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Background: Nowadays, medical grade 316L stainless steel (316L SS) is being widely used 
for intravascular stents, and the drug-eluting stent (DES) system is able to significantly reduce 
the occurrences of in-stent restenosis. But the drugs and the polymer coating used in DES 
potentially induce the forming of late stent thrombosis. In order to reduce the occurrence of 
ISR after stent implantation, the development of novel drugs for DESs is urgently needed.
Methods: This study aimed to investigate the potential mechanisms of epigallocatechin- 
3-gallate (EGCG) on human umbilical vein endothelial cells (HUVEC) grown on 316L stainless 
steel (316L SS) using flow cytometry and Q-PCR methods.
Results: Our results showed that EGCG (12.5, 25, 50, 100 μmol/L) significantly inhibited 
HUVEC proliferation. Flow cytometry analysis indicated that EGCG (25, 50, 100 μmol/L) 
induced apoptosis. Moreover, qRT-PCRrevealed that genes associated with cell apoptosis 
(caspase-3, 8, 9, Fas) and autophagy (Atg 5, Atg 7, Atg 12) were up-regulated after EGCG 
treatment.
Conclusion: These findings indicate that EGCG possesses chemo preventive potential in 
stent coating which may serve as a novel new drug for stent implantation.
Keywords: EGCG, 316 stainless steel, HUVECs, apoptosis

Introduction
Coronary artery disease (CAD), commonly caused by atherosclerosis, is becoming one 
of the leading causes of mortality worldwide, especially in developed countries. The 
vascular stent is the most commonly used technique for the treatment of severe cases of 
CAD. However, restenosis and thrombosis are commonly occurring complications of 
this technique. In clinic, more than 20% of patients who received stent implantation 
developed in-stent restenosis (ISR).1 This phenomenon is only avoided when patients 
are treated with routine anticoagulation therapies. Thrombosis occurs due to insuffi
cient re-endothelialization of the vascular stent surfaces after stent implantation. 
Nowadays, medical grade 316L stainless steel (316L SS) is being widely used for 
intravascular stents, due to its suitable mechanical properties and outstanding anti- 
corrosion abilities. Meanwhile, immobilization of organic molecules on the surface of 
the metal is difficult due to the lack of surface reactive groups.

Drug-eluting stent (DES) system is an important milestone in the development of 
coronary intervention therapy, as the use of DES is able to significantly reduce the 
occurrences of ISR.2,3 Simultaneously, the drugs and the polymer coating used in DES 

Correspondence: Kun Xu  
Department of Nutrition and Food 
Hygiene, School of Public Health, Jilin 
University, Changchun, 130021, People’s 
Republic of China  
Email xukun@jlu.edu.cn

submit your manuscript | www.dovepress.com Drug Design, Development and Therapy 2021:15 493–499                                                 493

http://doi.org/10.2147/DDDT.S296548 

DovePress © 2021 Wang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the 

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Drug Design, Development and Therapy                                               Dovepress
open access to scientific and medical research

Open Access Full Text Article

D
ru

g 
D

es
ig

n,
 D

ev
el

op
m

en
t a

nd
 T

he
ra

py
 d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://orcid.org/0000-0002-1475-9910
mailto:xukun@jlu.edu.cn
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php
http://www.dovepress.com


cause the delay of endothelialization and the healing process, 
which potentially induce the forming of late stent thrombosis 
(LST).4–6 Early neo-atherosclerosis observed with the new
est DES designs was associated with the incidence of spon
taneous myocardial infarction at late outcome.7 Additionally, 
there is evidence that DES designs also induce endothelial 
dysfunction that may be associated with long-term cardiac 
and non-cardiac adverse events, such as solid tumors.8

In order to reduce LST and anti-tumor after stent 
implantation, the development of novel drugs for DESs 
is urgently needed. Epigallocatechin-3-gallate (EGCG) is 
abundantly present in green tea and has been intensively 
studied for its biological and pharmacological effects, 
including anti-oxidation, anti-tumor, anti-infection, anti- 
inflammation, and pro-apoptosis.9–16

In previous studies, EGCG treatments were demon
strated to inhibit proliferation and enhance apoptosis in 
cancer and other types of cell.17,18 EGCG has also been 
found to inhibit the proliferation of smooth muscle cells 
through the effects of p53 and NF-κB signaling 
pathways.19 Moreover, EGCG demonstrates protective 
effects during ischemia-reperfusion (I/R) injuries and 
apoptosis. Especially, EGCG has been found to have ben
eficial effects during I/R injuries of the heart through the 
suppression of STAT1 phosphorylation.20 For those rea
sons, in this study, we aimed to investigate the potential 
effects of EGCG on modulating proliferation, apoptosis, 
and related signaling pathways of human umbilical vein 
endothelial cells (HUVECs) on 316L SS.

In this study, we provided novel evidence of the effects and 
intracellular mechanisms of EGCG on the proliferation of 
HUVECs through 316L SS co- 
culturing and investigated the potential application of EGCG 
as an inhibitory drug on the coating of DES to reduce the 
occurrence of ISR.

Materials and Methods
Materials
316L SS materials (C: 0.025; Cr: 17.5; Mn: 1.06; Mo: 2.66; 
Ni: 13.07; Si: 0.6; S: 0.008; P: 0.02wt% and Fe in balance) 
were machined into Ф32×1mm. All materials were merged 
in 75% ethanol and ultrasonically cleaned, rinsed with 
sterile water, and disinfected at 121°C for 20 min.

Groups
HUVECs cultured on the surface of 316L SS were divided 
into five groups: 316L group (without EGCG); 316L+EGCG 

(12.5μmol/L); 316L +EGCG (25μmol/L); 316L +EGCG 
(50μmol/L); 316L +EGCG (100μmol/L). Untreated cells 
cultured without 316L SS were used as the control group.

Cell Culture
HUVECs were purchased from KeyGen biotech company 
(No: KG330, KeyGen, Jiangsu, China) and cultured with 
DMEM (Hyclone, China) with 10% fetal bovine serum 
(FBS) (Gibco, USA), penicillin (100 IU/mL), and strepto
mycin (100 μg/mL) in a cell incubator (CO2, 5%) at 37°C.

Cell Adhesion
HUVECs (5×105cells/mL) were plated on 316L SS in 
6-well cell plates (Thermo Fisher Scientific, USA), and 
incubated for 4 h. The 316L SS plates were carefully 
rinsed with cell medium and then washed with phosphate- 
buffered saline (PBS) buffer X2. Adhered cells were 
digested with 0.25% trypsin (Gibco, USA), and counted 
using trypan blue under a microscope.

Observation of Cell Morphology
HUVECs (20,000 cells/mL) were labeled with calcein AM 
(dissolved in ethanol, dye for living cells), plated in 6-well 
cell plates (without or with the EGCG treatments at 12.5, 
25, 50, 100 μm/L), and incubated for 3 days. The viabil
ities of HUVECs were evaluated by fluorescence micro
scopy (Olympus IX81, Japan).

Apoptosis Assessment by Flow 
Cytometry
HUVECs (5000 cells/mL) were plated on 316L SS and 
cultured for 7 days. Cells were freshly harvested, washed 
with PBS buffer X2, and resuspended with AnnexinV- 
FITC and PI (Beyotime Biotechnology, China) buffer for 
15 min at room temperature (avoiding light). In flow 
cytometry, apoptotic cells were marked with Annexin V 
+/PI- (early apoptotic) or Annexin V+/PI+ (late apoptotic). 
Annexin-V can bind to phosphatidylserine which is 
everted on the cell surface in the presence of calcium 
ion, and eversion of phosphatidylserine is an early stage 
of apoptosis.

PI is a kind of DNA dye. In the late stage of apoptosis, 
the permeability of the cell membrane increases, PI enters 
the nucleus and binds to DNA. Flowjo software (Becton, 
Dickinson and Company, USA) was used for the analysis.
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Quantitative Real-Time PCR
HUVECs (5000 cells/mL) were plated on 316L SS and 
cultured for 7 days. Total RNA was harvested by 
TRIzol reagent (Invitrogen, USA) and reverse- 
transcription was used to obtain cDNA by using 
reverse transcription (RT) reagents (Takara 
Biotechnology Co., Ltd., China). Target sequences 
were amplified by quantitative real-time PCR (qRT- 
PCR) using SYBR Premix Ex Taq II (Takara 
Biotechnology Co., Ltd., China) on a Real-Time PCR 
system (ABI prism 7500, Applied Biosystems, Foster 
City, USA) platform. Primers for qRT-PCR are listed in 
Table 1. All data were analyzed based on -ΔΔCt 
method. GAPDH was used as the internal control.

Statistical Analysis
Data analysis was carried out by SPSS software 
(Chicago, USA). All data were displayed as means± 
standard deviation (SD) (n= 3). One-way analysis of 
variance (ANOVA) followed by least significant differ
ence (LSD) was used for statistical analysis. Rank sum 
test was used for nonparametric analysis. P value <0.05 
was considered as statistically significant.

Result
Effect of EGCG on HUVECs on 316L SS 
Surface
As shown in Figure 1, the proliferation of HUVECs on the 
316L SS surface was observed. As a result, HUVECs were 
distributed as monolayers with no significant difference in 
cell morphology observed between cells on 316L SS and 
control. Living cell numbers in both the 316L SS group 
and EGCG treated group were elevated with time. 
Densities of HUVECs on 316 L SS surface were observed 
as the highest compared with both control and EGCG 
treated groups.

Effect of EGCG on Apoptosis of HUVECs 
Co-Cultured with 316L SS
Flow cytometry was carried out for the assessment of the 
effects of EGCG on the apoptosis of HUVECs on 316L 
SS. (Figure 2). Early apoptotic ratio of HUVECs was 
6.79% for the 316L group, which was lower than that of 
the control group (9.16%). Meanwhile, the apoptotic ratios 
of the early apoptotic HUVECs were 8.4%, 8.15%, 
12.57%, and 34.74% for EGCG treatments of 12.5, 25, 
50, and 100 μmol/L, respectively. Later apoptotic ratio of 
HUVECs was 1.79% for the 316L group, which was lower 
than that of the control group (2.58%). Later apoptotic 
ratios of HUVECs were 3.92%, 2.62%, 4.89%, and 
9.85% for EGCG treatments of 12.5, 25, 50, and 100 
μmol/L, respectively.

Effect of EGCG on Apoptotic Genes of 
HUVECs Co-Cultured with 316L SS
The mitochondrial pathway, featured by the activation of 
caspase-9, is closely related to the regulations of 
apoptosis.21 The relative mRNA expressions of Caspase- 
3 and Caspase-9 in the EGCG (25, 50, 100 μm/L) treated 
group were increased compared with the 316L group. The 
relative mRNA expressions of Caspase-8 and Fas in the 
EGCG (12.5, 25, 50, 100 μm/L) group were also increased 
compared with the 316L group (Figure 3A).

Effect of EGCG on Autophagy of 
HUVECs Co-Cultured with 316L SS
The qRT-PCR analysis demonstrated that the expressions 
of regulator genes of autophagy: ATG5, ATG7, and 
ATG12, were increased in HUVECs on the 316L SS 

Table 1 The Primer Sequence of Target Gene

Gene Sequence (5ʹ-3ʹ)

GAPDH Forward GCACCGTCAAGGCTGAGAAC
Reverse TGGTGAAGACGCCAGTGGA

Caspase3 Forward GACTCTGGAATATCCCTGGACAACA
Reverse AGGTTTGCTGCATCGACATCTG

Caspase8 Forward CATTTGCATATTTAGCCGCCAAG

Reverse TTAAGAGTCCCAGGAATTCAGCAAC

Caspase9 Forward GCCATATCTAGTTTGCCCACACC

Reverse CACTGCTCAAAGATGTCGTCCA

Fas Forward CAACAACCATGCTGGGCATC

Reverse TGATGTCAGTCACTTGGGCATTA AC

Atg5 Forward TTGA ATATGAAGGCACACCACTGAA

Reverse GCATCCTTAGATGGACAGTGCAGA

Atg7 Forward CTGTAACTTAGCCCAGTACCCTGGA

Reverse TACGGTCACGGAAGCAAACAAC

Atg12 Forward AGTAGAGCGAACACGAACCATCC

Reverse CCACGCCTGAGACTTGCAGTA
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surface, indicating the activation of autophagy. Moreover, 
EGCG (25, 50, 100 μmol/L) enhanced the expression of 
ATG5, ATG7, and ATG12 in HUVECS co-cultured with 
316L SS (Figure 3B).

Discussion
Our results showed that EGCG (12.5, 25, 50, 100 μmol/L) 
significantly inhibited HUVEC proliferation. Flow cyto
metry analysis indicated that EGCG (25, 50, 100 μmol/L) 
induced apoptosis. Moreover, as revealed by qRT-PCR, we 
found that the expressions of genes associated with cell 
apoptosis (caspase 3, caspase 8, caspase 9 and Fas) and 
autophagy (Atg 5, Atg 7, Atg 12) were up-regulated after 
EGCG treatments.

Vascular stent implantation is a widely acknowledged 
method for the clinical treatment of arterial trauma. 
However, the naked surface of the metallic stent also 
potentially acts as a stimulus promoting allergies and 
inflammation. A large number of epidemiological studies 
have suggested that green tea can exert an anti-cancer 
effect on a variety of tumor cells, and long-term consump
tion of green tea reduces the risks of various cancers. 
EGCG enhances autophagy through the promotion of 
autophagosome formation, the enhancement of lysosomal 

acidification, and the stimulation of autophagic flux in 
Müller cells.22 Li et al demonstrated that HUVECs 
exposed to 316L SS could cause cell proliferation com
pared with the medium group.23 In this study, our cell 
morphology results showed higher living cell numbers of 
HUVECs on the 316L SS surface than in the controls. 
Furthermore, the treatments with EGCG (12.5, 25, 50, 100 
μm/L) significantly reduced the number of HUVECs on 
316L SS surface. Our results were consistent with the 
findings of Zhang et al, where EGCG treatments were 
demonstrated to inhibit cell proliferation during I/R 
injuries.24

To investigate the underlying mechanisms of the inhi
bitory effects of EGCG treatments on cell proliferation on 
316L SS surface, flow cytometry analysis was performed. 
In the results of flow cytometry, it was shown that EGCG 
(25, 50, 100 μmol/L) treatments promoted the apoptosis of 
HUVECs compared with the 316 L group. Apoptosis is 
mainly induced through two approaches. One of them is 
through the activation of caspase by extracellular stimulus 
and the Fas-dependent pathway. Fas belongs to the trans
membrane protein of the tumor necrosis factor receptor 
superfamily. Fas is able to bind with its ligand FasL and 
initiate signal transductions, which activate caspase-8 and 

Figure 1 Fluorescent images of HUVECs grown on 316L surface. Cultured for 3 days (*40). (A) Control (B) 316L (C) 316L +12.5 μmol/L, (D), 316L+25 μmol/L (E) 316L 
+50 μmol/L, and (F) 316L+100 μmol/L.
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the signaling cascades, which subsequently leads to the 
induction of apoptosis. Another approach for apoptosis 
induction is through the release of apoptosis protease 
activating factor (Apaf) by mitochondria, which leads to 
the activation of caspase. Stimulations such as stress and 
apoptotic signals cause the release of cytochrome C by 
cells. With the existence of dATP, extracellular cyto
chrome C forms polymers with Apaf-1, and enhances the 

formation of apoptotic bodies with caspase-9. 
Subsequently, caspase-9 is activated. Its activation also 
induces the activations of other caspases such as caspase- 
3, and thus causes the apoptosis of cells.25,26 Autophagy 
happens during conditions such as nutrient deprivation and 
stress responses, in order to promote the survival of cells. 
Four autophagy-related genes were discovered in the stu
dies of yeast, and have been proven to play critical roles in 

Figure 2 Flow cytometry analysis of apoptosis of HUVECs. Cells were cultured on 316L SS surface without or with EGCG treatments (12.5, 25, 50, 100μmol/L) for 3 days. 
Annexin-V positive PI negative represents the proportion of early apoptotic cells; quadrant of early apoptotic stage was in right lower quadrant. Annexin-V positive PI- 
positive cells represent the late apoptotic or necrotic cells. Quadrant of late apoptotic cells was in the right upper quadrant.

Figure 3 Gene expression profiles of HUVECs. (A) Shows apoptotic genes and (B) shows autophagic genes. Data were displayed as mean ± SD. *P < 0.05 compared with 
316L group.
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the induction, processing, maturation, and recycling of 
autophagy. Atg5 is widely accepted as a key component 
in the mechanisms of autophagy. Atg5 contributes to the 
process of ubiquitin-like conjugation system, which is 
indispensable during the pre-autophagosomal structure 
elongation process. Atg12 is an ubiquitin-like protein, 
able to bind with Atg5 through covalent bonds, under the 
facilitation of Atg7 and Atg10. This Atg12-Atg5 hetero
dimer subsequently binds with Atg16Land forms a multi- 
protein complex.27 Meanwhile, autophagy and apoptosis 
are closely associated processes rather than isolated. 
Caspase-8 has been found to participate in the regulation 
of autophagy, while Atg5 has also been found to interact 
with Fas-associating protein with a novel death domain 
(FADD) and induce apoptosis.28,29 In this study, we found 
that 7 days after the EGCG treatments (except for low 
dose treatment at 12.5mol/L), the expressions of caspase-3 
were found to be higher than that in the 316L SS group. 
Meanwhile, as revealed by higher expression levels of 
caspase-8, caspase-9, Atg 5, Atg7, and Atg12, 
EGCG treatments (at all treatment doses) were demon
strated to inhibit the proliferation of cells on 316L SS 
surface through the promotion of both autophagy and 
apoptosis.

However, the mechanisms involved in 316L material 
for the growth of HUVECs are complex, as is the function 
of EGCG; therefore, further research is required.

Conclusion
In this study, we demonstrated the effects of EGCG on 
HUVECs’ growth on 316L SS surface. EGCG (12.5, 25, 
50, 100 μmol/L) significantly inhibited HUVEC cell 
proliferation. As revealed by flow cytometry, EGCG 
promoted the apoptosis of cells growing on 316L SS 
surface. The gene expression profile of HUVECs was 
analyzed by qRT-PCR and indicated promoted cell 
apoptosis and autophagy caused by EGCG treatment, 
as revealed by higher gene expression levels of 
genes related to both apoptosis and autophagy. Our 
results provided robust evidence suggesting that EGCG 
promoted the apoptosis of endothelial cells through the 
regulation of apoptotic and autophagic genes. These 
results and conclusions established solid foundations 
for the new drug development of stent applications. 
However, further in vivo studies for the validation of 
our conclusions are necessary.
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