasing age in females compared to males, and during menstrual cycle phases.  
Note: These levels are depicted on scales three orders of magnitude lower than those used in Figure 1. The levels of the estrogens estrone, estradiol, and estriol (E1, E2, 
and E3, respectively) are shown for females (♀) and males (♂). The cycle phases depicted are early follicular (EF), pre-ovulatory (PO), midcyle peak (MP), luteal (L), and 
postmenopausal (PMlevels). Graphed from published data tables.226

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Women’s Health 2010:2submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

156

Watson et al

among these factors. Low dopamine levels (associated with 

depression) also relieve dopamine’s suppressive effect on PRL 

secretion in the pituitary, thus perhaps compounding adverse 

effects on mood. Estrogen-induced cell proliferation is also 

part of the normal response of the pituitary and many other 

reproduction-related tissues.73,74 Estrogen exposures at the 

wrong levels or of inappropriate types can cause disregulated 

proliferation, and even produce tumors of those tissues,75–77 

including the pituitary;78 behavioral issues are compounded 

if these tumors are prolactinomas.

Models for cellular mechanisms  
of estrogen action
The vast majority of studies on the mechanisms of estrogen 

(and other steroid) actions over the past 40–50 years focused 

on nuclear transcription (genomic) effects.79–81 However, 

more recent evidence (including our own)82–89 also supports 

nongenomic steroid actions initiated at the level of the 

cell membrane.90–93 While we are beginning to understand 

the various ways in which E
2
 acts via membrane receptor- 

initiated pathways, we still know very little about nongenomic 

responses to other prominent physiological estrogens (such as 

E
1
 and E

3
) or xenoestrogens (see below), and still less about 

other metabolites of these compounds. Membrane-initiated 

signaling pathways include complex webs of interacting 

signals that can converge to ramp a particular function 

up or down, and can have either immediate mechanistic 

consequences due to rapid signaling, or later downstream 

consequences after the accumulation of signaling cascade 

intermediates, or phosphorylation of transcription factors.94 

Multiple individual pathways must thus be tested to compre-

hensively understand functional control via such regulatory 

mechanisms, and their effects on women’s health.

Which receptors mediate  
these responses?
Many areas of the brain express both ERα and ERβ,95 

although the receptors and their functions can vary during 

different stages of development. Various approaches have 

been used to detect selective actions of these subtypes96 

the most recent and convincing of which are ERα versus 

ERβ-selective ligands (PPT versus DPN, respectively) or 

knockdowns/knockouts of the ERs. DPN selectively regulates 

AMPA receptor subunits GluR2/3 in the hipopocampus97 

and also opposes ERα induction of progesterone receptors 

in the ventromedial nucleus.98 ERβ can modulate DATs and 

D
2
 receptors in rats.99 ERα is thought to participate in striatal 

dopamine neuroprotection.100 However, the neuroprotective 

effects of estrogens are usually seen at much higher than 

physiological concentrations, and therefore may also act via 

nonreceptor-mediated mechanisms, such as changing fluidity 

of membranes surrounding the receptors, in which steroids 

dissolve readily at these high concentrations. Few studies 

have as yet been aimed at examining α- versus β-selective 

behavior; though some have been inconclusive,101 others 

have shown ERβ-specific effects on object recognition and 

placement tasks.102

In our own studies we examined nongenomic effects of 

estrogens on the stimulation of dopamine efflux in PC12 

cells;103 we showed that plasma membrane versions of ERs 

(mERα and mERβ) and the newly renamed GPER (formerly 

called GPR30) are all involved in nongenomic estrogenic 

effects.85–89,104,105 GPER is a membrane ER of a different 

receptor family106–108 that works by activating matrix metal-

loproteinase that in turn cleaves active epidermal growth 

factor (EGF) from a tethered heparin-bound EGF mem-

brane protein precursor, triggering subsequent action via 

the EGF receptor. A family of GPER-related receptors was 

identified in a wide variety of tissues and species, including 

humans; multiple reports indicate that GPER is present in 

the brain,12–14,109 though knowledge of its behavioral effects is 

still pending. We determined that GPER RNA and protein are 

expressed in PC12 cells,58,103,110 where a recently developed 

GPER-selective ligand111 appears to have inhibitory effects 

on ERα-stimulated dopamine efflux via the DAT, similar to 

GPER’s inhibitory effects in other tissues.109,112

Signaling from both the cell surface 
and from the nucleus – fitting 
estrogenic actions into the big 
picture
Ligands first encountered at a cell’s surface generally initiate 

cellular responses to a changing environment. Other classes 

of plasma membrane receptors have long been associated 

with membrane-initiated rapid signaling cascades; ERs 

that employ these signaling mechanisms are relatively new 

considerations. Such events can set into motion coordinated 

actions eventually leading to one of three main cell fates: pro-

liferation, differentiation, or death. To direct the cell toward 

one of these decisions, multiple signaling pathways must 

funnel into a final common pathway signal, such as those 

involving mitogen-activated protein kinases (MAPKs). These 

enzymatic “signal receiving stations” sum many inputs from 

multiple signaling cascades to result in a tally of active MAPKs 

(with ERKs, JNKs, and p38 subtypes). Thus many stimuli can 
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reconcile to a final decision for a major cellular response. Act-

ing via their membrane receptors, steroids are only one class 

of input signals to the MAPK “signal integrator”. Estrogenic 

signals combine with those from other pathways, originating 

either from the cell surface or from intracellular locations.

The integration of these signal inputs is complex. Not all 

estrogens elicit identical responses (in level or timing) along 

these pathways.82 Also, as each tissue may contain a different 

repertoire of signaling machineries, the complex mixture of pat-

terns leading to pivotal cellular fate decisions will likely also be 

tissue-specific. Fluctuating endogenous metabolites, along with 

introduced pharmaceutical estrogens or other nonphysiological 

estrogen mimetics (see below) can all contribute to a different 

final tally with distinct kinetics, and so lead to alternative final 

cellular responses. Therefore, discovering the spectrum of 

responses within the complex signaling web particular to each 

part of the brain will be an important goal for understanding the 

impact of estrogens on women’s behavioral health.

The cell biology and biochemistry 
of transporter function, and their 
regulation by estrogens
Many drugs currently used to treat behavioral disorders 

target the DAT and/or the SERT.113,114 Transporters of this 

family are recognized as the predominant mechanism for 

maintaining adequate synaptic levels of the corresponding 

neurotransmitters. For instance, in DAT or SERT knockout mice 

the synthetic machinery for producing new neurotransmitters 

cannot compensate for the loss of neurotransmitter reuptake 

via these transporters.115 Transporters in this family (DAT, 

SERT, and NET) all have 12 transmembrane regions, with 

both the N- and C-termini located within the cytoplasm, and a 

proposed structure-based mechanism for opening and closing 

extracellular versus cytoplasmic substrate (neurotransmitter) 

gates.116–118 Various therapeutic drugs and the addictive drugs 

cocaine, methamphetamine, and amphetamine bind to the 

DAT and inhibit or reverse its activity119–121 via mechanisms 

now beginning to be understood at the cellular and molecular 

levels. Some evidence also suggests that agents that cause DAT 

and SERT phosphorylation may regulate their removal from 

the plasma membrane and sequestration to an intracellular 

compartment.122–126 Protein kinases PKC and PKG and the 

p38 MAPK127 probably128 mediate these effects by modifying 

a C-terminal pentapeptide sequence that is homologous across 

the DAT, SERT, and NET proteins.

It is also possible that many different kinases controlled by 

estrogens regulate neurotransmitter transporters. We recently 

determined that E
2
 can rapidly alter several signaling pathways 

in PC12 cells to cause efflux of dopamine via the DAT;58 PKC 

and MEK (the enzyme upstream of the MAPK-ERKs) are acti-

vated by E
2
. E

2
 also increases intracellular calcium levels via 

release from stores. In addition, from our work in the pituitary 

field, and the work of others, we know that multiple estrogens 

induce activation of MAPKs.129,130 The estrogenic activation of 

other kinases likely to act on DAT’s N-terminal tail have yet 

to be investigated;93,131 these include PKA, PKG, the subtypes 

of PKC (α, βI, and II, γ), calmodulin kinase II (CamKII)132,133 

and Cdk5.134 Such modifiers of phosphorylation and activity 

states could affect DAT in a variety of ways, including revers-

ing the direction of transport,120,121,135,136 and/or degradation 

or removal of the transporter from the membrane.115,123,125,137 

Specific phosphatases are also now being investigated for their 

role in maintaining a balance of phosphorylation at specific 

serines, threonines, and tyrosines at the cytosolic accessible 

regulatory tails of transporters;133 the part played by estrogens 

in these processes is largely unknown.

Both neurotransmitter transporters and receptors can be 

found in the same specialized membrane compartment as 

ERs – the cholesterol-rich microdomains or caveolae.138–140 

Many kinases and phosphatases also reside here.132,138,140,141 

However, nonraft or caveolar plasma membrane populations 

of these groups of proteins also exist, and the regulated 

movement between compartments is not yet under-

stood. ER-induced kinase and phosphatase effects on 

neurotransporters and neurotransmitter receptors could be 

either direct or indirect (via intervening enzymes in signaling 

cascades), so mERs may or may not need to interact directly 

with these parts of the neurotransmission machinery in the 

same membrane compartment.

There are also sex differences in the expression levels and 

localization of DAT; females express higher DAT levels in the 

striatum than men,142 although men experience higher amplifi-

cation of amphetamine-stimulated striatal dopamine release,143 

perhaps because of their lower baseline levels due to lower 

endogenous estrogen levels. Sex steroid levels in females also 

correlate with different behavioral/neurochemical responses 

to drugs.144 The euphoric effects of psychoactive drugs are 

greatest during the follicular phase of the menstrual cycle, 

when the highest E
2
 levels occur (see Figure 2).145

New parallels between the actions of estrogens and drugs 

of abuse on the DAT have recently been identified. Both 

amphetamines118,146,147 and estrogens58,103,148 can induce reversal 

of the DAT to cause dopamine efflux. Other coincident actions 

include DAT trafficking caused by amphetamines and some 

estrogens (though sometimes in different directions),149,150 and 

the dependence of efflux caused by both compounds on PKC 
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actions and release of intracellular calcium stores. However, out-

comes can depend upon whether transporter expression is under 

the control of endogenous or transfection-driven expression.128 

Interactions between CamKIIα and DAT’s cytoplasmic 

C-terminus are thought to bring about phosphorylation of nearby 

N-terminal tail serines to cause amphetamine-induced efflux.146 

It will be interesting to see if CamKIIα is similarly involved in 

estrogen-induced dopamine efflux.

Currently, we only know that DAT function is differentially 

regulated by different physiological and nonphysiological 

estrogens.58,148 Functional and structural homologies of the 

transporters suggest that similar estrogenic mechanisms could 

affect all transporters in this family (DAT, SERT, and NET). 

Estrogens are already implicated in control of SERT and NET 

function and related disease etiologies.47,104 So while it is now 

well recognized that these transporters can be regulated by 

acute and selective responses via kinases and phosphatases, 

and that estrogens can activate kinases and phosphatases,140,151 

it is unknown if estrogens will be one of the initial triggers of 

phosphoregulation of cellular neurotransmitter machineries, 

as has been shown for other targets.152,153

Xenoestrogens (nonphysiological 
estrogens) and their role  
in women’s mental health
Estrogenic toxins or environmental estrogens (see examples 

in Figure 3) are capable of mimicking the effects of endog-

enous estrogens, but usually not perfectly. Thus they can 

initiate more, less, different, and/or mistimed estrogenic 

actions that can lead to disruptions of estrogenic signal-

ing, as shown in several recent studies.151,154–159 Common 

human exposure levels have been associated with a variety 

of reproductive, neurological, and other impairments.160–163 

Bisphenol A (BPA), a monomer of polycarbonate plastics, 

is found in beverage bottles, canned food liners, and epoxy 

dental sealants.164–166 Nonylphenol (NP) and structurally 

related alkylphenols are surfactant manufacturing byproducts 

and also found in detergents, cleaning materials, and pesti-

cides.167 Diethylstilbestrol (DES) is a potent pharmaceutical 

estrogen that was prescribed to prevent miscarriages in the 

1950s to 1970s; unfortunately, although not really preventive 

for miscarriage, DES frequently caused multiple reproduc-

tive tract abnormalities in offspring, and cancers in some.168 

DDE, endosulfan, and dieldrin are estrogenic pesticides that 

have been associated with neurological impairments.169–172 

Besides manufacturing exposures, these compounds break 

down slowly, so persistent deposits are found in the soil and 

water, where plants and animals, and thus food supplies 

become exposed, subsequently passing these exposures on 

to humans and their infants.173,174 Because many of these 

xenoestrogenic compounds bioaccumulate in fat tissues, 

resulting in prolonged and escalating human exposures, 

the exposure levels causing deleterious health effects are 

actively debated. Other discrepancies between reports 

arise from the insensitivity of some animal models to the 

effects of xenoestrogens.175 However, toxicities to cellular 

signaling functions can occur at much lower concentrations 

than the maximum currently allowed by law.155,157,176–179 We 

also know that some pharmaceutical estrogens become 

environmental contaminants because of pervasive human 

use (eg, ethinylestradiol in birth control pills). The known 

behavioral effects of these compounds at environmentally 

relevant concentrations are still relatively few, due to lim-

ited data. However, BPA is now known to adversely affect 

some sociosexual behaviors,180–182 locomotion,183 spatial 

learning/memory,184 and fear/anxiety185,186 at relatively 

low doses.

Like E
2
, xenoestrogens can increase dopamine efflux 

by changing the amount or function of DAT in the cell 

membrane.187 Xenoestrogens could further exacerbate the 

effects of physiological estrogens on transporters via these 

mechanisms, perhaps with behavioral consequences. In 

rodent models, prenatal and neonatal exposure to BPA leads 

to enhanced sensitivity to the rewarding effects of metham-

phetamine188 and morphine.189 It remains to be seen if there are 

associations between human xenoestrogen exposure during 

specific developmental stages and an increased vulnerability 

to drug addictions later in life, with possible gender differ-

ences. Developmental effects of xenoestrogen exposure have 

recently been shown in rodents in diseases of the immune 

system such as asthma179 and in cerebellar neurons.178

Phytoestrogens (derived from plant sources) are another 

type of nonphysiological or xenoestrogen. Many are important 

constituents of Asian diets, which contain approximately 

10-fold higher concentrations of many phytoestrogens than 

Western diets.190,191 Phytoestrogen-rich diets are thought to 

be one reason why women in cultures who eat them have 

less dramatic symptoms of menopause (such as hot flashes, 

osteoporosis, rise in heart disease), presumably due to the 

ability of phytoestrogens to replace some of the beneficial 

effects of estrogens.192 These cultures also have lower 

incidences of estrogen exposure-related cancers,193 suggest-

ing that some phytoestrogens may oppose the carcinogenic 

effects of physiological estrogens and some xenoestrogens. 

Finally, phytoestrogens may protect against brain damage and 

aging,194,195 although studies are still few and conflicting.196
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Unlike E
2
, which binds to both ER subtypes with relatively 

equal affinity, some phytoestrogens bind with higher affinity 

to ERβ (measured on nuclear version of the receptors), and 

therefore could affect behaviors quite selectively if the affinities 

for the membrane versions of ERβ are the same. Because 

membrane receptors are in a different chemical environment 

(lipid) and therefore expected to assume alternate protein con-

formations, it is not surprising that they have different potencies 

for estrogenic effects initiated there, compared to transcriptional 

effects initiated in the nucleus. Phytoestrogens and many other 

xenoestrogens show a much higher potency in nongenomic 

responses, therefore we expect their binding affinities could 

be higher for mERs. It is probably not correct to just “adopt” 

the literature on nuclear measurements of binding affinity to 

fit the membrane receptor. Though we would like to measure 

the binding affinities for membrane steroid receptors directly, 
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these data are very difficult to interpret because binding of a 

lipophilic ligand to a receptor lodged in a lipid membrane is 

subject to very high levels of nonspecific binding. However, if 

binding to the nuclear receptor has any relevance for predicting 

binding affinities for the membrane forms of the receptors, there 

are several examples which might predict higher activities via 

ERβ. For example, the plant estrogens coumestrol and several 

isoflavonoids bind more tightly to ERβ.190,197–199

Phytoestrogens have been implicated in memory and 

learning,196,200 and can have anxiolytic effects.200–202 Some 

phytoestrogenic compounds can also antagonize the effects 

of E
2
; for example, while coumestrol by itself does not affect 

locomotor activity, it can antagonize the effects of E
2
.203 

Besides its higher affinity for ERβ, coumestrol might act 

by triggering ERβ-mediated compensatory inhibition in the 

face of ERα activity in both genomic204,205 and nongenomic 

activation systems. The latter recent result demonstrated that 

estrogenic effects on the DAT (reversal of the transporter 

to cause efflux) are mainly mediated via ERα, but that an 

ERβ-selective synthetic ligand is inhibitory in the presence 

of ERα activity.103 Phytoestrogens can also act as agonists 

directly via ERβ in the brain206 and at the cellular level,103 in 

the absence of any ERα stimulation.

Estrogen replacement therapeutic 
strategies: pros and cons
It is very important to obtain low dose, wide dose, and 

temporal response information about compounds that mimic 

estrogens, to determine if and when they are safe for use as 

therapeutics. Many previous researchers have examined the 

actions of only very high concentrations of nonphysiological 

estrogens, under the mistaken assumption that dose-response 

relationships are always monotonic and entirely predictable, 

and that the effects of lower and noneffective doses 

could be extrapolated downwards. We now know that such 

extrapolations are incorrect,207 and that estrogenic actions via 

nongenomic responses are nonmonotoic.157,178 We have also 

learned that the temporal phasing of estrogenic and xenoestro-

genic responses is different,177,208 suggesting that combinations 

of these compounds with one another might disrupt normal 

regulation by causing sustained responses, or cancelling each 

other out,148 rather than demonstrating the oscillating signals 

caused by endogenous estrogens. Thus the actions of multiple 

different estrogens and their pathways are complex.154,209 To 

understand the breadth of possible disease vulnerabilities 

influenced by variant endogenous and exogenous hormone 

levels we need to establish the principles of individual and 

combinatorial action of estrogenic compounds for each brain 

region, tissue type, and developmental stage.

To treat diseases associated with loss or imbalance 

of physiological estrogens (due to menopause, surgery, 

pregnancy, parturition, or cycle disturbances), or perhaps 

to counteract the effects of harmful nonphysiological 

estrogens, it is important to design estrogen replacement 

or augmentation strategies that deliver the most effective 

estrogens, over the lowest possible effective doses, with the 

most effective scheduling and fewest side effects. Currently, 

E
2
 and equine urine estrogen mixtures (Premarin®) are the 

most frequently used replacement therapies. While there are 

numerous suggestions in the clinical literature that replacing 

lost estrogens can be beneficial (to bones and skin, in specific 

cognitive and mood states, and perhaps for the cardiovascular 

system), there are also risks involved. Long term use of 

replacement estrogens can increase the risk of some cancers, 

notably those of the breast and uterus,210 complicate 

diagnostic procedures such as breast imaging,211 or exacerbate 

some cardiovascular problems.32 Though some studies 

have linked replacement estrogens to a decline in specific 

cognitive functions and increased heart disease,212–215 or have 

concluded that estrogens do not help prevent disease,216,217 

these effects may also depend upon the dose, the use of the 

most appropriate estrogen metabolites, how long estrogen 

withdrawal occurred before replacement,218–220 or whether 

progestins are coadministered.221 Most of these parameters 

have yet to be systematically studied and agreed upon.

Protective effects of some estrogens against ischemic, 

glucocorticoid-induced, or other induced brain injury have 

been touted;222–224 however, such studies have been focused 

on very high doses of estrogens that, while acceptable for 

acute therapies to prevent death, are unacceptable for chronic 

therapeutic use because of the cancer risk. Therefore, we 

clearly do not yet understand how different estrogens and 

their metabolites at various doses and schedules may interact, 

especially given the nonmonotonic dose-response patterns that 

are becoming recognized as typical of nongenomic steroid 

actions.225 It is thus critical to know the lowest effective dose 

ranges of specific estrogens that regulate given functions 

such as neurotransmitter transporter and receptor activity. 

It remains to be proven conclusively if some phytoestrogens 

or E
2
 metabolites could act therapeutically to either restore 

estrogenic effects on transporters when endogenous estrogens 

are absent (such as to control hot flashes), or to act preventa-

tively as inhibitory estrogens in scenarios where estrogenic 

overstimulation results in cancers.
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Summary
There are important differences between males and females 

in a number of functional responses and vulnerabilities to 

behavioral disorders. Signaling mechanisms, both genomic 

and nongenomic, operating via several different ER proteins 

residing in different subcellular compartments, are beginning to 

be found responsible for diverse actions of estrogens involved 

in these functions. Complex signaling cascades and receptor 

systems can be influenced by multiple physiological estrogens, 

as well as some nonphysiological (dietary, pharmaceutical) 

and contaminant (environmental) estrogens. Such influences 

could have profound effects on the functioning of the brain 

and nervous system. Elucidating the underlying cellular 

mechanisms via which variant estrogens and their receptors act 

will provide explanations of how we might intervene medically 

to address severely imbalanced estrogens that cause disease, or 

enlighten our choices among commercial products or foods/

dietary supplements that contain estrogens. These consid-

erations should also inform future decisions about hormone 

replacements, analogs, and antagonists that could alleviate 

life stage-specific effects of estrogens or their withdrawal. 

An enhanced focus on the relatively new area of nongenomic 

estrogenic effects may allow entirely new understandings and 

approaches to treatment of these maladies, and perhaps change 

current treatment standards. One such change could be the 

preservation of ovaries in women undergoing hysterectomies, 

potentially justified because of the multiple beneficial estrogens 

that they provide.18 Hopefully, among these new understandings 

and opportunities will be ones that improve the diagnosis and 

treatment of mental state diseases for women.
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