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Abstract: Atherosclerosis (AS) as the leading cause of cardiovascular and cerebrovascular 
events has been paid much attention all the time. With the continuous development of 
modern medical drug treatment, surgical treatment, interventional treatment and other meth-
ods, the mortality rate of AS has shown a downward trend, while the morbidity rate is still 
increasing. Oral lipid-lowering or anti-inflammatory drugs are generally used for early AS, 
but the relatively low accumulation efficiency in lesions and the unavoidable side effects 
required researchers to develop more effective drug delivery approaches for the therapy of 
AS. Mesoporous silica nanoparticles as nanocarrier for drug delivery have received extensive 
attentions due to their flexible size, high specific surface area, controlled pore volume, high 
drug loading capacity and excellent biocompatibility. Series of good reviews about the 
mesoporous silica nanoparticles loaded drugs for cancer therapy have been well documented. 
However, their roles as nanocarrier for drug delivery to treat AS have few reports. In this 
review, the applications and challenges of mesoporous silica nanomaterials in the field of the 
diagnosis and therapy of AS have been summarized. The classification, synthesis, formation 
mechanism, surface modification and functionalization of mesoporous silica nanomaterials 
which were closely related to the theranostic effect of AS have also been included. Last but 
not the least, the future prospects’ suggestions of mesoporous silica nanomaterial-based drug 
delivery system for AS are also provided. 
Keywords: mesoporous silica, nanomaterials, diagnosis, drug delivery, atherosclerosis

Introduction
Cardio/cerebrovascular disease (CVD) is one of the main reasons for the increase of 
global mortality and AS has been considered to be the main pathological basis for 
inducing cardio/cerebrovascular disease.1 AS is a chronic inflammatory vascular 
disease2 coming from the excessive and unregulated scavenger receptor-mediated 
internalization of oxidized low-density lipoprotein (oxLDL) in macrophages and their 
accumulation on the arterial wall to form lipid-rich plaques.3 Currently, the main 
treatments of AS are drug treatment and surgical treatment.4–6 Drug treatments such 
as blood lipid-lowering drugs, anti-inflammatory drugs, anti-platelet drugs, or thrombo-
lytic drugs are generally preferred for patients with early AS or AS without severe 
symptoms.4–6 However, the relatively low accumulation efficiency of drugs at the lesion 
and the side effects associated with long-term use limit its wider clinical application. 
With the continuous improvement of surgical procedures such as recanalization, recon-
struction or bypass transplantation, as well as interventional treatment such as intravas-
cular vascular bypass and stent placement, the cure rate of AS is significantly increased. 
But the occurrence of complications such as postoperative vascular restenosis and 
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unsatisfactory long-term patency rates requires researchers to 
develop more effective methods to treat AS.7

With the rapid development of nanotechnology, nanocar-
rier-based drug delivery systems have gradually attracted 
widespread attention. Nanocarrier-based drug delivery system 
can not only make up for the shortcomings of general drugs 
such as short circulation time, poor stability, low bioavailability 
and systemic toxic reaction, but also target the lesion and 
control the release rate of the drug to improve the therapeutic 
effect.8 At present, researchers have developed a large number 
of organic or inorganic nanomaterials for drug delivery to treat 
various diseases, such as liposomes,9–12 polymer micelles,13–16 

gold nanoparticles,17–19 carbon nanotubes,20–22 quantum 
dots,23–25 metal oxides,26,27 and mesoporous silica.28,29 

Compared with other nanomaterials, mesoporous silica has 
been widely used in the construction of nanoplatforms for 
drug delivery due to its flexible size, high specific surface 
area, controlled pore volume, high drug loading capacity, 
high biocompatibility, good hydrothermal stability, and surface 
chemical modification.30,31 Currently, various functional 
mesoporous silica drug delivery systems have been developed 
for the treatment of various tumors, and a series of good 

reviews about the drug loading mesoporous silica nanomater-
ials for cancer therapy have been well documented.28,30–34 

However, their roles to load drugs for AS have few reports. 
In this article, we summarized the classification, synthesis, 
formation mechanism, surface modification and functionaliza-
tion of mesoporous silica nanomaterials as nanocarriers for 
drug delivery. Furthermore, their fate for the applications in 
the diagnosis and treatment of AS is also reviewed. Finally, the 
future prospects, challenges and suggestions of mesoporous 
silica nanomaterial-based drug delivery system for AS are 
commented (Figure 1).

Classification, Synthesis, Formation 
Mechanism, Surface Modification 
and Functionalization of 
Mesoporous Silica Nanomaterials as 
Nanocarrier for Drug Delivery
Classification of Mesoporous Silica
Mesoporous silica is a type of inorganic polymer nanoma-
terials with a pore size between 2 and 50 nm and possesses 
a series of excellent properties such as high specific surface 

Figure 1 Schematic illustration of the classification (A), surface modification and functionalization (B and C), synthesis and formation mechanism (D), and application of 
mesoporous silica nanomaterials (E and F) in this review. 
Notes: (A) Reproduced from Narayan R, Nayak UY, Raichur AM, et al. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. 
Pharmaceutics. 2018;10(3):118–166. Creative Commons license and disclaimer available from http://creativecommons.org/licenses/by/4.0/legalcode.45 (B, C) Li Z, Zhang Y, 
Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv. 
2019;16(3):219–237, reprinted by permission of the publisher (Taylor & Francis Ltd, http://www.tandfonline.com).44 (D) Kankala RK, Han YH, Na J, et al. Nanoarchitectured 
Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Adv Mater. 2020;32(23), reprinted by permission of the publisher (Taylor & Francis Ltd, http:// 
www.tandfonline.com).87 (E) Reprinted from Biomaterials, 199, Jeong HJ, Yoo RJ, Kim JK, et al. Macrophage cell tracking PET imaging using mesoporous silica nanoparticles 
via in vivo bioorthog onal F-18 labeling. 32–39, copyright (2019), with permission from Elsevier.74 (F) Huang Y, Li T, Gao W, et al. Platelet-derived nanomotor coated balloon 
for atherosclerosis combination therapy. J Mater Chem B Mater Biol Med. 2020;8(26):5765–5775,71 permission conveyed through Copyright Clearance Center,Inc.
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area, uniformly adjustable pore size, high drug loading 
capacity, high biocompatibility, and easy surface modifica-
tion. According to whether the mesoporous is ordered, it can 
be divided into disordered mesoporous silica and ordered 
mesoporous silica. The current research focuses mainly on 
the ordered mesoporous silica due to the highly ordered 
channel structure, regular pore size distribution, and 
a variety of mesoporous shapes suitable for drug delivery. 
Kresge et al, who are the scientists of Mobil Company, have 
reported an ordered mesoporous material called MCM-41 
for the first time in 1992. The pore structure of this new type 
of nanomaterials is an ordered two-dimensional hexagonal 
arranged with uniform particle size and the pore size can be 
continuously adjusted in the range of 2–10 nm.35 By con-
trolling the synthesis conditions, various forms of mesopor-
ous silica have been produced continuously. Table 1 
Summaries of the types and characteristics of some common 
mesoporous silica nanomaterials.

Synthesis of Mesoporous Silica 
Nanomaterials
In 1968, Werner Stöber and his colleagues first discovered 
a physicochemical method for the synthesis of spherical 
monodisperse micron-sized silica particles by adding tetra-
ethyl orthosilicate (TEOS) to ethanol and ammonia water to 
generate silica particles.43 In order to obtain monodisperse 
and highly ordered silica nanoparticles, researchers have 
made various improvements to the Stöber method. At pre-
sent, the most used method for mesoporous silica synthesis 

is the sol-gel method, which is based on the modified Stöber 
synthesis method,30 which introduces a surfactant (cationic 
or anionic or nonionic surfactant) as a structure guide agent, 
and TEOS or silicate as the silicon source. Under alkaline 
conditions, the surfactant is stirred with the mixed solution 
of water and alcohol, and then the silicon source is added 
under stirring to prepare mesoporous silica through the 
chemical reaction of hydrolysis and condensation of the 
silicon source in the solution (Figure 2).44

Another synthetic method of mesoporous silica is eva-
poration-induced self-assembly (EISA). In this method, the 
surfactant is first prepared with a surfactant in an ethanol/ 
water solvent. During the evaporation of the solvent, the 
surfactant concentration will gradually increase, resulting in 
silica/surfactant glue self-assembly of beams, and silica and 
surfactant will co-assemble into liquid crystal mesophase.44,45

Formation Mechanism of Mesoporous 
Silica
The specific formation mechanism of mesoporous silica has 
not been clearly explained. A thorough understanding of the 
formation mechanism of mesoporous silica can help to pre-
pare specific drug delivery nanoparticles. Kresge et al 
believed that MCM-41 is synthesized through the liquid 
crystal template mechanism (Figure 3A). Since the surfac-
tant has dual hydrophilic groups, rod-shaped micelles are 
formed when the critical micelle concentration (CMC) is 
reached in the aqueous solution. They are self-assembled 
and arranged into an orderly “liquid crystal” structure. When 

Table 1 Classification and Characteristics of Common Mesoporous Silica Nanomaterials

Name Pore Structure Crystal 
Structure

Pore Size/ 
nm

Surfactant Silicon 
Source

Synthetic 
Environment

Ref.

MCM-41 Two-dimensional (straight 

channel)

Hexagonal 2~10 CTAB TEOS Alkaline [35]

MCM-48 Three-dimensional (Cross hole) Cubic 2~4 PF127 TEOS Alkaline [36]

MCM-50 Two-dimensional (straight 

channel)

Lamellar 10~20 CnH2n+1 

N(CH3)3

TEOS Alkaline [37]

SBA-1 Three-dimensional (Cage hole) Cubic 2~3 PAA, CPC TEOS Acidic [38]

SBA-15 Two-dimensional (straight 

channel)

Hexagonal 5~30 EO20PO70EO20 TEOS Acidic [39]

SBA-16 Three-dimensional (Cross hole) Cubic 5~30 EO106PO70 

EO106

TEOS Acidic [40]

HMS Short-range ordered channels Hexagonal 2~10 CnH2n+1NH2 TEOS Neutral [41]

MSU-X Wormhole Hexagonal 2~15 CnH2n+1 (EO)m TEOS Neutral [42]

Abbreviations: CTAB, cetyltrimethylammonium bromide; TEOS, tetraethyl orthosilicate; PAA, polyacrylic acid; CPC, cetylpyridine chloride.
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silicon source is added, silicate ions will combine with 
surfactant ions due to static electricity to attach to the surface 
of surfactant micelles. The organic substances are then 
removed after washing, drying, and calcining the product. 
Finally, the framework-like regularly arranged silicate net-
work is left to form mesoporous silica.35

The formation mechanism of mesoporous silica was 
also studied by time-resolved small-angle neutron scatter-
ing (SANS) method (Figure 3B). It was found that during 
the early hydrolysis of silicon source, tetramethyl 

orthosilicate (TMOS), silicate ions are adsorbed around 
the cationic surfactant micelles, and the charge around 
the surfactant is reduced due to the initial hydrolysis and 
condensation of the silicon source, resulting in a reduction 
in the repulsive force between the micelles. Then, the 
small silica aggregates are formed, and finally, hexagonal 
ordered mesoporous silica is obtained.45–47

In addition, some researchers have proposed another 
mechanism called “expansion and contraction”, which pro-
vides new ideas for the formation of mesoporous silica 

Figure 2 A schematic diagram of the synthesis of MSNs. 
Notes: Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. 
Expert Opin Drug Deliv. 2019;16(3):219–237, reprinted by permission of the publisher (Taylor & Francis Ltd, http://www.tandfonline.com).44

Figure 3 Schematic diagrams of the formation mechanism of mesoporous silica. (A) Scheme of the formation mechanism of MCM-41. (B) SANS method. (C) “expansion 
and contraction” mechanism. 
Notes: (A) Narayan R, Nayak UY, Raichur AM, et al. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics. 
2018;10(3), reprinted by permission of the publisher (Taylor & Francis Ltd, http://www.tandfonline.com).45 (B) Reprinted with permission from Yi Z, Dumee LF, Garvey CJ, 
et al. A new insight into growth mechanism and kinetics of mesoporous silica nanoparticles by in situ small-angle X-ray scattering. Langmuir. 2015; 31(30): 8478–8487. 
Copyright (2015) American Chemical Society.46 (C) Reprinted with permission from Hollamby MJ, Borisova D, Brown P, et al. Growth of mesoporous silica nanoparticles 
monitored by time-resolved small-angle neutron scattering. Langmuir. 2012;28(9): 4425–4433. Copyright (2015) American Chemical Society.47
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(Figure 3C). For the “expansion and contraction” mechan-
ism, cetyltrimethylammonium bromide (CTAB) is com-
monly used as the structure-directing agent. Firstly, CTAB 
is dissolved in a buffer solution with a pH of 7.2, and then 
TEOS dissolved in the hydrophobic core is introduced, 
resulting in the increase of the micelles. When the TEOS in 
the CTAB hydrophobic core is completely consumed, the 
micelles will shrink and become smaller. As the processes of 
hydrolysis and condensation occur simultaneously, the 
micelles continue to shrink until all TEOS are hydrolyzed 
and a silica shell is formed around the micelles.45,46

Surface Modification and 
Functionalization of Mesoporous Silica
Since the surface of mesoporous silica contains a large num-
ber of hydroxyl groups, it is very easy to agglomerate, which 
affects their dispersibility and water solubility, resulting in 
a significant reduction in the application of assembly materi-
als. Therefore, the researchers tried to modify the surface of 
mesoporous silica to reduce its surface energy and effectively 
improve its dispersibility and utilization rate. The current 
modification methods mainly include surface physical mod-
ification and surface chemical modification. Surface physical 
modification mainly utilizes adsorption, wrapping and other 
physical effects to modify the surface of mesoporous silica 
by means of ultraviolet rays and plasma. The surface chemi-
cal modification is commonly via the interaction between the 
coupling agent containing organic functional groups (such as 
-NH2, -Cl, -SH or -CN, etc.) and mesoporous silica, to realize 
the surface modification of mesoporous silica by grafting 
functional groups onto the pore wall of mesoporous silica 
in a covalent bond manner.

Currently, there are two main methods of surface chemical 
modification: co-condensation and post-synthesis. The co- 
condensation method as a one-step preparation method is to 
add an organic coupling agent and an inorganic source to the 
solution simultaneously. With the help of a template agent, 
functional groups are introduced into the pore channels to 
realize the surface functionalization with the generation of 
a mesoporous structure. For the post-synthesis method, meso-
porous silica is prepared firstly, and then the coupling agent is 
added and the whole solution is refluxed in an organic 
solvent.48 Compared with the co-condensation method, the 
post-synthesis method can control the morphology, structure, 
particle size and pore size of the mesoporous silica more easily, 
which is more widely used. Mehmood et al synthesized meso-
porous silica using a modified sol-gel method and then 

functionalized its surface with amino group (Figure 4A).49 

The mesoporous silica nanoparticles loaded with sofosbuvir 
were surface-modified by a post-synthesis method using 
3-aminopropyltriethoxysilane (APTES) and polyvinyl alcohol 
(PVA) for amino group modification of MSN to realize sus-
tained drug release. The experimental results showed that the 
amino-decorated MSNs exhibited Fickian diffusion controlled 
drug release as compared with non-functionalized and PVA- 
grafted MSNs. He et al synthesized amino-functionalized 
mesoporous silica nanoparticles (MSN-NH2) by post- 
grafting and employed doxorubicin hydrochloride (DOX) as 
a model drug to evaluate their drug loading and release 
performance.50 It showed that as the mass ratio of MSN-NH2 

/DOX decreased or the density of amino groups increased, the 
DOX loading efficiency increased significantly.

In addition, mesoporous silica can also be surface mod-
ified with polymer. Wang et al prepared a series of poly-
(amidoamine) (PAMAM)-modified MSNPs (MSNPs-G0 
~MSNPs-G3) by grafting zero to third generation PAMAM 
dendrimers onto the surface of mesoporous silica nanoparti-
cles by a layer-by-layer grafting method (Figure 4B).51 The 
obtained NPs were used for mucoadhesive drug delivery 
systems. With the number of PAMAM amino groups 
increased, the mucoadhesive ability of PAMAM-modified 
MSNPs was enhanced. After encapsulating DOX in the 
mesopores of MSNPs-G2, Dox@MSNPs-G2 sustained 
DOX release triggered by acidic pH.

Although mesoporous silica has a high drug loading 
rate and can control the release rate of drug, the liver, 
kidney and other organs will non-specifically take the 
drug and cause systemic toxicity before the released 
drug reaches the target site. Therefore, researchers 
employ activatable functionalization concept to address 
this issue and mesoporous silica with the ability of sti-
muli-responsive drug release such as pH-responsive,52–55 

temperature-responsive,56 redox-responsive,57–60 enzyme- 
responsive,61,62 magnetic-responsive,63–65 and joint- 
stimulus-responsive66,67 have been well developed. 
However, it should be mentioned that up to now, most 
of them were all designed for the diagnosis and treatment 
of tumor.

Application of Mesoporous Silica 
Nanomaterial-Based Drug Delivery 
System in Atherosclerosis
Since Vallet-Regi et al reported the loading of ibuprofen 
into MCM-41 type MSNs as drug delivery system in 2001 
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for the first time, mesoporous silica has been widely used 
as drug delivery nanocarriers in tumors.68 Mesoporous 
silica possesses a series of excellent properties for their 

use as drug delivery carrier, such as highly ordered pores, 
high specific surface area and large pore volume. 
Particularly, its pore size is uniformly distributed and 

Figure 4 A schematic diagram of surface modification of mesoporous silica. (A) amino functionalization. (B) polymer modification. 
Notes: (A) Reprinted from Eur J Pharm Sci, 143, Mehmood Y, Khan IU, Shahzad Y, et al. Amino-decorated mesoporous silica nanoparticles for controlled sofosbuvir delivery, 
105184, copyright (2020), with permission from Elsevier.49 (B) Reprinted from Colloids Surf B Biointerfaces, 189, Wang B, Zhang K, Wang J, et al. Poly(amidoamine)-modified 
mesoporous silica nanoparticles as a mucoadhesive drug delivery system for potential bladder cancer therapy, 110832, copyright (2020, with permission from Elsevier).51
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controllable and can be adjusted in a wide range, favoring 
the loading of different substances on demand. In addition, 
the shape of mesopores and the composition and properties 
of the pore walls can also be adjusted, contributing to the 
controllable release of drug. These unique physical and 
chemical properties make mesoporous silica a suitable 
carrier for drug delivery. The high drug-carrying capacity 
and co-carrying capacity of mesoporous silica also make it 
possible to overcome multiple drug-resistant tumors.69 In 
addition, the retention effect and high permeability effect 
(EPR effect) of the solid tumor allow nanoparticles to be 
passively targeted to the tumor site, which further 
enhances the killing effect of nano-medicine on tumors. 
These outstanding properties of mesoporous silica for drug 
delivery in tumor show their promising potentials for AS, 
which is a chronic inflammatory vascular disease with the 
lipid-rich plaques accumulated on the arterial wall. In 
recent years, researchers have designed mesoporous silica- 
based diagnosis and therapy systems for AS. Table 2 
summarizes the applications of mesoporous silica in AS.

Macrophages play a vital role in the formation of AS.76 

Chemotactic factors such as monocyte chemoattractant 
protein 1 (MCP-1) and adhesion molecules can chemo 
attract inflammatory monocytes in the blood to migrate 
to the artery intima, and the monocytes in the inner layer 
are activated in response to macrophage colony stimulat-
ing factor and further differentiate into macrophages.77,78 

Macrophages actively internalize and modify lipids and 
transform into foam cells to accelerate the formation of 
AS. Therefore, tracking macrophages is a promising 
method for the diagnosis of AS. Jeong et al designed the 
aza-dibenzocyclooctyne polymerized PEGylated mesopor-
ous silica nanoparticles (DBCO-MSNs) with biological 
orthogonal F-18 labeling to track macrophage cells by 
Positron Emission Computed Tomography (PET) (Figure 
5A).74 The experimental results showed that 18F-DBCO- 
MSNs labeled macrophage cells (RAW264.7) could home 
and accumulate at atherosclerotic plaque and could be 
monitored by PET images. Such DBCO-functionalized 
MSNs can provide a new strategy for the diagnosis of 

Table 2 Summary of Application of Mesoporous Silica in Atherosclerosis

Nanomaterials Surface Modification Drug Targeting Mechanism Functions Ref.

PP1-IO@MS- 

IR820 (PIMI)

PP1 IR820 (near- 

infrared 

fluorescence 
dye)

Targeting foamy macrophage 

through SR-AI(an overexpressed 

surface receptor)

Dual MR/NIRF imaging [70]

MJAMS/PTX/aV 1. sputtere Pt on one-side of AMS 
2. modify anti-VCAM-1 antibody 3. 

platelet membrane coated

PTX Nanomotor can penetrate deeply 
into the plaque under the 

irradiation of near-infrared (NIR) 

light

1. short-term 
photothermal 

elimination of 

inflammatory 
macrophages 

2. long-term anti- 

proliferation effect of 
the drug

[71]

FITC-VHP- 
Fe3O4@SiO2

The peptide VHPKQHR N/A VCAM-1 targeting Fluorescence/magnetic 
resonance imaging

[72]

SiN@QC-PLGA N/A Quercetin N/A Control the medication 
discharge conduct from 

the nanobiocarriers

[73]

18F-DBCOT- 

MSNs

DBCO-functionalized (aza- 

dibenzocyclooctyne-tethered 

PEGylated)

N/A Macrophage cell-tracking PET imaging [74]

CD68-Fe-HSNs Anti-CD68 antibody N/A Targeting macrophage through 

CD68 receptor

Dual-modal US/MRI 

imaging

[75]

Abbreviations: PP1, an overexpressed surface receptor (SR-AI) driven foamy macrophage-targeted peptide; IO, iron oxide; MS, mesoporous silica; MR, magnetic 
resonance; NIRF, near-infrared fluorescence; Pt, platinum; VCAM-1, vascular cell adhesion molecule-1; PTX, paclitaxel; VHPKQHR, Val-His-Pro-Lys-Gln-HisArg; FITC, 
fluorescein isothiocyanate isomer; PLGA, poly(lactic-co-glycolic acid); PET, positron emission tomography; US, ultrasound.
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AS with PET imaging. Ji et al fabricated anti-CD68 recep-
tor-targeted Fe-doped hollow silica nanoparticles (CD68- 
Fe-HSNs) as a dual-modal US/MRI contrast agent to 
identify macrophages of aorta ventralis atherosclerotic 
plaques in ApoE-/- mice (Figure 5B).75 In addition, the 
CD68-Fe-HSNs were biodegradable, even though they 
were inorganic mesoporous nanosystems, indicating their 
potentials for drug delivery and AS theranostic. Since AS 
is an inflammatory disease, high expression of inflamma-
tory molecules can also be used as targeting molecules for 
AS tracking. Xu et al designed mesoporous silica nano-
particles that could target vascular cell adhesion molecule 
1 (VCAM-1) expressed by endothelial cells.72 VHPKQHR 
peptide-modified magnetic mesoporous nanoparticles 
(FITC-VHP-Fe3O4@SiO2) were constructed by incorpor-
ating fluorescein isothiocyanate (FITC) into Fe3O4@SiO2 

and modifying VHPKQHR (Val-His-Pro-Lys-Gln-His- 
Arg) peptide on their surface. In vitro fluorescence ima-
ging and in vivo magnetic resonance imaging showed that 
FITC-VHP-Fe3O4@SiO2 could accurately target athero-
sclerotic plaque sites. In this paper, although the authors 
did not apply for drug delivery, they displayed the possi-
bility of future accurate delivery of drugs by MRI guided 
with FITC-VHP-Fe3O4@SiO2 for AS.

In the treatment of AS, Huang et al synthesized 
a paclitaxel drug-loaded platelet membrane bionic Janus 
mesoporous silica porous nanomotors (JAMS) that were 
obtained by asymmetric modification of platinum (Pt) 
nanoparticles.71 After the NIR irradiation, the nanomotors 
can not only penetrate the plaque and enhance the drug 
retention efficiency but also realize short-term photother-
mal elimination of inflammatory macrophages and long- 
term anti-proliferation effect of the drug (Figure 5C). The 
introduction of nanomotor, platelet membrane coating and 
the combination of photothermal and drug therapy pro-
vided a new avenue for the treatment of AS with high 
efficiency.

Wang et al prepared a new polymer superparamagnetic 
nano-silica (SiN)@quercetin (QC)-coated poly(lactic-co- 
glycolic acid) (PLGA) nanocomposite (SiN@QC-PLGA) 
by lyophilization to control the medication discharge 
conduct.73 The results indicated that the SiN@QC-PLGA 
nanocomposite essentially improved the actual similarity 
of the local myocardium, favoring the cell enlistment, 
attachment, expansion and articulation of heart proteins. 
The structure and manufacture of this nanocomplex can 
control the medication discharge conduct from the nano-
carriers and thusly diminish the required incessant 

infusion, which might have the potential to be used for 
the anticipation of AS and other relative cardiovascular 
diseases.

However, compared with mesoporous silica-based drug 
delivery systems for the theranostic applications in tumor, 
their uses for the diagnosis and treatment of AS are scarce up 
to now, which might come from the adverse effect of meso-
porous silica on the development of AS. We will discuss the 
existing challenges in the following paragraph in detail.

Challenges of Mesoporous Silica 
Nanomaterials in Atherosclerosis
Although the above literatures showed the usage of meso-
porous silica nanomaterials for the diagnosis and therapy 
of AS, it should be mentioned that mesoporous silica 
nanomaterials have displayed an adverse effect on the 
development of AS in some reports in recent years. For 
example, Liu et al found that silica nanoparticles could 
induce endothelial cell dysfunction through oxidative 
stress through the JNK/p53 and NF-kB pathways,79 and 
could also enhance the proinflammatory and procoagulant 
responses significantly to trigger or exacerbate AS through 
CD40-CD40L-mediated monocyte-endothelial cell 
interactions.80 Guo et al found that silica nanoparticles 
could induce oxidative stress, inflammation and interfere 
with the nitric oxide (NO)/nitric oxide synthase (NOS) 
system, and ultimately led to endothelial dysfunction by 
activating the MAPK/Nrf2 pathway and nuclear factor-κB 
signal transduction.81 Petrick et al incubated the mouse 
cell line macrophages J774.1 with silica nanoparticles, and 
then performed cytotoxicity tests, oxidative stress, trigly-
ceride (TG) and cholesterol metabolism analysis to study 
the atherogenic effect of silica in vitro.82 The experimental 
results showed that compared with J774A.1 cultured mur-
ine macrophage cells without the treatment of SiO2, 
a significant dose-dependent increase in oxidative stress 
(up to 164%), in cytotoxicity (up to 390% measured by 
lactate dehydrogenase (LDH) release), and in TG content 
(up to 63%) was observed in SiO2 exposed macrophages. 
Therefore, silica nanoparticles exhibited pro-atherogenic 
effects on macrophages through the observation of cyto-
toxicity, increased oxidative stress and TG accumulation. 
Guo et al studied their effect on the metabolism of macro-
phage-derived lipids, foam cell formation and macrophage 
apoptosis when silica nanoparticles (SiNPs) and oxLDL 
were exposed together to Raw264.7 cells (Figure 6).83 

They found that SiNPs could promote the accumulation 
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Figure 5 Applications of mesoporous silica in the diagnosis and treatment of AS. (A) A schematic diagram of an effective macrophage tracking protocol based on an in vivo 
bioorthogonal F-18 labeling reaction using the PET system. (B) Schematic illustration of identifying macrophage enrichment in atherosclerotic plaques by dual-modal US 
imaging and MRI based on biodegradable CD68-Fe-HSN. (C) Schematic illustration of the synthesis process of MJAMS/PTX/aV and the mechanism of treatment of AS using 
the MJAMS/PTX/aV coated balloon. 
Notes: Reprinted from Biomaterials, 199, Jeong HJ, Yoo RJ, Kim JK, et al. Macrophage cell tracking PET imaging using mesoporous silica nanoparticles via in vivo 
bioorthogonal F-18 labeling. 32–39, copyright (2019), with permission from Elsevier.74 Reproduced from Ji R, Li X, Zhou C, et al. Identifying macrophage enrichment in 
atherosclerotic plaques by targeting dual-modal US imaging/MRI based on biodegradable Fe-doped hollow silica nanospheres conjugated with anti-CD68 antibody. Nanoscale. 
2018;10(43):20246–20255.75 Huang Y, Li T, Gao W, et al. Platelet-derived nanomotor coated balloon for atherosclerosis combination therapy. J Mater Chem B Mater Biol Med. 
2020;8(26):5765–5775.71
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of lipids in macrophages by promoting the inflow of cho-
lesterol and inhibiting the outflow of cholesterol under the 
stimulation of oxLDL. In addition, SiNPs also promoted 
oxLDL-induced foam cell formation and macrophage 
apoptosis. All of the above researches show that it is still 
a challenge to develop silica nanoparticle-based theranos-
tic system for AS at present although some related appli-
cations have been reported. More attention on the 
mechanism and the control method of such influence 
should be paid to broaden the theranostic applications of 
mesoporous silica nanomaterials for AS.

With the continuous development of nano-engineering 
technology, cell membrane-derived biomimetic nanoparticles 

have attracted extensive attention from researchers due to their 
excellent biocompatibility. Cell membrane-derived biomi-
metic nanoparticles can be recognized as “self” in vivo, so 
they can evade the immune system more effectively, prolong 
blood circulation, and improve their ability to target lesions 
through the biological properties of the cell membrane 
surface.84 Xuan et al presented magnetic mesoporous silica 
nanoparticles cloaked with red blood cell membrane 
(RBC@MMSNs) which integrates with long circulation, 
photosensitizer delivery and magnetic targeting feature for 
cancer therapy.85 Since derived from the natural features of 
source cell, the RBC@MMSN-HB expresses remarkable 
properties of stability, biocompatibility, and prolonged 

Figure 6 The induction of foam cell along with the disturbance on cholesterol influx/efflux balance, and promotion of apoptosis via ER stress PERK/eIF2α/ATF4 and IRE1α/ 
XBP1 signaling cascade by SiNPs and oxLDL coexposure in a macrophage model. 
Notes: Reprinted from Sci Total Environ, 631–632, Guo C, Ma R, Liu X, et al. Silica nanoparticles promote oxLDL-induced macrophage lipid accumulation and apoptosis via 
endoplasmic reticulum stress signaling. 570–579, copyright (2018), with permission from Elsevier.83
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circulation, reduced retention in reticuloendothelial system, 
and improved tumorous accumulation. They also fabricated 
macrophage cell membrane (MPCM)-camouflaged mesopor-
ous silica nanocapsules (MSNCs) through a top-down assem-
bly as a biomimetic drug delivery platform again.86 Compared 
with RBC membrane-coated nanoparticles, the MPCM- 
camouflaged MSNCs not only exhibited good in vivo stability, 
reduced retention in RES organs, prolonged blood-circulating 
time, and improved tumoritropic accumulation, but also pro-
vided active targeting ability by recognizing tumor endothe-
lium through the existing surface proteins on the MPCMs. 
Benefitting from the properties of cell membrane, cell mem-
brane-coated mesoporous silica biomimetic nanoparticles 
might weaken their negative effect for AS development.

Recently, researchers have applied the strategy of cell 
membrane biomimetic nanoparticles to atherosclerosis. 
Wang et al fabricated macrophage membrane biomimetic 
nanoparticles (MM/RAPNPs) through a macrophage 
membrane coating on the surface of rapamycin-loaded 
poly (lactic-co-glycolic acid) copolymer (PLGA) nanopar-
ticles based on macrophage “homing” to atherosclerotic 
lesions.88 The experiments demonstrate that MM/RAPNPs 
showed favorable sustained drug release kinetics, effec-
tively inhibited macrophage phagocytosis and targeted 
activated endothelial cells in vivo. In vivo, MM/RAPNPs 
can effectively target and accumulate in atherosclerotic 
lesions and are significantly delayed the progression of 
AS after treatment for one month. Song et al explored 
platelet membrane-coated PLGA nanoparticles (PNP) as 
atherosclerotic plaque-targeting drug delivery system 
through mimicking platelets’ inherent adhesion to athero-
sclerosis plaques.89 It showed that RAP-PNPs could effec-
tively target atherosclerotic plaques, delay the progression 
of atherosclerosis and stabilize atherosclerotic plaques.

These studies have confirmed the advantages of cell 
membrane-derived biomimetic nanoparticles in tumor 
treatment and atherosclerosis management. Although the 
nano-core in these studies is not mesoporous silica nano-
particle, we hope this strategy can also be used for meso-
porous silica to meet its challenges in AS. The surface 
coating might weaken the influence of mesoporous silica 
on the development of AS. In addition, it is possible to 
design mesoporous silica nanoparticles that have a lower 
degree of cross-linking and are easily biodegradable in the 
body to overcome their limitations for the diagnosis and 
therapy of AS. We expect that these novel designs can 
provide new strategies for the safe use of mesoporous 
silica in AS.

Summary
Mesoporous silica nanomaterials have become the most 
ideal nanocarriers for the fabrication of drug delivery 
system due to their high specific surface area, controlled 
pore volume, high drug loading capacity, and high bio-
compatibility. In addition, the surface chemical modifi-
cation of mesoporous silica can be performed to 
improve its dispersibility and utilization rate. 
Researchers have designed various functional mesopor-
ous silica-based drug delivery systems to improve their 
targeting capabilities and control the rate of drug 
release. Although mesoporous silica-based drug delivery 
systems have been widely used in tumors, the toxicity 
and biocompatibility of mesoporous silica to cardiovas-
cular diseases are still worthy of comprehensive and in- 
depth study before their wide applications in AS. 
Currently, cell membrane biomimetic nanoparticles 
have received extensive attention. Cell membrane bio-
mimetic nanoparticles can not only evade the immune 
system’s clearance, but also improve the targeting spe-
cificity of nanoparticles and reduce their toxic side 
effects due to they retain the biological properties of 
the original cell membrane. This may be an effective 
strategy for the design of mesoporous silica-based drug 
delivery system for AS. Furthermore, biodegradable 
mesoporous silica nanomaterials might be another alter-
native choice to avoid such side effect to develop meso-
porous silica-based drug delivery system for AS. It is 
believed that with the unremitting efforts of researchers, 
mesoporous silica-based drug delivery systems will have 
great development prospects in the diagnosis and treat-
ment of cardiovascular diseases such as AS, and will 
provide more ideas for accurate diagnosis and effective 
treatment of AS.
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